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Abstract

Respondent-driven sampling (RDS) is a commonly used substi-
tute for random sampling when studying hidden populations, such as
injective drug users or men who have sex with men, for which no sam-
pling frame is known. The method works like a snowball sample but
can, given that some assumptions are met, generate unbiased popula-
tion estimates. One key assumption, not likely to be met, is that the
acquaintance network in which the recruitment process takes place is
undirected, meaning that all recruiters should have the potential to be
recruited by the person they recruit. Here we investigate the potential
bias of directedness by simulating RDS on real and artificial network
structures. We show that directedness is likely to generate bias that
cannot be compensated for unless the sampled individuals know how
many potentially may have recruited them (i.e. their indegree), which
is unlikely in most situations. We propose three indegree-based esti-
mators for RDS on directed networks and show that they can be used
together with prior information or in a sensitivity analysis, taking un-
certainty of indegree properties of the network into account for the
situation when only outdegrees are observed.
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Abstract

Respondent-driven sampling (RDS) is a commonly used substitute for
random sampling when studying hidden populations, such as injective drug
users or men who have sex with men, for which no sampling frame is known.
The method works like a snowball sample but can, given that some assump-
tions are met, generate unbiased population estimates. One key assumption,
not likely to be met, is that the acquaintance network in which the recruit-
ment process takes place is undirected, meaning that all recruiters should
have the potential to be recruited by the person they recruit. Here we in-
vestigate the potential bias of directedness by simulating RDS on real and
artificial network structures. We show that directedness is likely to gener-
ate bias that cannot be compensated for unless the sampled individuals know
how many potentially may have recruited them (i.e. their indegree), which
is unlikely in most situations. We propose three indegree-based estimators
for RDS on directed networks and show that they can be used together with
prior information or in a sensitivity analysis, taking uncertainty of indegree
properties of the network into account for the situation when only outdegrees
are observed.
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Hidden populations (hard-to-reach populations), such as injecting drug users
(IDU), men who have sex with men (MSM), and sex workers (SW) and their sex-
ual partners, are generally considered as critical actors in the HIV epidemic [1–3].
Consequently, obtaining population characteristics and risk behaviors of these pop-
ulations are critical for developing efficient disease control strategies. However, the
lack of sampling frames for such populations makes traditional estimation methods
based on random samples practically useless. Other methods have been proposed
for such situations, for example key informant sampling [4], targeted/location sam-
pling [5] and snowball sampling [6].

A more recent method is Respondent Driven Sampling (RDS), which was pro-
posed to overcome difficulties when sampling hidden populations [7–9]. The RDS
method starts with an initial selection of respondents, who are called “seeds”. Each
seed is given a number of “coupons” – tickets for participation in the study – to
distribute to friends and acquaintances within the population of interest. When
interviewed, a new respondent is in turn given coupons to distribute. Everyone
is rewarded both for completing the interview, and for recruiting their peers into
the study. If the recruitment chains are sufficiently long, the sample composi-
tion will stabilize and become independent of the seeds. Additionally, information
about who recruits whom and each respondent’s personal network size (degree) are
recorded.

Suppose a RDS study is performed on a connected undirected network with the
additional assumptions that sampling of peer recruitment is done with replacement
and all participants randomly recruit a fixed number of peers from their neighbors.
Then, the sampling probability of an individual vi will be proportional to its degree
when the sample reaches equilibrium. The population fraction pA having a certain
property A (e.g. pA could denote the fraction among intravenous drug-users that
are HIV-positive) can then be estimated by the weighted proportion of the sample
fraction [9]:

p̂outdeg =

∑
vi∈U∩A

di
−1

∑
vi∈U

di
−1 , (1)

where the sample population U has been divided into two disjoint subsets A and
B = AC depending on the reported properties of respondents and di denotes the
degree of individual i in the sample. This estimator has an equivalent expression
which uses the harmonic means of the degrees for the two sub-groups in the sam-
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ple: ˆ̄DA = nA∑
vi∈U∩A

di
−1 and ˆ̄DB = nB∑

vi∈U∩B
di
−1 (nA and nB denote the number

of A- and B-individuals in the sample respectively). Using these quantities, an
equivalent expression for p̂A is given by [8, 11]:

p̂outdeg =
ŝBA

ˆ̄DB

ŝAB
ˆ̄DA + ŝBA

ˆ̄DB

, (2)

where ŝBA denotes the sample fraction of all B-respondents naming A-peers and
similarly ŝAB denotes the sample fraction of all A-respondents naming B-peers.

