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Abstract

We formulate and study a model for inhomogeneous long-range percolation on Zd. Each
vertex x ∈ Zd is assigned a non-negative weight Wx, where (Wx)x∈Zd are i.i.d. random
variables. Conditionally on the weights, and given two parameters α, λ > 0, the edges
are independent and the probability that there is an edge between x and y is given by
pxy = 1 − exp{−λWxWy/|x − y|α}. The parameter λ is the percolation parameter, while
α describes the long-range nature of the model. We focus on the degree distribution in the
resulting graph, on whether there exists an infinite component and on graph distance between
remote pairs of vertices.

First, we show that the tail behavior of the degree distribution is related to the tail behavior
of the weight distribution. When the tail of the distribution of Wx is regularly varying with
exponent τ − 1, then the tail of the degree distribution is regularly varying with exponent
γ = α(τ − 1)/d. The parameter γ turns out to be crucial for the behavior of the model.
Conditions on the weight distribution and γ are formulated for the existence of a critical
value λc ∈ (0,∞) such that the graph contains an infinite component when λ > λc and no
infinite component when λ < λc. Furthermore, a phase transition is established for the graph
distances between vertices in the infinite component at the point γ = 2, that is, at the point
where the degrees switch from having finite to infinite second moment.

The model can be viewed as an interpolation between long-range percolation and models
for inhomogeneous random graphs, and we show that the behavior shares the interesting
features of both these models.

Keywords: Random graphs, long-range percolation, percolation in random environment, de-
gree distribution, phase transition, chemical distance, graph distance.
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1 Introduction

The field of percolation has been very active the last few decades with important progress on
questions concerning for instance the appearance and uniqueness of an infinite component and
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the decay of connectivity functions. In parallel, the area of random graphs has developed from
dealing mainly with simple models with little structure to studying more complex models aimed
at describing real-world networks. A particular class of graph models that has received substantial
attention consists of inhomogeneous random graphs, where the edge probabilities are defined in
terms of weights that are associated to the vertices. In the current paper, we combine the above
two fields by introducing a model for spatial inhomogeneous random graphs on Zd with long-range
edges and vertex weights. We characterize the degree structure in the graph, determine when
there is a non-trivial percolation threshold and prove a phase transition for the graph distance
at the point where the variance of the degrees goes from being finite to infinite. Such a phase
transition has already been established for several non-spatial models, and the fact that it appears
also in the presence of spatial influence gives further support to the belief that it is a universal
feature.

We define our model on the lattice Zd, where the integer d ≥ 1 denotes the dimension. Let each
vertex x ∈ Zd be equipped with a weight Wx, where (Wx)x∈Zd are independent and identically
distributed (i.i.d.). Conditionally on the weights (Wx)x∈Zd , the edges in the graph are independent
and the probability that there is an edge between x and y is defined by

pxy = 1− e−λWxWy/|x−y|α , (1.1)

for α, λ ∈ (0,∞). We say that the edge (x, y) is occupied with probability pxy and vacant
otherwise. The parameter α > 0 describes the long-range nature of our model, while we think of
λ > 0 as a percolation parameter. Naturally, the model for fixed λ > 0 and weights (Wx)x∈Zd is
the same as the one for λ = 1 and (

√
λWx)x∈Zd , so there might appear to be some redundancy in

the parameters of the model. However, we view the the weights (Wx)x∈Zd as creating a random
environment in which we study the percolative properties of the model. Thus, we think of the
random variables (Wx)x∈Zd as fixed once and for all and we change the percolation configuration
by varying λ. We can thus view our model as percolation in a random environment given by the
weights (Wx)x∈Zd .

The choice of weight variables. The distribution of the weight variables (Wx)x∈Zd is clearly
very important for the properties of the model. When the weight variables have unbounded
support, vertices with very high vertex weight will be present. These vertices play a special
role, as they are much more likely to have a large number of edges emerging from them, that is,
vertices with high weight tend to have high degrees. In many real-world networks, such vertices
with high degrees are present. These form the hubs of the network and often play a crucial role
in the functionality of the network. Therefore, we are particularly interested in settings where
the weights are heavy tailed.

