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tWhat is the 
atastrophe risk a life insuran
e 
ompany fa
es? Whatis the 
orre
t pri
e of a 
atastrophe 
over? During a review of the
urrent standard model, due to Stri
kler (1960), we found that thismodel has some serious short
omings. We therefore present a newmodel for the pri
ing of 
atastrophe ex
ess of loss 
over (Cat XL). Thenew model for annual 
laim 
ost C is based on a 
ompound Poissonpro
ess of 
atastrophe 
osts. To evaluate the distribution of the 
ostof ea
h 
atastrophe we use the Peaks Over Threshold model for thetotal number of lost lives in ea
h 
atastrophe and the beta binomialmodel for the proportion of these 
orresponding to 
ustomers of theinsuran
e 
ompany. To be able to estimate the parameters of themodel, international and Swedish data were 
olle
ted and 
ompiled,listing a

idents 
laiming at least twenty and four lives respe
tively.Fitting the new model to data, we �nd the �t to be good. Finally wegive the pri
e of a Cat XL 
ontra
t and perform a sensitivity analysisof how some of the parameters a�e
t the expe
ted value and standarddeviation of the 
ost and thus the pri
e.KEY WORDS: Catastrophe ex
ess of loss, life reinsuran
e, 
atastro-phe risk, 
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atastrophe data, Cat XL, POT-model,Solven
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1 Introdu
tionA 
atastrophi
 event, 
laiming many lives 
an have a severe impa
t on a lifeinsuran
e 
ompany. In Solven
y II, 
atastrophe risk is in
luded in the 
al-
ulation of the Solven
y Capital Requirements (SCR). Either by a standardformula or by the use of an approved internal model. (Dire
tive 2009/138/ECn.d.). Corre
tly assessing the 
atastrophe risk 
an a�e
t both SCR and the
hoi
e of reinsuran
e 
over.To prote
t itself from the 
onsequen
es of a 
atastrophe, a life insuran
e
ompany 
an buy 
atastrophe ex
ess of loss 
over (Cat XL) from a reinsurer.A major question is how one should pri
e a 
ontra
t giving su
h 
over. The
urrently applied pri
ing model is due to Stri
kler (1960). Stri
kler used datafrom the Statisti
al Bulletin of the Metropolitan Life Insuran
e Company inNew York who had supplied summaries of the a

idents in the US whi
h
laimed �ve or more lives for the period 1946�1950.The annual number of deaths for ea
h million of population resulting froma

idents 
laiming m or more lives was approximated by the fun
tion
A(m) = 8 · 1001/m · m−1/3From this equation he derived an elegant pri
ing formula. Drawba
ks withStri
kler's model is that there is no statisti
al method to update A(m) ina

ordan
e to new data, it assumes a 
onstant deterministi
 rate of 
atas-trophes and is limited to 
atastrophes 
laiming at most 1500 lives. Therehave been some smaller adjustments proposed to Stri
klers model, see forexample Harbitz (1992) and Alm (1990). These modi�
ations have howevernot addressed the main weaknesses of the model.Taking into a