The ability to produce unbiased population estimates and a feasible field imple-
mentation have contributed to a rapid increase in RDS studies conducted globally
in recent years [2, 10]. There has also been an increase in studies evaluating the
performance of RDS estimators as well as in developing new estimators [12–15].
Previous studies are mostly based on the assumption that the underlying network
is undirected, i.e., all relationships through which recruitments could take place
are reciprocal. However, it is well-known that social networks, such as friendship
networks, are generally directed to various extents. For example, in the study con-
ducted by Scott and Dana [16], only 6,669 out of 12,931 “best friend” nominations
were found to be reciprocal, and in the study conducted by Wallace [17, 18], an
average of 55.0 reciprocal nominations per respondent were found while the mean
degree was 94.8. It has been shown that current RDS estimators may generate rel-
atively large biases and errors if the studied networks are directed [19], indicating
that estimates from previous RDS studies should be interpreted and generalized
with caution.

This study aims to derive new estimators allowing for networks to be (par-
tially) directed. We develop estimators utilizing data with various levels of detail.
To compare the performance of estimators, and to assess the influence of struc-
tural network properties, we use simulated data, as well as a real online MSM
social network, to generate networks with varying directedness, degree correla-
tion, indegree-outdegree correlation and homophily. Additionally, we propose a
sensitivity analysis method to generate estimate intervals induced by intervals of
unobserved network properties.

1 RDS estimation on directed networks

We now present a few estimators for the community fraction pA having a certain
property A. The different estimators rely on different amounts of information and
different assumptions about the network on which RDS is performed. We let G
denote our (partially) directed network and let eij = 1 if there is a directed edge
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from i to j and eij = 0 otherwise. A reciprocal edge between i and j is hence
reflected by eij = eji = 1. We assume that G is strongly connected, i.e., that
there is a directed path between any pair of nodes – otherwise we of course have
no chance to estimate pA well since it may then be impossible to reach certain parts
of the community with RDS. Finally, we let N denote the community size, most
often an unknown quantity in hidden or hard-to-reach populations.

1.1 Knowing the complete network structure

RDS is simply a random walk onGwith transition matrixR = {aij = eij/d
out
i , 1 6

i, j 6 N}, where douti is the outdegree of node i. This process has a unique equi-
librium distribution π = [π1 · · ·πN ] satisfying RTπT = πT , indicating that π is
the eigenvector corresponding to eigenvalue 1 for RT . If G is completely known,
as currently assumed, the stationary distribution π can be computed numerically
(albeit time-consuming if the community is large) and this can then be used to ob-
tain the Hansen-Hurwitz estimator where observations are weighted by the inverse
of the sampling probability [19]:

p̂comp =

∑
vi∈U∩A

πi
−1∑

vj∈U
πj−1

. (3)

Admittedly, knowing the complete network information is a very unrealistic sce-
nario, and we present it here as it will serve as a gold standard compared to other
estimators based on more realistically available information.

1.2 Observing the indegree in the RDS sample

We now relax the unrealistic assumption that the complete network structure is ob-
served and instead assume knowledge only about the individuals sampled in RDS.
More specifically we here assume that, besides observing whether the sampled
individuals have property A or not, we also observe their indegree.

For RDS on undirected networks, the (stationary) sampling probability of a
node is proportional to its degree. In a directed network one could perhaps expect
that the corresponding result was true if we simply replace “degree” by “indegree”,
since it makes sense that a node having many other nodes “pointing” to it should
have a higher chance of being sampled. This is not true in general, however, if
degree is not correlated between adjacent nodes in the network, i.e., the in/out-
degree of the two nodes connected by a directed link are independent to each other,
then the sampling probability for a node is proportional to its indegree under mean
field approximation (see [20]):
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π̄(dini ) ∼ dini
ND̄

, (4)

where D̄ is the average degree of the network. (4) implies that for networks with
no degree correlation, the RDS sample can be weighted by respondents’ indegrees
to estimate population proportions:

p̂indeg =

∑
vi∈U∩A

(dini )
−1

∑
vj∈U

(dinj )
−1 . (5)

This estimator will in general not be consistent since most social networks have
positive degree correlations [21–23]. However, for many networks it performs
well as we will see in the simulations.