Our model has close links both to long-range percolation (arising when Wx ≡ 1 for every x ∈ Zd)
and to inhomogeneous random graphs (arising when we consider the model on a fixed number of
vertices {1, . . . , n} and when |x− y|α in (1.1) is replaced by a simple factor n). We next discuss
these models in more detail.

Long-range percolation. In long-range percolation, in the most common setup, two vertices
x, y ∈ Zd are connected by an edge with a probability that decays like λ|x − y|−α, for some pa-
rameters α, λ > 0, as |x−y| → ∞, and the occupation statuses of different edges are independent
random variables. In d = 1, the percolation properties of the model depend on the value of α:
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If α < 1, the graph is almost surely connected [30], if α ∈ (1, 2), the graph contains an infinite
component as soon as the nearest-neighbor edge probability is large enough [28] and, if α > 2,
the graph contains only finite components. For α = 2, the behavior is the same as for α ∈ (1, 2)
when λ > 1 while there are only finite components when λ < 1; see [1]. Uniqueness of an infinite
component in any d ≥ 1 follows from the main result in [18]. In d ≥ 2, there is a non-trivial
critical value, since already the nearest-neighbor connections are sufficient for the possibility of
an infinite component. The attention there focuses on the effect of the long-range connections on
the critical behavior and on the properties of the infinite component.

As for the graph distance in long-range percolation, Benjamini et al. [3] show that d(0, x) is
bounded as |x| → ∞ when α < d and Coppersmith et al. [15] show for a version of the model
where all nearest-neighbor connections are present that d(0, x) grows like log |x|/ log log |x| when
α = d. Furthermore, conditionally on that 0 and x are in the infinite component, Biskup [9] shows
that d(0, x) grows like (log |x|)∆ for an explicit ∆ > 1 when α ∈ (d, 2d) and Berger [5] shows
that it grows at least like |x| when α > 2d. We mention also the model by Yukich [34], where
each point x ∈ Zd is assigned an i.i.d. weight U−p

x , with Ux uniformly distributed on [0, 1] and
p ∈ (1/d,∞), and two points x and y are then connected if and only if |x− y| ≤ min{U−p

x , U−p
y }.

Since U−p
x ≥ 1, the graph is connected and Yukich shows that d(0, x) grows at most like log log |x|

as |x| → ∞. The model is related to the Poisson Boolean model on Rd; see Section 6 for details.

Inhomogeneous random graphs. In inhomogeneous random graphs, the edges are condi-
tionally independent, given some vertex weights. One example is the Poissonian random graph
[29], where each vertex i in a set of n vertices is assigned a random weight Wi and two vertices i
and j are then connected by an edge if a Poisson variable with mean WiWj/

∑n
k=1 Wk takes on

a positive value. We mention also the expected degree model by Chung and Lu [13, 14] and the
related generalized random graph [12], which are in the same universality class as the Poissonian
random graph model. The asymptotic degree distributions in these graphs are determined by
the distribution of the weights in that, if the weight distribution is regularly varying, then the
degree distribution varies regularly with the same exponent. As for the graph distance, the above
models have all been proved to have a phase transition at the point where the degrees go from
having finite to infinite second moment: The distances grow logarithmically when the degrees
have finite second moment, and doubly logarithmically when the second moment is infinite. This
has also been established for the well-known configuration model [23, 24] and for preferential at-
tachment models [16]. It is believed to be true for a large class of random graph models. Finally,
we mention that many of the above models are special cases of the very general model treated in
the seminal paper by Bollobás et al. [11].

Our model interpolates between long-range percolation and inhomogeneous random graphs in
that it has both geometry in a similar way as in long-range percolation, as well as vertex weights,
in a similar way as for certain inhomogeneous random graphs. The main message of this paper
is that our model inherits the interesting features of both models it interpolates between.

