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Priing Catastrophe Risk in Life (re)InsuraneErland EkhedenOla Hössjer∗Deember 2011AbstratWhat is the atastrophe risk a life insurane ompany faes? Whatis the orret prie of a atastrophe over? During a review of theurrent standard model, due to Strikler (1960), we found that thismodel has some serious shortomings. We therefore present a newmodel for the priing of atastrophe exess of loss over (Cat XL). Thenew model for annual laim ost C is based on a ompound Poissonproess of atastrophe osts. To evaluate the distribution of the ostof eah atastrophe we use the Peaks Over Threshold model for thetotal number of lost lives in eah atastrophe and the beta binomialmodel for the proportion of these orresponding to ustomers of theinsurane ompany. To be able to estimate the parameters of themodel, international and Swedish data were olleted and ompiled,listing aidents laiming at least twenty and four lives respetively.Fitting the new model to data, we �nd the �t to be good. Finally wegive the prie of a Cat XL ontrat and perform a sensitivity analysisof how some of the parameters a�et the expeted value and standarddeviation of the ost and thus the prie.KEY WORDS: Catastrophe exess of loss, life reinsurane, atastro-phe risk, atastrophe model, atastrophe data, Cat XL, POT-model,Solveny II, internal models.
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1 IntrodutionA atastrophi event, laiming many lives an have a severe impat on a lifeinsurane ompany. In Solveny II, atastrophe risk is inluded in the al-ulation of the Solveny Capital Requirements (SCR). Either by a standardformula or by the use of an approved internal model. (Diretive 2009/138/ECn.d.). Corretly assessing the atastrophe risk an a�et both SCR and thehoie of reinsurane over.To protet itself from the onsequenes of a atastrophe, a life insuraneompany an buy atastrophe exess of loss over (Cat XL) from a reinsurer.A major question is how one should prie a ontrat giving suh over. Theurrently applied priing model is due to Strikler (1960). Strikler used datafrom the Statistial Bulletin of the Metropolitan Life Insurane Company inNew York who had supplied summaries of the aidents in the US whihlaimed �ve or more lives for the period 1946�1950.The annual number of deaths for eah million of population resulting fromaidents laiming m or more lives was approximated by the funtion
A(m) = 8 · 1001/m · m−1/3From this equation he derived an elegant priing formula. Drawbaks withStrikler's model is that there is no statistial method to update A(m) inaordane to new data, it assumes a onstant deterministi rate of atas-trophes and is limited to atastrophes laiming at most 1500 lives. Therehave been some smaller adjustments proposed to Striklers model, see forexample Harbitz (1992) and Alm (1990). These modi�ations have howevernot addressed the main weaknesses of the model.Taking into aount the above mentioned shortomings, a new model is sug-gested in this paper.2 A new model for life Cat XL priingWe will present a model for atastrophes, how they will a�et a life ompanyand how to use the model to prie a Cat XL ontrat. It is an hierarhialmodel, whih is easy to implement in a statistial software pakage. Param-eters an be estimated from real data. The priing of a Cat XL ontrat isthe primary goal. The model is also suitable for alulating the atastropherisk exposure of a life ompany, hene it should be possible to implement inan internal model for alulating SCR.
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2.1 The atastrophe exess of loss ontratThe atastrophe exess of loss (Cat XL) ontrat is de�ned as follows: If Mor more persons insured by the eding ompany loose their lives as a resultof a single event and if the orresponding aggregate net retention (the partthat is not eded under another reinsurane ontrat) payable by the edingompany exeeds the amount S, the exess will be paid by the reinsurer,with the understanding that the maximum amount payable by the reinsurerin respet of eah suh event does not exeed a spei�ed amount L, this isan L xs S Cat XL ontrat. (A pratial Guide to Reassurane n.d.).How many deaths onstitute a atastrophe? In the ontext of insurane, theases where at least three lives are lost in a single event are often onsideredto be atastrophi. Therefore M is typially hosen between three and �ve.The retention S in a Cat XL ontrat is often hosen to be at least twie theretention the edent has in its individual life surplus ontrat. The hoie of
M and S ultimately depends on the edent's attitude to risk.2.2 The approahWe approah the problem of determining the prie of a Cat XL ontrat inthe following manner: We use the peaks over thresholds model (POT), seeRootzén & Tajvidi (1995) to desribe the �ow of atastrophes. Then wemodel the ost eah atastrophe will in�it on a given Cat XL ontrat.This breaks the problem into four parts:1. To desribe the number of atastrophes K = K(T ) that happen duringa ontrat period of length T .2. To give the number Xk of deaths from the k:th atastrophe.3. To derive the number Yk of laims resulting from the Xk deaths.4. To asses the ost Zk of the Yk laims from the k:th atastrophe.Our goal is to alulate the expeted value, variane and distribution of C(T ),whih is the total laim ost on the Cat XL ontrat during its duration T .Usually T is one year, so sometimes we will drop the index T for onvenienewith the understanding that the ontrat duration T is assumed to be one.We express the total ost due to atastrophes during the ontrat period as