1.3 Observing the indegree and outdegree in the RDS sample

Combining indegree with other network data collected in the current RDS imple-
mentations, i.e., the outdegree and recruitment information, it is possible to derive
another estimator. Recall that for any group in a network, the sum of indegree
always equals the sum of outdegree, i.e.,{

NAD̄
out
A SAA +NBD̄

out
B SBA = NAD̄

in
A

NAD̄
out
A SAB +NBD̄

out
B SBB = NBD̄

in
B

, (6)

where {SXY , X, Y ∈ {A,B}} is the recruitment matrix representing the propor-
tion of edges going from group X to group Y .

For simplicity, let m∗ =
D̄in

A

D̄in
B

and w∗ =
D̄out

A

D̄out
B

be the average indegree and

outdegree ratio of the two groups of nodes in the network, and let φ = NA
NB

be the
relative group size proportion. Dividing the above equation gives a solution of φ:

φ =
w∗SAA −m∗SBB

2m∗w∗SAB
+

√
SBA

m∗w∗SAB
+ (

m∗SBB − w∗SAA

2m∗w∗SAB
)
2

. (7)

Then, if we can correctly estimate m∗, w∗ and S, we obtain another estimator:

p̂degsum =
φ̂

1 + φ̂
, (8)
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in which we replace unknown population quantities in φ by their estimates from
the RDS sample.

From the previous section, the average indegree ratio m∗ can be estimated by
the harmonic mean ratio of indegrees from the sample for networks with no de-

gree correlation: m̂∗ =

nA/
∑

vi∈U∩A
(dini )

−1

nB/
∑

vi∈U∩B
(dini )

−1 . It is however generally not possible

to consistently estimate w∗ and S using only the average outdegree and observed
recruitment matrix. The sample mean outdegree will be an unbiased estimator
only if there is no dependence (correlation) between the indegree and outdegree of
nodes, while the harmonic mean of outdegree is expected to have higher precision
if the indegree-outdegree correlation is high. Consequently, we have included two
degree sum-based estimators, p̂Mdegsum and p̂Hdegsum, in which w∗ is estimated by:

ŵ∗ =

∑
vi∈U∩A

douti /nA∑
vi∈U∩B

douti /nB
and ŵ∗ =

nA/
∑

vi∈U∩A
(douti )

−1

nB/
∑

vi∈U∩B
(douti )−1 , respectively (the superscripts

M and H indicate whether the (arithmetic) mean or the harmonic mean of outde-
gree has been used to estimate w∗). We have also tried to adjust potential bias in
the estimation of S by replacing individual inclusion probabilities with group in-
clusion probabilities (see Supportive Information (SI) for details), which however
didn’t improve the results and we therefore prefer to use the observed recruitment
matrix from the sample to estimate S in (7).

The factorw∗ was named the activity ratio in [13], since it quantifies how active
nodes in different groups are in building their personal networks. Following this,
we henceforth refer to m∗ as the attractivity ratio, as it reflects how “attractive”
nodes in different groups are, or to which group of nodes edges are inclined to
form.

1.4 Sensitivity analysis when indegree is not known

Hardly ever is the indegree observed in RDS studies. Consequently, the use of
p̂indeg and p̂degsum is limited in practice. For p̂Mdegsum and p̂Hdegsum, if the indegree
is not known, the estimate of average indegree ratio, m̂∗, becomes an unknown
parameter in (8). If prior information about m∗ is available, these two estimators
can still be used to provide valid estimates. Prior information may, for example,
be obtained by expert opinions, or by using previous empirical results. What’s
more, even if there is little prior knowledge about the targeted population, we can,
instead of providing a point estimate with fixed parameters, use a range ofm values
to generate an estimate interval for pA. That is, if m∗ is assumed to lie within a
certain range, [mmin,mmax], we get an interval of p̂A, [p̂A(mmin), p̂A(mmax)], by

6



varying m in (8).
The above method can also be applied with p̂indeg, since we can rewrite (5) as:

p̂indeg =
∑

vi∈U∩A
(dini )

−1
/

∑
vj∈U

(dinj )
−1

=
nA/ ˆ̄Din

A

nA/ ˆ̄Din
A +nB/ ˆ̄Din

B

= nA/nB

nA/nB+ ˆ̄Din
A / ˆ̄Din

B

.