Organization and results. This paper is organized as follows. In Section 2, we characterize
the tail behavior of the degree distribution. Take the weight distribution to be regularly varying
with exponent 1 − τ , that is, P(W > w) = w−(τ−1)L(w), where w 7→ L(w) is slowly varying
at infinity. We show that the corresponding degree distribution is then regularly varying with
exponent −γ, where γ = α(τ − 1)/d, provided that α > d and γ > 1. Note that, when γ > 2,
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the degrees have finite variance, while when γ ∈ (1, 2], the degrees have finite mean, but infinite
variance. Whether the degrees have infinite variance for γ = 2 depends on the precise shape of
the slowly varying function involved. When α ≤ d or γ ≤ 1, it is not hard to see that the model
is degenerate in the sense that all vertices will have infinite degree almost surely; see Theorem
2.1.

In Sections 3 and 4, the percolation theoretical properties of the model are studied. To this end,
we assume that E[W ] = 1 as soon as the mean weight is finite and view λ > 0 as the percolation
parameter. The critical value is denoted λc. In Section 3, conditions are formulated on the degree
distribution that guarantee that λc <∞ and, in Section 4, it is shown that λc > 0 if and only if
the degrees have finite variance.

Section 5 investigates graph distances between vertices. Let d(x, y) denote the graph distance
between x and y, that is, the minimal number of occupied edges that form a path between x and
y. When there is an infinite component in the graph and 0 and x are both in this component,
how does d(0, x) grow with |x|? We show that d(0, x) is at least of the order log |x| when γ > 2,
that is, when the degrees have finite variance, and exactly of the order log log |x| when γ < 2,
that is, when the degrees have infinite variance. This establishes a phase transition at the point
where γ = 2. We improve the lower bound on the distances for γ > 2 in the case where α > 2d
to |x|ε for some ε > 0, which mimics the results for long-range percolation. Indeed, there the
distances are polylogarithmic when α ∈ (d, 2d) and polynomial when α > d.

The present work gives rise to many interesting further questions and, in Section 6, we give some
suggestions.

2 Vertex degrees

Throughout the paper we assume that the edge probabilities (pxy)x,y∈Zd are as in (1.1), where the
weights (Wx)x∈Zd are i.i.d. In this section we relate the tail behavior of the degree distribution
in our model to that of the weight distribution. To this end, assume that the distribution F of
the weights (Wx)x∈Zd has a regularly varying tail with exponent τ − 1, that is, denoting by W a
random variable with the same distribution as W0 and by F its distribution function, we assume
that

1− F (w) = P(W > w) = w−(τ−1)L(w), (2.1)

where w 7→ L(w) is a function that varies slowly at infinity. Write Dx for the degree of x ∈ Zd

and note that, by translation invariance, Dx has the same distribution as D0.

In this section, we prove two main results. Firstly, we show in Theorem 2.1 that, as soon as the
weight of a vertex is positive, its degree is almost surely infinite when α ≤ d or when both α > d
and γ = α(τ − 1)/d ≤ 1. Secondly, in Theorem 2.2, we show that the degrees have a power-law
distribution with exponent γ = α(τ − 1)/d when α > d and γ > 1.

Theorem 2.1 (Infinite degrees for α ≤ d or γ ≤ 1). Fix d ≥ 1. Then, P(D0 = ∞|W0 > 0) = 1
when α ≤ d, or when α > d and the weight distribution satisfies

1− F (w) ≥ cw−(τ−1), w ≥ 0, (2.2)

for some c > 0 and τ > 1 such that γ = α(τ − 1)/d ≤ 1.
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Proof. Denote the minimum (respectively, maximum) of two real numbers x and y by x ∧ y
(respectively, x ∨ y). For x, y ∈ Zd, recall that (x, y) is occupied if the edge between x and y is
present in the graph. Using the bound 1− e−x ≥ (x ∧ 1)/2, we get

∑

y 6=0

P((0, y) occupied|W0 = w) ≥ 1
2

∑

y 6=0

E
[
λwWy

|y|α ∧ 1
]
≥ λw

2

∑

y 6=0

E
[
Wy1{Wy≤|y|αw−1}

]

|y|α , (2.3)

where 1A denotes the indicator of the event A. As for (a), just note that clearly E
[
Wy1{Wy≤|y|αw−1}

]
→

E[W ] as |y| → ∞, implying that we can bound

∑

y 6=0

P((0, y) occupied|W0 = w) ≥ Cw
∑

y 6=0

1
|y|α

for some constant C > 0. If α ≤ d, then the sum in the bound diverges and, since the edges of
the origin are independent conditionally on W0, it then follows from the Borel-Cantelli lemma
that P(D0 =∞|W0 = w) = 1 for every w > 0. This implies that P(D0 =∞|W0 > 0) = 1.