C(T ) = C =
K∑

k=1

Zk (1)3



Next we will speify how to model eah part.2.3 The peaks over thresholds modelThe peaks over thresholds model (POT) an be used to study events exeed-ing a ertain threshold. Given a sequene of random variables X1, X2 . . .XKand a threshold level m only Xk : Xk ≥ m are onsidered. We an think ofthe sequene as all aidents during T years where X ′

j denotes the death tollin aident j and that we are only interested in aidents laiming at least
m lives, disarding X ′

j if X ′

j < m and putting Xk(j) = X ′

j if X ′

j ≥ m, where
k(j) = |{i; 1 ≤ i ≤ j, X ′

i ≥ m}| is the atastrophe number that aident jorresponds to.The POT model assumes that the number Km of Xk is Poisson distributedand that the exeedenes Xk − m are independent and identially Paretodistributed.Sine the number of deaths is a disrete random variable it ould be arguedthat it is logial to use the disrete ounterpart of the Pareto distribution,the Zeta distribution. However, for pratial purposes (e.g. parameter es-timation with standard software) the generalised Pareto distribution worksmore smoothly.2.4 Catastrophe rateAording to the POT-model the number of atastrophes laiming at least
m lives is a Poisson proess with intensity λm per T years. Let Km denotethe number of atastrophes laiming at least m lives during T years.We assume(I) Km(T ) = Km ∼ Po(λmT ).We an view λm = λ1 Pr(X ′

i ≥ m) as the intensity of a thinned Poissonproess (Resnik 1992) with a thinning mehanism that retains aidentswith at least m lost lives.
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2.5 Number of deathsFirst, let X ′ denote the death toll in an arbitrary aident. Let Pm(n) =
Pr(X ′ = n|X ′ ≥ m) and Fm(n) = Pr(X ′ ≤ n|X ′ ≥ m).Sine our interest are `atastrophes', aidents where several persons havedied, we are really interested in the tail distribution of P1. This motivatesthe use of the POT-model.We assume, given a threshold m (thus only studying aidents laiming atleast m lives),(II) X1, X2 . . .XK are independent, identially distributed (i.i.d) as X ∼ Fm.(III) X = round(X̃), where round(x) is the integer losest to x.(IV) X̃ ∼ GPD(m − 1

2
, σm, ξm) i.e. X̃ has a generalised Pareto distribution(GPD) whih has umulative distribution funtion

G(m−
1

2
,σ,ξ)(x) = 1 − [1 + ξ(x − m +

1

2
)/σ]−1/ξwere m ∈ ℜ, x ≥ m − 1

2
and σ > 0.Thus X ∈ {m, m + 1, m + 2 . . .} and X̃ ∈ ℜ. We say that X has a disretegeneralised Pareto distribution (DGPD), X ∼ DGPD(m, σm, ξ) where σ =

σm and ξ = ξm.If X̃ ∼ GPD(m − 1
2
, σ, ξ) then

E[X̃] = m −
1

2
+

σ

1 − ξ
(ξ < 1)

V ar(X̃) =
σ2

(1 − ξ)2(1 − 2ξ)
(ξ < 1/2)The Pareto distribution an have a heavy tail, if ξ ≥ 1/2 the variane doesnot exist, and if ξ ≥ 1 the same holds for the expeted value.By the de�nition of X and the fat that G has a dereasing density funtion,we �nd that

E(X) ≥ E(X̃)but the larger m is, the loser the �rst moment of X it to that of X̃, providedit exists. 5