Replacing ˆ̄Din
A /

ˆ̄Din
B with m, we have:

p̂indeg(m) =
nA/nB

nA/nB +m
. (9)

Following this, we will perform a sensitivity analysis on p̂Mdegsum(m), p̂Hdegsum(m),
and p̂indeg(m). We will vary the ratio of average indegrees m to get an interval of
the various estimators of pA, [p̂A(mmin), p̂A(mmax)], with m lying in a certain
range, [mmin,mmax]. By choosing an interval centered on a value of m based on
prior information, we will get intervals of possible pA values which more fully ac-
counts for the situation when the network is directed, and provides valuable results
on the sensitivity of estimators to correctness of indegree assumptions about the
network.

2 Network Data and Study Design

2.1 Network parameters

To evaluate how variation in network structure can affect the precision of our esti-
mators, we generate sets of networks with different structures by varying network
parameters: Directedness (λ, the proportion of irreciprocal edges in the network);
Indegree correlation (γ, quantified by the indegree-based assortativity as defined in
[21]); Indegree-outdegree correlation (ρ, the Pearson correlation of indegree and
outdegree); Homophily (hA, the probability that nodes connect with neighbors that
are similar to themselves with respect to the studied feature A rather than that they
connect randomly [8, 24–26]). The activity ratio w∗, as well as the attractivity ratio
m∗, are also used as network structure parameters in our assessment. For further
explanations of these parameters see SI.

2.2 Network Data

We use both artificially generated families of networks (Net1 and Net2), and an
MSM online social network [19] in our evaluation. Net1 is generated starting from
a random pure directed network, in which indegree and outdegree are uncorre-
lated (ρ ≈ 0); then, the irreciprocal edges are rewired in a particular way that
doesn’t change the nodes’ degree. Networks with different levels of directedness
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are generated (down to λ = 0.2), while the indegree-outdegree correlations remain
unchanged. Then, nodes are assigned either property A or B in order to achieve
different attractivity ratios m∗ ∈ [0.7, 1.4] (see Table 1). In Net2, a random undi-
rected network is generated; then, to obtain directedness, reciprocal edges are ran-
domly rewired in such a way, that for any network in Net2 with directedness λ,
the indegree-outdegree correlation is ρ ≈ 1 − λ. Different attractivity ratios are
generated as for Net1. Finally, we further rewire edges with respect to the nodes’
properties in order to achieve different levels of homophily: hA ∈ [0, 0.5] (see
Table 1).

The anonymized MSM social network used in this study (previously analyzed
in [19, 27]) comes from the Nordic region’s largest and most active web commu-
nity for homosexual, bisexual, transgender, and queer persons (www.qruiser.com).
Contacts between members on the web site are maintained by a “favorites list”,
on which each member can add any other member without approval from that
member. From this network, we obtain the giant strongly connected component of
the friendship network of those members who identify themselves as homosexual
males. Four dichotomous properties from users’ profiles have been studied: age
(born before 1980), county (live in Stockholm, ct), civil status (married, cs), and
profession (employed, pf). The proportions of nodes having a specific value of
these properties are listed in Table 1.

Based on the directed MSM network, we use a shuffling method, slightly dif-
ferent from what was described in [28], to generate networks with different levels
of indegree correlation (Net3). Detailed information on the generation process of
the above networks can be found in the supportive information SI.

RDS processes are simulated on these networks, and estimates of popula-
tion properties are calculated using the proposed new estimators p̂indeg, p̂Mdegsum,
p̂Hdegsum, along with the simple sample mean p̂ and p̂outdeg ([1]). In each simu-
lation, seeds are uniformly selected and coupons are randomly distributed to the
recruiters’ neighbors. Both the sampling without replacement and sampling with
replacement schemes are used, separately. We choose sample sizes up to 500 for
Net1 and Net2, and 1000 for the MSM network and Net3. All simulations are
repeated 10,000 times.

3 Results

3.1 Performance of p̂indeg and p̂degsum

Net1 and Net2. Simulations were first performed on the artificial networks Net1
and Net2, and the root mean square error (RMSE) of p̂, p̂outdeg, p̂indeg and p̂Mdegsum
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are shown in Fig. 1 (the estimates of p̂Hdegsum are very similar to p̂Mdegsum and thus
omitted here).

We see that the estimator p̂outdeg is no longer unbiased when the networks
are directed, i.e., λ > 0, and that the RMSE increases with increasing directed-
ness and |m∗ − 1|. For networks without indegree-outdegree correlation (Net1,
see Fig. 1(a)), p̂outdeg produces the same level of error as the sample mean p̂; for
networks with indegree-outdegree correlation (Net2, see Fig. 1(b), (c)), p̂outdeg pro-
duces less error than that of p̂, but larger than that of p̂indeg and p̂Mdegsum, indicating
that the use of current RDS estimators for networks with unknown directedness
could generate large errors.