As for (b), if the weight distribution satisfies (2.2) and γ = α(τ −1)/d ≤ 1, then τ ∈ (1, 2]. Thus,
E[Wy] =∞ and we obtain that

E[Wy1{Wy≤s}] ≥ C ′s2−τ .

Combining this bound with (2.3) yields

∑

y 6=0

P((0, y) occupied|W0 = w) ≥ C ′′wτ−1
∑

y 6=0

1
|y|α(τ−1)

.

By the argument above, we have P(D0 =∞|W0 > 0) = 1 as soon as γ = α(τ − 1)/d ≤ 1.

Theorem 2.2 (Power-law degrees for power-law weights). Fix d ≥ 1. Assume that the weight
distribution satisfies (2.1) with α > d and γ = α(τ − 1)/d > 1. Then, there exists s 7→ `(s) which
is slowly varying at infinity such that

P(D0 > s) = s−γ`(s). (2.4)

Under the assumptions of the theorem, the degrees have finite mean, that is, γ = α(τ −1)/d > 1.
Furthermore, it is easy to see that, for α > d, finite variance for the weights (i.e., τ > 3) implies
finite variance for the degrees (i.e., γ > 2). Note however that the variance of the degrees may
be finite even if the weights have infinite variance, since for a given value of τ ∈ (2, 3) we have
γ > 2 if α is large enough.

In the remainder of this section, we prove Theorem 2.2. Write vd for the volume of the unit ball
in Rd and let Γ(·) denote the gamma function. The proof of Theorem 2.2 relies on the following
characterization of the conditional expected degree.

Proposition 2.3 (Asymptotic expected vertex degree). Assume that the weight distribution
satisfies (2.1) with α > d and γ > 1. Then

|E[D0|W0 = w]− ξwd/α| ≤ C,

where ξ = λd/αvdΓ
(
1− d

α

)
E[W d/α] and C = C(d) is a constant.
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We remark that if γ > 1, then τ − 1 = γd/α > d/α, so that E[W d/α] <∞.

Proof. Observe that, given W0, the degree D0 is a sum of independent indicators and

E[D0|W0 = w] =
∑

y 6=0

(
1− E

[
e−λwWy/|y|α

])
=

∑

y 6=0

∫ ∞

0

(
1− e−λwu/|y|α

)
dF (u).

We interchange the order of integration and summation and first compute the sum over y 6= 0.
To this end, write

∑

y 6=0

(
1− e−λwu|y|−α

)
=

∫

|y|>1

(
1− e−λwu|y|−α

)
dy + E1(u), (2.5)

where E1(u) is an error term that will be estimated below. A change of variables y = (λuw)1/αt
yields that

∫

|y|>1
(1− e−λwu|y|−α

) dy = (uwλ)d/α
∫

|t|>(uwλ)−1/α
(1− e−|t|

−α
) dt

= (uwλ)d/α
∫

|t|>0
(1− e−|t|

−α
) dt−E2(u), (2.6)

where again E2(u) is an error term that will be dealt with below. Converting to polar coordinates
followed by partial integration and finally a change of variables yields that

∫

|t|>0
(1− e−|t|

−α
) dt = vd

∫ ∞

r=0

(
1− e−r−α

)
d(rd) = vd

∫ ∞

r=0
rd d(e−r−α

)

= −vd

∫ ∞

0
s−d/α d(e−s) = vdΓ

(
1− d

α

)
,

for α > d. Hence, provided that E[W d/α] <∞, which holds for γ > 1, we obtain

E[D0|W0 = w] = vdΓ
(
1− d

α

) ∫ ∞

0
(uwλ)d/α dF (u) +

∫ ∞

0
(E1(u)−E2(u))dF (u)

= ξwd/α +
∫ ∞

0
(E1(u)− E2(u))dF (u), (2.7)

where ξ = λd/αvdΓ
(
1− d

α

)
E[W d/α].