2.6 Number of laimsWhat is the number Y ′ of laims that will hit a life insurer given a atastrophewith a death toll of X? We want to investigate the properties of the randomvariable Y ′. It is lear that 0 ≤ Y ′ ≤ X.De�ne the market penetration q for a given life insurane ompany as
q =

Number of sold poliiesSize of total population.We assume(V) E[Y ′|X] = qXThe expeted number of laims is proportional to the market penetration q.The more poliies sold by the insurer, the likelier a laim.We expet to see some dependene among lives for small atastrophes (thinke.g of tra� aidents), but for very large atastrophes the number of laimsshould be lose to the expeted value i.e.
Y ′

X
≈ q for X >> 1. (2)A distribution that would re�et the above mentioned properties is theBeta-binomial.We assume(VI) Y ′|X, p ∼ Bin(X, p),(VII) p|X ∼ Beta(d(X)q, d(X)(1− q)), 0 < d(X) < ∞.Taken together (VI)�(VII) imply that Y ′|X ∼ Betabin(X, q, d(X)). Sine

E(p|X) = q, we have in partiular that (V) holds.For every atastrophe a p ∈ [0; 1] is drawn from a beta distribution withmean q. This p is the probability that a life in this atastrophe was insuredby the edent, and hene Y ′ the total number of insured lives lost is Bin(X,p).How does d(X) a�et the distribution? By (2) and the disussion above, we�nd that the two limits for d(X) are 6



lim d(X) → ∞ ⇒ Y ′|X ∼ Bin(X, q)
lim d(X) → 0 ⇒ Pr(Y ′ = 0|X) = 1 − q, Pr(Y ′ = X|X) = qorrespond to two extremes, independene and total dependene betweenlives.Hene d(X) should be hosen so that d(X) → ∞ as X → ∞ and that d(X)is small for small X.We assume(VIII) d(X) = θ · log(X) , θ ∈ ℜ+ .The hoie of log(X) in (VIII) is made to get a ertain degree of dependenefor smaller atastrophes and a slow growth towards independene for the re-ally large atastrophes. This is beause even large atastrophes e.g. involvingairplanes and ferries, tend to exhibit a large dependene among lost lives.We notie that the varianeVar(Y ′|X) = q(1 − q) (X + X(X − 1)/(d(X) + 1)) ,is a dereasing funtion of d(X), with Var(Y ′|X) = Xq(1 − q) for ompleteindependene (d(X) = ∞) and Var(Y ′|X) = X2q(1− q) for omplete depen-dene (d(X) = 0).Remember that the Cat XL ontrat states that at least M insured personshave to die in order to be a valid atastrophe laim.Let Y ′

k ∼ Beta bin(Xk, q, d(Xk)) be the number of insured lives lost in the
k:th atastrophe, and put

Yk =

{
Y ′

k, if Y ′

k ≥ M,
0, if Y ′

k < M.
(3)Hene Yk is the number of dead in a valid atastrophe laim.It is worth to note that the beta distribution is known to be used in non-life atastrophe modeling in a similar manner, see for instane Woo (1999),where the perentage of damage done to a building due to a natural peril(storm, �ood, earthquake) is modeled as being beta distributed.2.7 Distribution of laimsWhat is the size of a laim Zk? Denote the individual laims in the k:thatastrophe by Zki. We will use standardised amounts so that E(Zki) = 1.7



We have to onsider S and L, the retention and maximal liability of the CatXL ontrat. If Z ′

k =
∑Yk

i=1 Zki is the atual laim amount from the Yk insuredlives lost in atastrophe k we set
Zk =





0, if Z ′

k < S
Z ′

k − S, if S ≤ Z ′

k < S + L
L, if S + L ≥ Z ′

kWith modern information tehnology, it is often possible to get hold of allthe individual risk sums of the life portfolio. In that ase the empirialdistribution of Zki an be used in numerial alulations.In the ase where the Cat XL overs a group life poliy where all assureds'sum are the same, there is no randomness i.e. Zki ≡ 1, so that Z ′

k equals thenumber of lives lost, Yk.Otherwise it is often a good approximation to assume that a single laimis exponentially distributed with mean value 1, i.e. Pr(Z ′

k ≤ z|Yk = 1) =
1 − e−z. Assuming independene between individual laims, this gives agamma distribution Γ(Yk, 1) for the total ost Z ′