By Contrast, utilizing the sampled individuals’ indegree information, both p̂indeg
and p̂Mdegsum generate small errors, and show a more stable behavior of the RMSE
than p̂outdeg. For simulations of RDS on Net1 and Net2 with one seed, one coupon
and sampling with replacement, the conclusions are similar (see SI.fig5).

The MSM network. The same setup as above has been used for the MSM
network simulations. The estimators are displayed as box plots in the left panel of
Fig. 2. In each box, the central line is the median, the dot is the mean, the edges
of the box are the 25th (q1) and 75th (q3) percentiles. Estimates 1.5(q3 − q1) away
from the box are shown as outliers beyond the whiskers.

For variables with large homophily and attractivity ratios which significantly
differ from 1 (age, county), p̂outdeg has a large bias. For example, its estimates of
the proportion of MSM members who live in Stockholm are on average 5.7 per-
centage units higher than the true value, and for age, civil status and profession,
the sample mean, p̂, has even less bias than p̂outdeg. For variables with limited ho-
mophily and difference in mean indegree (civil status, profession), the differences
between p̂indeg, p̂Mdegsum and p̂Hdegsum are negligible.

As the indegree correlation is low in the MSM network, γ = 0.03, we can
assume that the no indegree correlation assumption for p̂indeg and p̂degsum is met.
They both have very low bias for all four variables; the differences between aver-
age estimates and the true population proportions are within 0.5 percentage units,
indicating that for networks with small indegree correlation, the indegree can be a
good approximation of the inclusion probabilities in the RDS process. Since the
indegree and outdegree of nodes are positively correlated (ρ = 0.39), the use of the
harmonic mean for estimation of the average outdegree in p̂Hdegsum provides esti-
mates with slightly better properties than those that use the simple mean (p̂Mdegsum).

Note that in Fig. 2 we use 10 seeds and 3 coupons to mimic the real practice
of RDS; such a setting makes the number of waves needed to reach a sample size
of 1000 no more than 5 (sampling with replacement). However, when we use
only one seed and coupon in the simulation, much longer waves are needed and
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consequently, the inclusion probabilities of nodes might be more affected by other
structural properties of the network such as transitivity, clusters, etc. These ef-
fects are reflected in SI.fig6, where the proposed new estimators still outperforms
p̂outdeg, and p̂Mdegsum and p̂Hdegsum have the smallest bias and error for all variables,
and p̂indeg generates limited bias for age and county.

In summary, simulations on the MSM network reveal that p̂indeg, p̂Mdegsum and
p̂Hdegsum generate the smallest bias and error among the estimators. When the sam-
ple size is reached by short recruitment waves, p̂indeg has the best performance,
while on the other side, p̂Mdegsum and p̂Hdegsum generate less bias and error when the
recruitment chains are long.

Net3. The above studies reveal that the indegree-based estimators work well
on directed networks with low indegree correlation. To test how the violation of
this assumption would affect the precision of these estimators we use RDS simu-
lations on indegree correlated networks, Net3. The left panel of Fig. 3 shows the
simulation results on Net3 with γ = 0.4.

Surprisingly, no obvious difference is found with the results seen for the MSM
network. The average estimates of p̂ and p̂outdeg are almost identical to those shown
in Fig. 2, and the differences between p̂indeg, p̂Mdegsum and p̂Hdegsum are also small.
A closer look at the results also shows that the standard errors of all estimators
are smaller than before. Simulations with one seed and coupon, and sampling
with replacement (see SI.fig7) also lead to the same results. This reveals that, for
networks generated in this paper, the indegree-based estimators are quite robust to
changes in indegree correlations.

3.2 Sensitivity analysis with p̂indeg(m) and p̂degsum(m)

Currently, most RDS practices can only provide a point estimated population prop-
erty from the sample (based on p̂outdeg). It is thus important for researchers and
policy makers to know how sensitive this point estimate is to variations in the ideal
assumptions. According to (5) and (8), we can see how robust p̂indeg and p̂degsum
are to assumptions about unobservable indegree properties of the network, by vary-
ing m within a range of plausible values.