ount the above mentioned short
omings, a new model is sug-gested in this paper.2 A new model for life Cat XL pri
ingWe will present a model for 
atastrophes, how they will a�e
t a life 
ompanyand how to use the model to pri
e a Cat XL 
ontra
t. It is an hierar
hi
almodel, whi
h is easy to implement in a statisti
al software pa
kage. Param-eters 
an be estimated from real data. The pri
ing of a Cat XL 
ontra
t isthe primary goal. The model is also suitable for 
al
ulating the 
atastropherisk exposure of a life 
ompany, hen
e it should be possible to implement inan internal model for 
al
ulating SCR.
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2.1 The 
atastrophe ex
ess of loss 
ontra
tThe 
atastrophe ex
ess of loss (Cat XL) 
ontra
t is de�ned as follows: If Mor more persons insured by the 
eding 
ompany loose their lives as a resultof a single event and if the 
orresponding aggregate net retention (the partthat is not 
eded under another reinsuran
e 
ontra
t) payable by the 
eding
ompany ex
eeds the amount S, the ex
ess will be paid by the reinsurer,with the understanding that the maximum amount payable by the reinsurerin respe
t of ea
h su
h event does not ex
eed a spe
i�ed amount L, this isan L xs S Cat XL 
ontra
t. (A pra
tial Guide to Reassuran
e n.d.).How many deaths 
onstitute a 
atastrophe? In the 
ontext of insuran
e, the
ases where at least three lives are lost in a single event are often 
onsideredto be 
atastrophi
. Therefore M is typi
ally 
hosen between three and �ve.The retention S in a Cat XL 
ontra
t is often 
hosen to be at least twi
e theretention the 
edent has in its individual life surplus 
ontra
t. The 
hoi
e of
M and S ultimately depends on the 
edent's attitude to risk.2.2 The approa
hWe approa
h the problem of determining the pri
e of a Cat XL 
ontra
t inthe following manner: We use the peaks over thresholds model (POT), seeRootzén & Tajvidi (1995) to des
ribe the �ow of 
atastrophes. Then wemodel the 
ost ea
h 
atastrophe will in�i
t on a given Cat XL 
ontra
t.This breaks the problem into four parts:1. To des
ribe the number of 
atastrophes K = K(T ) that happen duringa 
ontra
t period of length T .2. To give the number Xk of deaths from the k:th 
atastrophe.3. To derive the number Yk of 
laims resulting from the Xk deaths.4. To asses the 
ost Zk of the Yk 
laims from the k:th 
atastrophe.Our goal is to 
al
ulate the expe
ted value, varian
e and distribution of C(T ),whi
h is the total 
laim 
ost on the Cat XL 
ontra
t during its duration T .Usually T is one year, so sometimes we will drop the index T for 
onvenien
ewith the understanding that the 
ontra
t duration T is assumed to be one.We express the total 
ost due to 
atastrophes during the 
ontra
t period as

C(T ) = C =
K∑

k=1

Zk (1)3



Next we will spe
ify how to model ea
h part.2.3 The peaks over thresholds modelThe peaks over thresholds model (POT) 
an be used to study events ex
eed-ing a 
ertain threshold. Given a sequen
e of random variables X1, X2 . . .XKand a threshold level m only Xk : Xk ≥ m are 
onsidered. We 
an think ofthe sequen
e as all a

idents during T years where X ′

j denotes the death tollin a

ident j and that we are only interested in a

idents 
laiming at least
m lives, dis
arding X ′

j if X ′

j < m and putting Xk(j) = X ′

j if X ′

j ≥ m, where
k(j) = |{i; 1 ≤ i ≤ j, X ′

i ≥ m}| is the 
atastrophe number that a

ident j
orresponds to.The POT model assumes that the number Km of Xk is Poisson distributedand that the ex
eeden
es Xk − m are independent and identi
ally Paretodistributed.Sin
e the number of deaths is a dis
rete random variable it 
ould be arguedthat it is logi
al to use the dis
rete 
ounterpart of the Pareto distribution,the Zeta distribution. However, for pra
ti
al purposes (e.g. parameter es-timation with standard software) the generalised Pareto distribution worksmore smoothly.2.4 Catastrophe rateA

ording to the POT-model the number of 
atastrophes 
laiming at least
m lives is a Poisson pro
ess with intensity λm per T years. Let Km denotethe number of 
atastrophes 
laiming at least m lives during T years.We assume(I) Km(T ) = Km ∼ Po(λmT ).We 
an view λm = λ1 Pr(X ′

i ≥ m) as the intensity of a thinned Poissonpro
ess (Resni
k 1992) with a thinning me
hanism that retains a

identswith at least m lost lives.
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2.5 Number of deathsFirst, let X ′ denote the death toll in an arbitrary a

ident. Let Pm(n) =
Pr(X ′ = n|X ′ ≥ m) and Fm(n) = Pr(X ′ ≤ n|X ′ ≥ m).Sin
e our interest are `
atastrophes', a

idents where several persons havedied, we are really interested in the tail distribution of P1. This motivatesthe use of the POT-model.We assume, given a threshold m (thus only studying a

idents 
laiming atleast m lives),(II) X1, X2 . . .XK are independent, identi
ally distributed (i.i.d) as X ∼ Fm.(III) X = round(X̃), where round(x) is the integer 
losest to x.(IV) X̃ ∼ GPD(m − 1

2
, σm, ξm) i.e. X̃ has a generalised Pareto distribution(GPD) whi
h has 
umulative distribution fun
tion