k of Yk laims.2.8 Total annual laimNow we are ready to address the question, what the total ost C in (1) is. Wehave assumed (I), that atastrophes arrive aording to a Poisson �ow. If, inaddition, laim amounts Zk are independent and identially distributed, itfollows that T → C(T ) is a marked Poisson proess. We will as stated abovemainly onsider C = C(1), the ost during the �xed time horizon T = 1.As we have seen, C will depend on the ontrat parameters M , S and L aswell as model parameters λM , σM , ξM , q, θ and the hoie of laim distributionfuntion.Thus, for a given set of parameters, we an use Monte Carlo simulationsto ompute expeted value, variane and even the distribution of C. Giventhese properties of C we an set the prie of the Cat XL ontrat.3 Catastrophe dataTo be able to set the orret tehnial prie on an insurane a theoretialmodel is not enough, one also needs statistial data in order to estimatethe parameters of the model. An insurane ompany an rely on its own8



laim experiene for estimation in most ases. However, sine atastrophievents are almost rare by de�nition, even for a reinsurer with a large CatXL portfolio the use of laim experiene as the only soure for priing theontrats would be unsatisfatory.To be able to estimate parameters of this model two data sets were olletedan ompiled.Swiss Re's yearly publiation �sigma, - Natural atastrophes and man-madedisasters� (Swiss Re 1983�91, 1994�99, 2002�04), lists atastrophi eventsfrom all over the world that have `at least 20 dead or missing'. Completedata sets were available from the years 1983�91, 1994�99 and 2002�04. Onlydata from those years were ompiled. Some well known atastrophes (and alot of unknown) suh as 9/11 2001 are therefore missing. Data was sortedafter ontinent and region, as well as the ause of the disaster. Only eventsthat �t the standard Cat XL ontrats 72 hour rule were taken into a-ount. Therefore, long lasting `onditions' suh as heat waves, old spellsand �oods were exluded, even if they took many lives. Ats of war andmilitary aidents are not aounted for sine they are exluded from theinsurane ontrats. In total there were 3055 observations from this soure.For population data, see U.S. Census Bureau (2004).The Swedish Resue Servies Ageny, SRSA, (Räddningsverket) keeps areord over Swedish aidents laiming at least four lives. Data from 1970�2004, a total of 189 observations, was used in this data set.The international data set has many observations but the quality varies withdi�erent regions of the world. The numbers from Western Europe and NorthAmeria are probably the most aurate. For example regimes in the non-free world has a reputation of trying to over the true extent of atastrophes.Getting aurate data an be hard in some irumstanes, the frequent o-urrenes of �50�, �100� and �200� in data from some regions, see for exampleFigure 2, suggest that some of the observations are mere estimates. Anotherdrawbak with the international data is the fat that it is only ontainingdata from 20 dead and upward. The Swedish data is muh better in theseregards, ranging from four and up. The size of the data set is however lim-ited and one an question whih onlusions that an be drawn from it aboutirumstanes in other ountries.3.1 Catastrophe intensityWe an hek the validity of the Poisson assumption for eah region by om-paring the sample mean λ̂m and sample variane of the yearly number ofaidents.
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Average nr Per 100 millionRegion per year inhabitants83�91 94�04 83�91 94�04South Ameria (SAM) 18,9 14,8 6,8 4,5North Ameria (NAM) 6,3 5,3 2,3 1,8Caribbean (CAR) 2,1 3,7 5,7 8,8Central Ameria (CAM) 6,1 4,9 5,7 3,7Western Europe (WEU) 8,9 5,9 2,4 1,5Eastern Europe (EEU) 5,0 1,7 4,2 1,4Former Soviet (SUN) 3,4 10,1 1,2 3,5South Asia (SAS) 40,6 41,3 3,9 3,2South East Asia (SEA) 18,4 16,6 4,3 3,2Middle East (MIE) 6,6 12,6 3,4 4,9Far East (FAE) 7,4 3,0 3,9 1,5Central Asia (CAS) 17,1 26,4 1,5 2,1Oeania (OCE) 1,0 0,8 3,9 2,6Northern Afria (NAF) 2,6 6,6 2,3 4,6Middle Afria (MAF) 12,7 22,3 2,9 3,8South Afria (SAF) 2,9 3,7 7,5 8,2Table 1: Annual inidene rates λ̂20 of atastrophes for various regions
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The sample mean is
λ̂m =