It remains to bound the error terms. As for E1(u), since 1− e−c|y|−α
is monotonically decreasing

as |y| increases, we can estimate

0 ≤ E1(u) =
∑

y 6=0

(
1− e−λwu|y|−α

)
−

∫

|y|>1

(
1− e−λwu|y|−α

)
dy ≤ vd.

Moving on to E2(u), we have

E2(u) = (uwλ)d/α
∫

|t|≤(uwλ)−1/α
(1− e−|t|

−α
) dt,

and a similar computation as the one following (2.6) yields

E2(u) = vd

{
(1− e−uwλ) + (uwλ)d/α

∫ ∞

uwλ
s−d/αe−s ds

}
.
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For a ≤ 1 we have that
∫ ∞

z
sa−1e−s ds ≤ za−1

∫ ∞

z
e−sds = za−1e−z.

With −d/α = a− 1, it follows that

(uwλ)d/α
∫ ∞

uwλ
s−d/αe−s ds ≤ e−uwλ,

and hence 0 ≤ E2(u) ≤ vd. Combining these estimates with (2.7) yields

|E[D0|W0 = w]− ξwd/α| ≤ vd.

With Proposition 2.3 at hand we proceed to prove Theorem 2.2.

Proof of Theorem 2.2. We first give a heuristic argument. The tail of the degree distribution is
obtained as

P(D0 > s) =
∫
P(D0 > s|W0 = w) dF (w). (2.8)

It follows from Proposition 2.3 that

E[D0|W0 = w] = ξwd/α + O(1), (2.9)

as w →∞. Since D0|W0 = w is a sum of independent indicators, it is reasonable to expect that
P(D0 > s|W0 = w) is well approximated by the indicator function

1{E[D0|W0=w]>s} ≈ 1{ξwd/α>s}.

This results in

P(D0 > s) ≈
∫ ∞

(s/ξ)α/d
dF (w) = [1− F ]((s/ξ)α/d) = s−α(τ−1)/d`(s),

where s 7→ `(s) is slowly varying at infinity.

To formalize the above, we adapt the proof of [34, Theorem 1.1]. First, for fixed s, split the
integral in (2.8) into two parts:

∫
P(D0 > s|W0 = w) dF (w) =

∫

I1
P(D0 > s|W0 = w) dF (w) +

∫

I2
P(D0 > s|W0 = w) dF (w),

(2.10)
where I1 = [0,m(s)) and I2 = [m(s),∞), and where

m(s) =
(s− s1/2 log s + O(1)

ξ

)α/d
. (2.11)

As in [34, Theorem 1.1], using Bernstein’s inequality, one can show for every a > 0 that

lim
s→∞ sa

∫

I1
P(D0 > s|W0 = w) dF (w) ≤ lim

s→∞ sas−3 log s/10 = 0. (2.12)
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This shows that the integral over I1 does not contribute to the possible regular variation of
P(D0 > s). In order to investigate the integral over I2, let Yw denote a random variable with the
same distribution as D0|W0 = w, that is,

Yw
d= (D0|W0 = w). (2.13)

The first moment of Yw is characterized in (2.9) and a similar analysis as for the first moment
yields

Var(Yw) = ξ′wd/α + O(1),

where ξ′ < ξ.

The proof of (2.4) is now completed in a slightly different way than in [34]. Define

G(t) =
∫

w>m(t)
P(Yw > t) dF (w), (2.14)

where the function m is defined by (2.11). Then, (2.12) shows that P(D0 > t) = G(t) + O(t−a)
for any a > 0. Clearly, P(D0 > s) is a monotone function on (0,∞) and hence (2.4) follows if we
show that

lim
t→∞

P(D0 > st)
P(D0 > t)

= s−γ ,

on a dense set A ⊂ (0,∞); see [17, Section VIII.8]. By (2.10) and (2.12) this in turn follows if we
can deduce that

lim
t→∞

G(st)
G(t)

= s−γ ,

for s ∈ (0,∞). To this end, we note that, clearly,

G(t) ≤ 1− F (m(t)).