G(m−
1

2
,σ,ξ)(x) = 1 − [1 + ξ(x − m +

1

2
)/σ]−1/ξwere m ∈ ℜ, x ≥ m − 1

2
and σ > 0.Thus X ∈ {m, m + 1, m + 2 . . .} and X̃ ∈ ℜ. We say that X has a dis
retegeneralised Pareto distribution (DGPD), X ∼ DGPD(m, σm, ξ) where σ =

σm and ξ = ξm.If X̃ ∼ GPD(m − 1
2
, σ, ξ) then

E[X̃] = m −
1

2
+

σ

1 − ξ
(ξ < 1)

V ar(X̃) =
σ2

(1 − ξ)2(1 − 2ξ)
(ξ < 1/2)The Pareto distribution 
an have a heavy tail, if ξ ≥ 1/2 the varian
e doesnot exist, and if ξ ≥ 1 the same holds for the expe
ted value.By the de�nition of X and the fa
t that G has a de
reasing density fun
tion,we �nd that

E(X) ≥ E(X̃)but the larger m is, the 
loser the �rst moment of X it to that of X̃, providedit exists. 5



2.6 Number of 
laimsWhat is the number Y ′ of 
laims that will hit a life insurer given a 
atastrophewith a death toll of X? We want to investigate the properties of the randomvariable Y ′. It is 
lear that 0 ≤ Y ′ ≤ X.De�ne the market penetration q for a given life insuran
e 
ompany as
q =

Number of sold poli
iesSize of total population.We assume(V) E[Y ′|X] = qXThe expe
ted number of 
laims is proportional to the market penetration q.The more poli
ies sold by the insurer, the likelier a 
laim.We expe
t to see some dependen
e among lives for small 
atastrophes (thinke.g of tra�
 a

idents), but for very large 
atastrophes the number of 
laimsshould be 
lose to the expe
ted value i.e.
Y ′

X
≈ q for X >> 1. (2)A distribution that would re�e
t the above mentioned properties is theBeta-binomial.We assume(VI) Y ′|X, p ∼ Bin(X, p),(VII) p|X ∼ Beta(d(X)q, d(X)(1− q)), 0 < d(X) < ∞.Taken together (VI)�(VII) imply that Y ′|X ∼ Betabin(X, q, d(X)). Sin
e

E(p|X) = q, we have in parti
ular that (V) holds.For every 
atastrophe a p ∈ [0; 1] is drawn from a beta distribution withmean q. This p is the probability that a life in this 
atastrophe was insuredby the 
edent, and hen
e Y ′ the total number of insured lives lost is Bin(X,p).How does d(X) a�e
t the distribution? By (2) and the dis
ussion above, we�nd that the two limits for d(X) are 6



lim d(X) → ∞ ⇒ Y ′|X ∼ Bin(X, q)
lim d(X) → 0 ⇒ Pr(Y ′ = 0|X) = 1 − q, Pr(Y ′ = X|X) = q
orrespond to two extremes, independen
e and total dependen
e betweenlives.Hen
e d(X) should be 
hosen so that d(X) → ∞ as X → ∞ and that d(X)is small for small X.We assume(VIII) d(X) = θ · log(X) , θ ∈ ℜ+ .The 
hoi
e of log(X) in (VIII) is made to get a 
ertain degree of dependen
efor smaller 
atastrophes and a slow growth towards independen
e for the re-ally large 
atastrophes. This is be
ause even large 
atastrophes e.g. involvingairplanes and ferries, tend to exhibit a large dependen
e among lost lives.We noti
e that the varian
eVar(Y ′|X) = q(1 − q) (X + X(X − 1)/(d(X) + 1)) ,is a de
reasing fun
tion of d(X), with Var(Y ′|X) = Xq(1 − q) for 
ompleteindependen
e (d(X) = ∞) and Var(Y ′|X) = X2q(1− q) for 
omplete depen-den
e (d(X) = 0).Remember that the Cat XL 
ontra
t states that at least M insured personshave to die in order to be a valid 
atastrophe 
laim.Let Y ′

k ∼ Beta bin(Xk, q, d(Xk)) be the number of insured lives lost in the
k:th 
atastrophe, and put