Km

Tand the sample variane isV̂ar(λ̂20) =
1

T − 1

T∑

t=1

(
Km,t − λ̂m

)2where T is number of years we have observed and Km,t is the number ofatastrophes laiming at least m lives during the t:th year.Sample mean, sample mean normalised with the number of inhabitants andsample variane from the international data set during the periods 1983�1991and 1994�2004 respetively, are shown in Table 1 and 2. Sample mean andsample variane from the Swedish data is found in Table 3.Region 1983�91 1994�2004mean var var/mean mean var var/meanSAM 18,9 48,9 2,59 14,8 17,2 1,16NAM 6,3 10,3 1,62 5,3 8,0 1,5CAR 2,1 2,9 1,36 3,7 4,5 1,23CAM 6,1 10,1 1,65 4,9 5,6 1,15WEU 8,9 9,4 1,05 5,9 13,9 2,35EEU 5,0 12,8 2,55 1,7 1,0 0,6SUN 3,4 6,5 1,9 10,1 9,9 0,98SAS 40,6 314,0 7,74 41,3 161,5 3,91SEA 18,4 150,8 8,17 16,6 35 2,12MIE 6,6 15,8 2,41 12,6 33,5 2,67FAE 7,4 4,3 0,57 3,0 3,3 1,08CAS 17,1 93,4 5,46 26,4 25,3 0,96OCE 1,0 0,5 0,5 0,8 0,7 0,89NAF 2,6 2,3 0,89 6,6 3,5 0,54MAF 12,7 54,8 4,32 22,3 90,3 4,04SAF 2,9 3,4 1,16 3,7 8,3 2,25Table 2: Catastrophe intensities λ̂20 and V̂ar(λ̂20).For most regions and the Swedish data, the mean and the variane are fairlylose to eah other, in aordane with the Poisson assumption. But for someregions suh as SEA and SAS the variane is larger than twie the mean,showing an overdispersion. This suggests that an improved model ould bebuilt by inorporating more lustering of atastrophes, e.g. by allowing for atime varying and/or stohasti laim intensity.11



3.2 Cat sizeIs the DGPD a good model for the number of lost lives in a atastrophe? Theavailable data was used to estimate the parameters of the DGPD with themaximum likelihood (ML) method, see e.g. Pawitan (2001). All estimates areobtained by using the statistial software R and the pakage POT. Estimatesare presented in Table 4.Sine ξ̂ > 1/2 for all regions, the variane does not exist, this indiates aheavy tail of the distribution, i.e. aording to this model, very large atas-trophes an be expeted. For some regions, ξ̂ > 1, the tail is so heavy thatnot even the expeted value exists!We use quantile- quantile plots to determine whether the DGDP �ts thedata. Plots for North Ameria and South East Asia are presented in Figure1 and 2. The dashed lines indiate 95% on�dene intervals. We onludethat the �t is good.The ML estimates for the Swedish data are σ̂4 = 1.37(0.16) and ξ̂4 =
0.66(0.010), with estimated standard deviations in brakets. Looking at theorresponding plot, Figure 3, we �nd that the �t is good, even if the tailseems to be a bit underestimated judging from the QQ-plot. It should benoted that the two largest atastrophes, the ferry Estonia and the tsunami,are extreme in the modern Swedish history. They would have been the largestatastrophes even if we had data from the whole 20th entury. In light ofthis fat, we onlude that the DGPD gives a good �t for the Swedish data.3.3 Distribution of insured livesThere is no available data for the distribution of insured lives Y ′

k|Xk in atas-trophes. What we an do is to let θ vary between two extremes, having eithera binomially distributed number of insureds from the ompany of interest ineah atastrophe (θ = ∞), or all/no laims with probabilities q and 1 − qYear mean var var/mean1970�79 6,1 7,66 1,261980�89 6,6 9,38 1,421990�99 3,8 4,18 1,12000�04 4,8 1,7 0,351990�04 4,13 3,41 0,82Table 3: Swedish atastrophe intensity λ̂4 and V̂ar(λ̂4).12