Net1 and Net2. In order to perform sensitivity analysis, we let the attractiv-
ity ratio m used in p̂indeg(m) and p̂Mdegsum(m) be fixed at different values (m =
[0.7, 1.4]), and check how the RMSE changes along the domain of combinations
of directedness and attractivity ratio (see Fig. 4). The RMSE of p̂Mdegsum(m) is
almost the same as for p̂indeg(m) in Net1 and is thus not shown in Fig. 4(a).

Obviously, the RMSE of p̂indeg(m) and p̂Mdegsum(m) become larger when the
m value deviates far from the true population ratio m∗, and minimal when m ap-
proaches m∗, telling us that with appropriate prior information about the studied
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population, it is possible to estimate population properties with very small error
using the proposed estimators.

It’s also worth noting that the RMSE does not increase with increased directed-
ness for networks with the same m∗ value, indicating that the RMSE of p̂indeg(m)
or p̂Mdegsum(m) would be the same as long as |m −m∗| is the same, regardless of
directedness of networks.

When homophily is high and indegree and outdegree are correlated, further
deviation of m from m∗ produce larger errors in p̂Mdegsum(m) than p̂indeg(m), as
shown in Fig. 4(c).

The MSM network and Net3. The right panels in Fig. 2 and Fig. 3 show the
sensitivity analysis of p̂indeg(m) and p̂Mdegsum(m) with m varying from 0.7 to 1.4,
for the MSM network and Net3, respectively.

From (9) it is clear that p̂indeg(m) decreases in m, and that its curve of average
estimates with varying m values intersects with the true population line closely
at m∗ on both networks. For high homophily variables such as age and county,
p̂indeg(m) has less bias than p̂Mdegsum(m) when m is far from m∗, similar to the
comparison made on Net2. On the other hand, p̂indeg(m) and p̂Mdegsum(m) are
almost the same within the interval of m for variables with low homophily, i.e.,
civil status and profession.

The magnitude of changes of average estimates are however not dependent
on the homophily, e.g., in the sensitivity analysis on the MSM network, when m
is varied from 0.7 to 1.4, the change in average estimates of p̂indeg(m) are 12
percentage units for age, and 17 percentage units for civil status, respectively.

Sensitivity analysis of simulations with one seed and coupon, sampling with
replacement, are also produced on all networks and can be found in SI.fig8; the
conclusions are similar to those above.

4 Conclusion and Discussion

Despite the widely acknowledged evidence for the existence of directedness among
social networks, the effect of directedness on RDS estimates has seldom been eval-
uated. This could be problematic since all previous reported RDS estimates rely
on the assumption that the studied networks are purely reciprocal, the violation of
which will result in unknown bias. To address this situation, we have proposed
several estimators for RDS on directed networks, assuming different available in-
formation about nodes in the sample.

Given respondents’ indegree, p̂indeg, p̂Mdegsum, and p̂Hdegsum all outperform the
current widely used p̂outdeg for networks with certain amounts of directedness. The
proposed estimators show strong resistance to variations in directedness, indegree
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correlation, indegree-outdegree correlation, homophily and attractivity ratio. When
the recruitment chains are short in the sample, p̂indeg works slightly better, while
p̂Mdegsum and p̂Hdegsum perform better when the recruitment chains are long. When
the indegree-outdegree correlation is positive (the common situation), p̂Hdegsum fur-
ther provides less bias and error than p̂Mdegsum. Whenever respondents’ indegrees
are known, our proposed estimators are expected to produce estimates with less
bias and error in directed networks.