Yk =

{
Y ′

k, if Y ′

k ≥ M,
0, if Y ′

k < M.
(3)Hen
e Yk is the number of dead in a valid 
atastrophe 
laim.It is worth to note that the beta distribution is known to be used in non-life 
atastrophe modeling in a similar manner, see for instan
e Woo (1999),where the per
entage of damage done to a building due to a natural peril(storm, �ood, earthquake) is modeled as being beta distributed.2.7 Distribution of 
laimsWhat is the size of a 
laim Zk? Denote the individual 
laims in the k:th
atastrophe by Zki. We will use standardised amounts so that E(Zki) = 1.7



We have to 
onsider S and L, the retention and maximal liability of the CatXL 
ontra
t. If Z ′

k =
∑Yk

i=1 Zki is the a
tual 
laim amount from the Yk insuredlives lost in 
atastrophe k we set
Zk =





0, if Z ′

k < S
Z ′

k − S, if S ≤ Z ′

k < S + L
L, if S + L ≥ Z ′

kWith modern information te
hnology, it is often possible to get hold of allthe individual risk sums of the life portfolio. In that 
ase the empiri
aldistribution of Zki 
an be used in numeri
al 
al
ulations.In the 
ase where the Cat XL 
overs a group life poli
y where all assureds'sum are the same, there is no randomness i.e. Zki ≡ 1, so that Z ′

k equals thenumber of lives lost, Yk.Otherwise it is often a good approximation to assume that a single 
laimis exponentially distributed with mean value 1, i.e. Pr(Z ′

k ≤ z|Yk = 1) =
1 − e−z. Assuming independen
e between individual 
laims, this gives agamma distribution Γ(Yk, 1) for the total 
ost Z ′

k of Yk 
laims.2.8 Total annual 
laimNow we are ready to address the question, what the total 
ost C in (1) is. Wehave assumed (I), that 
atastrophes arrive a

ording to a Poisson �ow. If, inaddition, 
laim amounts Zk are independent and identi
ally distributed, itfollows that T → C(T ) is a marked Poisson pro
ess. We will as stated abovemainly 
onsider C = C(1), the 
ost during the �xed time horizon T = 1.As we have seen, C will depend on the 
ontra
t parameters M , S and L aswell as model parameters λM , σM , ξM , q, θ and the 
hoi
e of 
laim distributionfun
tion.Thus, for a given set of parameters, we 
an use Monte Carlo simulationsto 
ompute expe
ted value, varian
e and even the distribution of C. Giventhese properties of C we 
an set the pri
e of the Cat XL 
ontra
t.3 Catastrophe dataTo be able to set the 
orre
t te
hni
al pri
e on an insuran
e a theoreti
almodel is not enough, one also needs statisti
al data in order to estimatethe parameters of the model. An insuran
e 
ompany 
an rely on its own8




laim experien
e for estimation in most 
ases. However, sin
e 
atastrophi
events are almost rare by de�nition, even for a reinsurer with a large CatXL portfolio the use of 
laim experien
e as the only sour
e for pri
ing the
ontra
ts would be unsatisfa
tory.To be able to estimate parameters of this model two data sets were 
olle
tedan 
ompiled.Swiss Re's yearly publi
ation �sigma, - Natural 
atastrophes and man-madedisasters� (Swiss Re 1983�91, 1994�99, 2002�04), lists 
atastrophi
 eventsfrom all over the world that have `at least 20 dead or missing'. Completedata sets were available from the years 1983�91, 1994�99 and 2002�04. Onlydata from those years were 
ompiled. Some well known 
atastrophes (and alot of unknown) su
h as 9/11 2001 are therefore missing. Data was sortedafter 
ontinent and region, as well as the 
ause of the disaster. Only eventsthat �t the standard Cat XL 
ontra
ts 72 hour rule were taken into a
-
ount. Therefore, long lasting `
onditions' su
h as heat waves, 
old spellsand �oods were ex
luded, even if they took many lives. A
ts of war andmilitary a

idents are not a

ounted for sin
e they are ex
luded from theinsuran
e 
ontra
ts. In total there were 3055 observations from this sour
e.For population data, see U.S. Census Bureau (2004).The Swedish Res
ue Servi
es Agen
y, SRSA, (Räddningsverket) keeps are
ord over Swedish a

idents 
laiming at least four lives. Data from 1970�2004, a total of 189 observations, was used in this data set.The international data set has many observations but the quality varies withdi�erent regions of the world. The numbers from Western Europe and NorthAmeri
a are probably the most a