Region σ̂20 (std err σ̂20) ξ̂20 (std err ξ̂20)SAM 15,5 (1,7) 0,83 (0,10)NAM 17,2 (3,1) 0,68 (0,17)CAR 18,4 (4,8) 0,98 (0,26)CAM 13,2 (2,6) 0,98 (0,20)WEU 14,8 (2,6) 0,84 (0,17)EEU 13,6 (3,1) 0,63 (0,21)SUN 20,2 (3,3) 0,79 (0,15)SAS 20,2 (1,4) 1,00 (0,07)SEA 19,8 (2,4) 1,15 (0,12)MIE 18,3 (2,9) 1,38 (0,18)FAE 17,9 (3,9) 1,12 (0,22)CAS 20,6 (2,0) 0,76 (0,09)OCE 17,1 (8,0) 1,13 (0,49)NAF 15,7 (3,4) 1,02 (0,22)MAF 25,6 (2,7) 0,66 (0,10)SAF 10,0 (2,2) 0,61 (0,20)Table 4: Estimated parameters for the DGPD(20, σ20, ξ20) model. Standarderrors are in brakets.respetively (θ = 0) and see how di�erent θ values a�ets the distribution oflost lives, as will be further disussed in the next setion.4 Priing4.1 The priing priniple for a Cat XL ontratIn non-proportional reinsurane it is often not possible to aquire a portfoliowith a large number of independent ontrats. The dependene betweenontrats is an important reason why insurers want and need reinsurane. Areinsurane portfolio an be subjet to major �utuations, i.e. there is a lot ofsystemati risk involved. This in turn requires more regulatory apital. Apartfrom the expeted laims, the pure premium, the reinsurer will harge forit's apital osts and, therefore, typially adds a perentage of the standarddeviation to the pure premium. This gives the priing formula
P = E[C] + α ∗ SD(C), (4)where typially α ∈ [0.1; 0.5]. 13



Our model give us the possibility to use an even more sophistiated priingsine we will in fat get hold of the omplete distribution of C. This gives thepossibility to use e.g. the quantiles of C in the priing or in the determinationof ontrat parameters.Pries of at-ontrats are often related to the maximal liability of the rein-surer. They are given as a �rate on line� (RoL) P ÷L%. Here we would liketo ite Bostrom & Cirkovi (2008) p 177, who expressed another importantpriing priniple:�There is a saying in atastrophe reinsurane that �nothing isless than 1 on line�, meaning that the vagaries of life are suhthat you should never prie high-level risk at less than a haneof a total loss one in a hundred years (1%).�4.2 The rating fators and the total laim ostAs we have seen there are many parameters that a�et the prie P of a CatXL ontrat. The model presented in this paper inludes the atastropherate λ, the distribution of atastrophes determined by (σ, ξ), the marketpenetration q, the dependene parameter θ, the ontrat parameters M, Sand L, and the extent α to whih we take the standard deviation of thelaim ost C into aount. This gives the prie P = P (λ, σ, ξ, q, θ, M, S, L, α)where
• λ, σ and ξ are to be estimated from data.
• q is determined by the size of the eeding ompany.
• M, S and L are determined by the Cat XL ontrat.
• α is determined by the reinsurer's risk appetite.
• θ is triky in the sense that we lak data to estimate θ. We an howeverdo a sensitivity analysis to see how it a�ets P , see below.With as many variables and trunations in di�erent steps an analytial for-mula for P is not to be expeted. The model is however well suited for a nu-merial analysis by means of parmetri bootstrap (Efron & Tibshirani 1993).We start by estimating the model parameters and then run numerial simu-lations from the so estimated distributions to simulate the distribution of thetotal laim ost C. With the distribution of C known it is easy to determinea prie P aording to ones risk preferenes.14