Further, for each ε > 0, we have

G(t) ≥
∫

w>(1+ε)m(t)
P(Yw > t) dF (w) = 1− F

(
(1 + ε)m(t)

)
+

∫

w>(1+ε)m(t)
P(Yw ≤ t) dF (w),

and, by Chebyshev’s inequality and the fact that E[Yw] > t(1 + ε/2) for t > 0 sufficiently large,
we obtain that

P(Yw ≤ t) ≤ Var(Yw)
(E[Yw]− t)2

≤ C/(tε) = o(1)

uniformly in w > (1 + ε)m(t) as t→∞. Hence, since

lim
t→∞

m(ts)
m(t)

= (s/ξ)α/d,

we arrive at

lim
t→∞

G(ts)
G(t)

= lim
t→∞

1− F (m(ts))
1− F (m(t))

= lim
t→∞

1− F ((st/ξ)α/d)
1− F ((t/ξ)α/d)

= s−α(τ−1)/d.
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3 Percolation – finiteness of the critical value

In the following sections, we investigate the percolation properties of our model. We take pxy as
in (1.1) where α > 0 is fixed and view λ > 0 as the percolation parameter. When the weights
(Wx)x∈Zd have finite mean, we can, without loss of generality, assume that they are normalized
so that E[W ] = 1.

Denote the resulting random graph by G(λ, α) and write x←→ y to denote the event that there
is a path of occupied edges between x and y in G(λ, α). Denote by C(x) = {y : x ←→ y} the
component of x, and by |C(x)| the number of vertices in C(x). The percolation probability is
defined as

θ(λ) = P(|C(0)| =∞),

and the critical percolation value λc is defined as

λc = inf{λ : θ(λ) > 0}.
See [10, 19] for general introductions to percolation. It follows from the general uniqueness
result in [18] that G(λ, α) contains almost surely at most one infinite component. Under what
conditions on α and on the degree distribution is there a non-trivial phase transition in the sense
that λc ∈ (0,∞)? Note to begin with that it follows from Proposition 2.1 that λc = 0 for α ≤ d
or α > d and γ ≤ 1, that is, when α ≤ d or γ ≤ 1 the graph percolates for all λ > 0. Hence
we shall henceforth restrict to the case α > d and γ > 1. The following theorem gives sufficient
conditions for λc <∞ so that the model percolates for large enough λ.

Theorem 3.1 (Finiteness of the critical value). Assume that α > d and that γ > 1.

(a) If P(W = 0) < 1, then λc <∞ in d ≥ 2.

(b) If α ∈ (1, 2] and P(W ≥ w) = 1 for some w > 0, then λc <∞ in d = 1.

(c) If α > 2 and the weight distribution satisfies

1− F (w) ≤ cw−(τ−1), w ≥ 0, (3.1)

for some c > 0 and τ > 1 such that γ = α(τ − 1)/d > 2, then λc =∞ in d = 1.

In d ≥ 2, we hence have λc < ∞ as soon as the weights are not almost surely equal to 0, while
in d = 1, at least for weights that are bounded away from 0, the behavior is different for α ≤ 2
and α > 2. The above conditions on the weight distribution can presumably be weakened; see
Section 6 for some further comments on this.

The proof of part (a) uses the result from [26] concerning domination of r-dependent random
fields by product measures, where a random field (Xz)z∈Zd is said to be r-dependent if for any
two sets A, B ⊂ Zd at l∞-distance at least r from each other we have that (Xz)z∈A is independent
of (Xz)z∈B. The version we need is as follows.

Theorem 3.2 (Liggett, Schonmann & Stacey (1997)). For each d ≥ 2 and r ≥ 1 there exists
a pc = pc(d, r) < 1 such that the following holds. For any r-dependent random field (Xz)z∈Zd

satisfying P(Xz = 1) = 1 − P(Xz = 0) ≥ p, with p > pc, the 1’s in (Xz)z∈Zd percolate almost
surely.
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Theorem 3.2 is formulated in terms of sites rather than edges or bonds. It is a classical result
that any bond percolation model can be formulated in terms of a site percolation model, see e.g.
[19].