urate. For example regimes in the non-free world has a reputation of trying to 
over the true extent of 
atastrophes.Getting a

urate data 
an be hard in some 
ir
umstan
es, the frequent o
-
urren
es of �50�, �100� and �200� in data from some regions, see for exampleFigure 2, suggest that some of the observations are mere estimates. Anotherdrawba
k with the international data is the fa
t that it is only 
ontainingdata from 20 dead and upward. The Swedish data is mu
h better in theseregards, ranging from four and up. The size of the data set is however lim-ited and one 
an question whi
h 
on
lusions that 
an be drawn from it about
ir
umstan
es in other 
ountries.3.1 Catastrophe intensityWe 
an 
he
k the validity of the Poisson assumption for ea
h region by 
om-paring the sample mean λ̂m and sample varian
e of the yearly number ofa

idents.
9



Average nr Per 100 millionRegion per year inhabitants83�91 94�04 83�91 94�04South Ameri
a (SAM) 18,9 14,8 6,8 4,5North Ameri
a (NAM) 6,3 5,3 2,3 1,8Caribbean (CAR) 2,1 3,7 5,7 8,8Central Ameri
a (CAM) 6,1 4,9 5,7 3,7Western Europe (WEU) 8,9 5,9 2,4 1,5Eastern Europe (EEU) 5,0 1,7 4,2 1,4Former Soviet (SUN) 3,4 10,1 1,2 3,5South Asia (SAS) 40,6 41,3 3,9 3,2South East Asia (SEA) 18,4 16,6 4,3 3,2Middle East (MIE) 6,6 12,6 3,4 4,9Far East (FAE) 7,4 3,0 3,9 1,5Central Asia (CAS) 17,1 26,4 1,5 2,1O
eania (OCE) 1,0 0,8 3,9 2,6Northern Afri
a (NAF) 2,6 6,6 2,3 4,6Middle Afri
a (MAF) 12,7 22,3 2,9 3,8South Afri
a (SAF) 2,9 3,7 7,5 8,2Table 1: Annual in
iden
e rates λ̂20 of 
atastrophes for various regions
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The sample mean is
λ̂m =

Km

Tand the sample varian
e isV̂ar(λ̂20) =
1

T − 1

T∑

t=1

(
Km,t − λ̂m

)2where T is number of years we have observed and Km,t is the number of
atastrophes 
laiming at least m lives during the t:th year.Sample mean, sample mean normalised with the number of inhabitants andsample varian
e from the international data set during the periods 1983�1991and 1994�2004 respe
tively, are shown in Table 1 and 2. Sample mean andsample varian
e from the Swedish data is found in Table 3.Region 1983�91 1994�2004mean var var/mean mean var var/meanSAM 18,9 48,9 2,59 14,8 17,2 1,16NAM 6,3 10,3 1,62 5,3 8,0 1,5CAR 2,1 2,9 1,36 3,7 4,5 1,23CAM 6,1 10,1 1,65 4,9 5,6 1,15WEU 8,9 9,4 1,05 5,9 13,9 2,35EEU 5,0 12,8 2,55 1,7 1,0 0,6SUN 3,4 6,5 1,9 10,1 9,9 0,98SAS 40,6 314,0 7,74 41,3 161,5 3,91SEA 18,4 150,8 8,17 16,6 35 2,12MIE 6,6 15,8 2,41 12,6 33,5 2,67FAE 7,4 4,3 0,57 3,0 3,3 1,08CAS 17,1 93,4 5,46 26,4 25,3 0,96OCE 1,0 0,5 0,5 0,8 0,7 0,89NAF 2,6 2,3 0,89 6,6 3,5 0,54MAF 12,7 54,8 4,32 22,3 90,3 4,04SAF 2,9 3,4 1,16 3,7 8,3 2,25Table 2: Catastrophe intensities λ̂20 and V̂ar(λ̂20).For most regions and the Swedish data, the mean and the varian
e are fairly
lose to ea
h other, in a

ordan
e with the Poisson assumption. But for someregions su
h as SEA and SAS the varian
e is larger than twi
e the mean,showing an overdispersion. This suggests that an improved model 
ould bebuilt by in
orporating more 
lustering of 
atastrophes, e.g. by allowing for atime varying and/or sto
hasti
 