4.3 A numerial exampleA Swedish insurane ompany reinsures it's portfolio of 900 000 poliies.Sweden has a population of 9 million people, this yields q = 0.1. The otherparameter values are aording to our previous �ndings λ̂ = 4.13, (Table 3),
σ̂ = 1.37, ξ̂ = 0.66 (see Setion 3.2). We assume that θ = 0.1 and that thesum insured is 1 MSEK for eah poliyholder. The ontrat parameters areset to M = 4, S = 5 MSEK, L = 100 MSEK whih is a realisti hoie fora Cat XL ontrat. To determine the prie we simulate laims for 100 000years and �nd that E[C] = 1.08 MSEK and SD(C) = 5.41 MSEK. Assuming
α = 0.20, (4) gives the prie P = 2.16 MSEK orresponding to a rate on lineof P/100 = 2.16%.We �nd that the probability of a laim is 0.15 per year. In Figure 4 wepresent the onditional laim distribution C|C > 0 and the orrespondingsize biased distribution of the ost. With a density proportional to x · fC(x),where fC is the density of C, we an see whih laims that atually will ostthe most. It is the relatively small laims that will ost the most due totheir frequeny. Claims ranging from 0 to 5 orresponds to 25% of the totallaims, from 0 to 14 to 50%. However, the large laims, limited in size by
L = 100, ontribute with 9% of the expeted laim ost, even if the risk ofsuh an event is just one in a thousand years.4.4 Sensitivity Analysis for the Cat XL Contrat4.4.1 The e�et of atastrophe intensity λHow does C depend on λ? Aording to equation (1) we have C =

∑K
k=1 Zk.Let E[Z] = µ,Var(Z) = κ2. Then (1) and (I) imply

E[C] = µ · E[K] = µ · λThus E[C] is linear in λ. What about Var(C)? Using a well known ondi-tioning formula for the variane we �ndVar(C) = Var(E[C|K]) + E[Var(C|K)]

= Var(µK) + E[κ2K]

= µ2λ + κ2λ

= (µ2 + κ2)λso that Var(C) is also linear in λ. 15



4.4.2 The e�et of q and θReall from Setion 2.6 that in this model E[Y ′|X] = q · X, hene E[C] isapproximately linear in q due to the trunation in (3). Considering the bino-mial distribution and that q typially is small, Var(C) is also approximatelylinear in q.In Setion 2.6 we also saw that a small θ implies large dependene and a large
θ implies more of independene. The expeted number of insured lives lost,
E[Y ′], does not depend on θ. However, the expeted number of lost liveshitting the Cat XL ontrat, E[Y ], will depend on θ due to the trunation in(3). ComputingE[C] and SD(C) as funtions of θ (with the other parametersas in Example 1), see Figure 5, reveals that they are dereasing in θ, goingfrom θ = 10 to θ = 0.1 triples E[C] and inreases SD(C) by a fator of 1.8,a signi�ant e�et. Ones belief about the dependene among the insured lifewill therefore heavily in�uene ones view on the atastrophe risk.5 ConlusionIn this paper we have provided a new model for assessing life atastropherisk, espeially priing atastrophe exess of loss (Cat XL) ontrats in lifereinsurane, but also for Solveny II purposes.We �rst studied Strikler's well known model for priing. Although Strikler'smodel has it's merits, it is in�exible - there is no statistially motivated wayhow to estimate the model parameters - and to some extent unrealisti e.g. thedeterministi atastrophe rate. Some modi�ations of the model have madeit more up to date but still not orreted these basi problems.To get a statistially satisfying way of priing a Cat XL ontrat we onstruta new model in the following way. In equation (1) we express the total ostdue to atastrophes during a ontrat period as C =

∑K
k=1 Zk were K, thenumber of atastrophes assumed to be Poisson distributed and Zk is the ostin�ited on the Cat XL ontrat by the k:th atastrophe. To obtain Zk westart with Xk, the number of lost lives in the k:th atastrophe, is assumedto have a generalised Pareto distribution. The number of insured lives lost,

Yk, is assumed to follow a trunated Beta-binomial distribution onditionalon Xk, in order to re�et the possible dependene among lost insured lives.The loss in the k:th atastrophe, Zk, is the sum of the insured for eah ofthe Yk lost lives minus the retention stated in the Cat XL ontrat. The suminsured for eah life an have a, possibly trunated, exponential distributionor be deterministi in ase of a group poliy.In order to use the model for atuarial purposes we need data for parameterestimation. We work with two data sets, one international with atastrophes16
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Figure 1: Empirial probabilities, �tted DGPD and QQ-plot NAM, at least20 dead.
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Figure 2: Empirial probabilities, �tted DGPD and QQ-plot SEA, at least20 dead.
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Figure 3: Empirial probabilities, �tted DGPD and QQ-plot SWE, at leastfour dead.
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Figure 4: Histogram, laim distribution and laim ost distribution
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Figure 5: E[C℄ and SD(C) as funtions of θ
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