Since the indegree cannot usually be collected with RDS, we propose a sensi-
tivity analysis method in order to take into account uncertainties about unobserv-
able indegree properties of the network. The method is based on assumptions about
one single parameter: the attractivity ratio m being the harmonic indegree mean
ratio of the two groups in the network (having property A or not). Uncertainty
assumptions about m induces estimate intervals of pA, the community fraction
having property A. Prior information about m may possibly be utilized and may
be obtained by expert opinions, or by using previous empirical studies related to
the studied population. Additionally, since the indegree-outdegree correlation is
positive in most social networks [16–18], the activity ratio ŵ∗ observed from the
sample may be an indicator of where to vary m from. For example, the difference
between m∗ and w∗ in the MSM network, is 0.27, 0.17, 0.02, and 0.05 for age,
county, civil status and profession, respectively [19]. As an illustration on how to
implement the sensitivity analysis method in RDS practice when the indegree is
not collected, we take data given in [29] to make the proposed sensitivity analysis
using p̂indeg(m) and p̂Hdegsum(m) (Note here we use the harmonic means of outde-
grees in p̂Hdegsum(m) instead of p̂Mdegsum(m), owing to the limit of data provided).
A sample of 618 drug users in New York City were collected using RDS with eight
seeds. We use the same data to produce estimates on the proportion of males and
injectors among drug users in New York City. The activity ratio (ŵ∗, weighted)
for males is 0.99, indicating that there is little difference of the size of personal
networks with respect to gender. However, the activity ratio for injectors is 1.58,
indicating that injecting drug users know 58% more drug users than those who
don’t inject drugs. We thus vary the m values around the observed activity ratio to
perform the sensitivity analysis; the length of the test interval is arbitrarily set to 1.
In Fig. 5, we can see that when m = ŵ∗, the p̂indeg(m) and p̂Hdegsum(m) estimates
are equal to the estimates given by p̂outdeg. When the network is assumed directed
andm ∈ [0.5, 1.5], the estimated proportion of male drug users will vary from 0.88
to 0.66 for p̂indeg(m) and 0.87 to 0.68 for p̂Hdegsum(m), respectively. The propor-
tion of injecting drug users, varies from 0.45 to 0.62 for p̂indeg(m) and 0.41 to 0.64
for p̂Hdegsum(m) when m ∈ [1, 2]. It is most likely possible to reduce the length of
the intervals of pA values, at least with prior information on the population; this is
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also subject to future research.
In conclusion, we can see that the sensitivity analysis provides means for RDS

practitioners to understand the robustness of sample inference to the violation of
certain assumptions: that the network may be partially directed, and that the degree
data collected from respondents may contain reporting error. Clearly, for a studied
network with unknown directedness, it is better to report an interval of estimates
based on a range of m values, since it provides a more detailed image of the sit-
uation and more reasonable advice on how to understand the studied population
and make policy. We henceforth recommend the new estimator-based sensitivity
analysis method to be used in future RDS studies.
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Table 1: Basic statistics of Net1, Net2, Net3 and the MSM network

Network Average Directed- indegree corre- indegree-outdegree Homophily Attractivity
size (N ) degree (D̄) ness (λ) lation (γ) correlation (ρ) (h) ratio (m∗) P

Net1 10, 000 10 [0, 1] [−0.09, 0.01] ≈ 0 [−0.30, 0.22] [0.7, 1.4] 70%

Net2 10, 000 10 [0, 1] [−0.03, 0.14] ≈ 1− λ [0, 0.5] [0.7, 1.4] 30%

age 0.23 1.22 77%
MSM 16, 082 17.2 0.61 0.03 0.39 ct 0.50 1.15 39%

Network cs 0.03 0.98 40%
pf 0.06 1.10 38%

Net3 −−* −− [0.61, 0.91] [0, 0.4] −− −− −− −−
* Same as the MSM network
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Figure 1: Root Mean Square Error of RDS estimators on Net1 and Net2. (a) Net1;
(b) Net2 with homophily hA = 0; (c) Net2 with homophily hA = 0.4. Sampling
without replacement, number of seeds=10, coupons=3, sample size=500.
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Figure 2: RDS on MSM network. The right panel shows sensitivity analysis of
p̂indeg(m) (brown) and p̂Mdegsum(m) (blue) withm varying from 0.7 to 1.4, plots are
horizontally shifted a few points to avoid overlapping. Sampling with replacement,
number of seeds=10, number of coupons=3, sample size=1000.
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sensitivity analysis of p̂indeg(m) (brown) and p̂Mdegsum(m) (blue) with m varying
from 0.7 to 1.4, plots are horizontally shifted a few points to avoid overlapping.
Sampling without replacement, number of seeds=10, number of coupons=3, sam-
ple size=1000.
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ŵ∗ = 1.58

% of injectors among drug users

% of males among drug users(a)

(b)

H

H

Figure 5: Sensitivity analysis of RDS estimates for proportion of (a) males and (b)
injectors among drug users in New York City.

19


	RDS estimation on directed networks
	Knowing the complete network structure
	Observing the indegree in the RDS sample
	Observing the indegree and outdegree in the RDS sample
	Sensitivity analysis when indegree is not known

	Network Data and Study Design
	Network parameters
	Network Data

	Results
	Performance of indeg and degsum
	Sensitivity analysis with indeg(m) and degsum(m)

	Conclusion and Discussion