laim intensity.11



3.2 Cat sizeIs the DGPD a good model for the number of lost lives in a 
atastrophe? Theavailable data was used to estimate the parameters of the DGPD with themaximum likelihood (ML) method, see e.g. Pawitan (2001). All estimates areobtained by using the statisti
al software R and the pa
kage POT. Estimatesare presented in Table 4.Sin
e ξ̂ > 1/2 for all regions, the varian
e does not exist, this indi
ates aheavy tail of the distribution, i.e. a

ording to this model, very large 
atas-trophes 
an be expe
ted. For some regions, ξ̂ > 1, the tail is so heavy thatnot even the expe
ted value exists!We use quantile- quantile plots to determine whether the DGDP �ts thedata. Plots for North Ameri
a and South East Asia are presented in Figure1 and 2. The dashed lines indi
ate 95% 
on�den
e intervals. We 
on
ludethat the �t is good.The ML estimates for the Swedish data are σ̂4 = 1.37(0.16) and ξ̂4 =
0.66(0.010), with estimated standard deviations in bra
kets. Looking at the
orresponding plot, Figure 3, we �nd that the �t is good, even if the tailseems to be a bit underestimated judging from the QQ-plot. It should benoted that the two largest 
atastrophes, the ferry Estonia and the tsunami,are extreme in the modern Swedish history. They would have been the largest
atastrophes even if we had data from the whole 20th 
entury. In light ofthis fa
t, we 
on
lude that the DGPD gives a good �t for the Swedish data.3.3 Distribution of insured livesThere is no available data for the distribution of insured lives Y ′

k|Xk in 
atas-trophes. What we 
an do is to let θ vary between two extremes, having eithera binomially distributed number of insureds from the 
ompany of interest inea
h 
atastrophe (θ = ∞), or all/no 
laims with probabilities q and 1 − qYear mean var var/mean1970�79 6,1 7,66 1,261980�89 6,6 9,38 1,421990�99 3,8 4,18 1,12000�04 4,8 1,7 0,351990�04 4,13 3,41 0,82Table 3: Swedish 
atastrophe intensity λ̂4 and V̂ar(λ̂4).12



Region σ̂20 (std err σ̂20) ξ̂20 (std err ξ̂20)SAM 15,5 (1,7) 0,83 (0,10)NAM 17,2 (3,1) 0,68 (0,17)CAR 18,4 (4,8) 0,98 (0,26)CAM 13,2 (2,6) 0,98 (0,20)WEU 14,8 (2,6) 0,84 (0,17)EEU 13,6 (3,1) 0,63 (0,21)SUN 20,2 (3,3) 0,79 (0,15)SAS 20,2 (1,4) 1,00 (0,07)SEA 19,8 (2,4) 1,15 (0,12)MIE 18,3 (2,9) 1,38 (0,18)FAE 17,9 (3,9) 1,12 (0,22)CAS 20,6 (2,0) 0,76 (0,09)OCE 17,1 (8,0) 1,13 (0,49)NAF 15,7 (3,4) 1,02 (0,22)MAF 25,6 (2,7) 0,66 (0,10)SAF 10,0 (2,2) 0,61 (0,20)Table 4: Estimated parameters for the DGPD(20, σ20, ξ20) model. Standarderrors are in bra
kets.respe
tively (θ = 0) and see how di�erent θ values a�e
ts the distribution oflost lives, as will be further dis
ussed in the next se
tion.4 Pri
ing4.1 The pri
ing prin
iple for a Cat XL 
ontra
tIn non-proportional reinsuran
e it is often not possible to a
quire a portfoliowith a large number of independent 
ontra
ts. The dependen
e between
ontra
ts is an important reason why insurers want and need reinsuran
e. Areinsuran
e portfolio 
an be subje
t to major �u
tuations, i.e. there is a lot ofsystemati
 risk involved. This in turn requires more regulatory 
apital. Apartfrom the expe
ted 
laims, the pure premium, the reinsurer will 
harge forit's 
apital 
osts and, therefore, typi
ally adds a per
entage of the standarddeviation to the pure premium. This gives the pri
ing formula
P = E[C] + α ∗ SD(C), (4)where typi
ally α ∈ [0.1; 0.5]. 13



Our model give us the possibility to use an even more sophisti
ated pri
ingsin
e we will in fa
t get hold of the 
omplete distribution of C. This gives thepossibility to use e.g. the quantiles of C in the pri
ing or in the determinationof 
ontra
t parameters.Pri
es of 
at-
ontra
ts are often related to the maximal liability of the rein-surer. They are given as a �rate on line� (RoL) P ÷L%. Here we would liketo 
ite Bostrom & Cirkovi
 (2008) p 177, who expressed another importantpri
ing prin
iple:�There is a saying in 
atastrophe reinsuran
e that �nothing isless than 1 on line�, meaning that the vagaries of life are su
hthat you should never pri
e high-level risk at less than a 
han
eof a total loss on
e in a hundred years (1%).�4.2 The rating fa
tors and the total 
laim 
ostAs we have seen there are many parameters that a�e
t the pri
e P of a CatXL 
ontra
t. The model presented in this paper in
ludes the 
atastropherate λ, the distribution of 
atastrophes determined by (σ, ξ), the marketpenetration q, the dependen
e parameter θ, the 
ontra
t parameters M, Sand L, and the extent α to whi
h we take the standard deviation of the
laim 
ost C into a

ount. This gives the pri
e P = P (λ, σ, ξ, q, θ, M, S, L, α)where
• λ, σ and ξ are to be estimated from data.
• q is determined by the size of the 
eeding 
ompany.
• M, S and L are determined by the Cat XL 
ontra
t.
• α is determined by the reinsurer's risk appetite.
• θ is tri
ky in the sense that we la
k data to estimate θ. We 
an howeverdo a sensitivity analysis to see how it a�e
ts P , see below.With as many variables and trun
ations in di�erent steps an analyti
al for-mula for P is not to be expe
ted. The model is however well suited for a nu-meri
al analysis by means of parmetri
 bootstrap (Efron & Tibshirani 1993).We start by estimating the model parameters and then run numeri
al simu-lations from the so estimated distributions to simulate the distribution of thetotal 
laim 
ost C. With the distribution of C known it is easy to determinea pri
e P a

ording to ones risk preferen
es.14



4.3 A numeri
al exampleA Swedish insuran
e 
ompany reinsures it's portfolio of 900 000 poli
ies.Sweden has a population of 9 million people, this yields q = 0.1. The otherparameter values are a

ording to our previous �ndings λ̂ = 4.13, (Table 3),
σ̂ = 1.37, ξ̂ = 0.66 (see Se
tion 3.2). We assume that θ = 0.1 and that thesum insured is 1 MSEK for ea
h poli
yholder. The 
ontra
t parameters areset to M = 4, S = 5 MSEK, L = 100 MSEK whi
h is a realisti
 
hoi
e fora Cat XL 
ontra
t. To determine the pri
e we simulate 
laims for 100 000years and �nd that E[C] = 1.08 MSEK and SD(C) = 5.41 MSEK. Assuming
α = 0.20, (4) gives the pri
e P = 2.16 MSEK 
orresponding to a rate on lineof P/100 = 2.16%.We �nd that the probability of a 
laim is 0.15 per year. In Figure 4 wepresent the 
onditional 
laim distribution C|C > 0 and the 
orrespondingsize biased distribution of the 
ost. With a density proportional to x · fC(x),where fC is the density of C, we 
an see whi
h 
laims that a
tually will 
ostthe most. It is the relatively small 
laims that will 
ost the most due totheir frequen
y. Claims ranging from 0 to 5 
orresponds to 25% of the total
laims, from 0 to 14 to 50%. However, the large 
laims, limited in size by
L = 100, 
ontribute with 9% of the expe
ted 
laim 
ost, even if the risk ofsu
h an event is just one in a thousand years.4.4 Sensitivity Analysis for the Cat XL Contra
t4.4.1 The e�e
t of 
atastrophe intensity λHow does C depend on λ? A

ording to equation (1) we have C =

∑K
k=1 Zk.Let E[Z] = µ,Var(Z) = κ2. Then (1) and (I) imply

E[C] = µ · E[K] = µ · λThus E[C] is linear in λ. What about Var(C)? Using a well known 
ondi-tioning formula for the varian
e we �ndVar(C) = Var(E[C|K]) + E[Var(C|K)]

= Var(µK) + E[κ2K]

= µ2λ + κ2λ

= (µ2 + κ2)λso that Var(C) is also linear in λ. 15



4.4.2 The e�e
t of q and θRe
all from Se
tion 2.6 that in this model E[Y ′|X] = q · X, hen
e E[C] isapproximately linear in q due to the trun
ation in (3). Considering the bino-mial distribution and that q typi
ally is small, Var(C) is also approximatelylinear in q.In Se
tion 2.6 we also saw that a small θ implies large dependen
e and a large
θ implies more of independen
e. The expe
ted number of insured lives lost,
E[Y ′], does not depend on θ. However, the expe
ted number of lost liveshitting the Cat XL 
ontra
t, E[Y ], will depend on θ due to the trun
ation in(3). ComputingE[C] and SD(C) as fun
tions of θ (with the other parametersas in Example 1), see Figure 5, reveals that they are de
reasing in θ, goingfrom θ = 10 to θ = 0.1 triples E[C] and in
reases SD(C) by a fa
tor of 1.8,a signi�
ant e�e
t. Ones belief about the dependen
e among the insured lifewill therefore heavily in�uen
e ones view on the 
atastrophe risk.5 Con
lusionIn this paper we have provided a new model for assessing life 
atastropherisk, espe
ially pri
ing 
atastrophe ex
ess of loss (Cat XL) 
ontra
ts in lifereinsuran
e, but also for Solven
y II purposes.We �rst studied Stri
kler's well known model for pri
ing. Although Stri
kler'smodel has it's merits, it is in�exible - there is no statisti
ally motivated wayhow to estimate the model parameters - and to some extent unrealisti
 e.g. thedeterministi
 
atastrophe rate. Some modi�
ations of the model have madeit more up to date but still not 
orre
ted these basi
 problems.To get a statisti
ally satisfying way of pri
ing a Cat XL 
ontra
t we 
onstru
ta new model in the following way. In equation (1) we express the total 
ostdue to 
atastrophes during a 
ontra
t period as C =

∑K
k=1 Zk were K, thenumber of 
atastrophes assumed to be Poisson distributed and Zk is the 
ostin�i
ted on the Cat XL 
ontra
t by the k:th 
atastrophe. To obtain Zk westart with Xk, the number of lost lives in the k:th 
atastrophe, is assumedto have a generalised Pareto distribution. The number of insured lives lost,

Yk, is assumed to follow a trun
ated Beta-binomial distribution 
onditionalon Xk, in order to re�e
t the possible dependen
e among lost insured lives.The loss in the k:th 
atastrophe, Zk, is the sum of the insured for ea
h ofthe Yk lost lives minus the retention stated in the Cat XL 
ontra
t. The suminsured for ea
h life 
an have a, possibly trun
ated, exponential distributionor be deterministi
 in 
ase of a group poli
y.In order to use the model for a
tuarial purposes we need data for parameterestimation. We work with two data sets, one international with 
atastrophes16




laiming at least 20 lives and a Swedish data set with data from a

idents
laiming at least four lives. With those data sets we were able to estimateparameters for both 
atastrophe intensity and size. Comparing the �ttedmodel with the 
atastrophe data, we found the �t to be good. For a moredetailed review of the data sets, see Ekheden (2008).By using the estimated parameters together with the parameters de�ninga Cat XL 
ontra
t, we 
an now 
al
ulate its pri
e. We do it by running
omputer simulations (a parametri
 bootstrap) to �nd the 
laim distributionof the 
ontra
t. We also 
ondu
t a sensitivity analysis, varying some ofthe parameters and observe how it a�e
ts the expe
ted value and standarddeviation of the 
laim distribution. We �nd that the assumptions of to whi
hdegree insured lives are dependent in 
atastrophi
 events have a signi�
ante�e
t on the risk and hen
e the pri
e of a Cat XL 
ontra
t.A
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Figure 1: Empiri
al probabilities, �tted DGPD and QQ-plot NAM, at least20 dead.
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Figure 2: Empiri
al probabilities, �tted DGPD and QQ-plot SEA, at least20 dead.
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Figure 3: Empiri
al probabilities, �tted DGPD and QQ-plot SWE, at leastfour dead.
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Figure 4: Histogram, 
laim distribution and 
laim 
ost distribution
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Figure 5: E[C℄ and SD(C) as fun
tions of θ
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