Proof of Theorem 3.1. We begin with (a). Say that a vertex x ∈ Zd is ε-good if Wx ≥ ε and note
that, if two nearest-neighbor sites x and y are both ε-good, then the probability that the edge
between them is occupied in G(λ, α) is at least 1− e−λε2

. Hence it suffices to show that the edge
configuration obtained by independently keeping edges between ε-good nearest-neighbor vertices
with probability 1− e−λε2

and removing all other edges percolates for some ε > 0. To this end,
say that a vertex z ∈ Zd is ε-open if all the 2d edges to its nearest-neighbors are present in this
configuration and let Xz = 1 precisely when z is ε-open. Note that this defines a 3-dependent
random field and that

P(Xz = 1) = P(z is ε-open) ≥ P(W ≥ ε)2d+1(1− e−λε2
)2d.

By the assumption that P(W = 0) < 1, the first factor can be made arbitrarily close to 1 by
picking ε suitably small and the second factor can then be made arbitrarily close to 1 by taking
λ large. Hence, if ε is small enough then, by Theorem 3.2, we can make P(Xz = 1) large enough
to guarantee that the ε-open vertices percolates.

Part (b) is a direct consequence of the results proved in [28]: If P(W ≥ ε) = 1, then clearly the
edge configuration stochastically dominates a configuration with independent edges and pxy =
1− e−λε2/|x−y|α . It is shown in [28] that, for α ∈ (1, 2], this model percolates in d = 1 for large λ.

As for (c), we adapt the argument in [30]. We start by giving the proof when E[W ] < ∞. For
x ∈ Z, let Ax be the event that no vertex y ≤ x is connected to any vertex z > x. The sequence
(1Ax)x∈Z is stationary with common mean P(A0). For n ≥ 1, write A

(n)
0 for the event that none

of the n edges (0, n), (−1, n − 1), . . . , (−n + 1, 1) is present in the graph. By the conditional
independence of the edges given (Wx)x∈Zd , we have that

P(A0) = E
[ ∞∏

n=1

P
(
A

(n)
0 |(Wx)x∈Z

)]

= E
[
exp

{
−

∞∑

n=1

λ

nα
(W0Wn + . . . + W−n+1W1)

}]
.

Since e−x is a convex function, it follows from Jensen’s inequality and the fact that (Wx)x∈Z are
i.i.d. with mean 1 that

P(A0) ≥ exp

{
−

∞∑

n=1

λ

nα
E[W0Wn + . . . + W−n+1W1]

}
= exp

{
−λ

∞∑

n=1

1
nα−1

}
.

Hence, P(A0) > 0 when α > 2. The ergodic theorem applied to the sequence (1Ax)x∈Z then gives
that infinitely many of the Ax’s occur almost surely, implying that all components are finite. This
completes the proof of part (c) when E[W ] <∞.

In the general case, we have that

P(A0) = E


exp



−λ

∞∑

i,j≥0: (i,j)6=(0,0)

W−iWj

(j + i)α






 > 0 (3.2)
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precisely when the double sum is finite a.s. We bound

∞∑

i,j≥0: (i,j)6=(0,0)

W−iWj

(j + i)α
≤ Z1Z2, (3.3)

where

Z1 =
∞∑

j=0

Wj

(j ∨ 1)α/2
, Z2 =

∞∑

i=0

W−i

(i ∨ 1)α/2
. (3.4)

The random variables Z1 and Z2 have the same distribution, so that we only need to check that
Z1 <∞ a.s. Then, the remainder of the proof can be completed as in the case where E[W ] <∞.

We continue to prove that Z1 <∞ a.s. when γ > 2. Take ai = i(1+ε)/(τ−1) for some ε > 0. Then,
the events {Wi > ai} occur only finitely often, since

P(Wi > ai) = [1− F ](ai) ≤ ca
−(τ−1)
i = ci−(1+ε), (3.5)

which is summable in i. Then, we split Z1 = Y1 + Y2, where

Y1 ≡
∞∑

j=0

(Wj ∨ aj)
(j ∨ 1)α/2

, Y2 ≡
∞∑

j=1

(Wj − aj)1l{Wj>aj}
(j ∨ 1)α/2

. (3.6)

The sum in the definition of Y2 contains only finitely many terms a.s., and is thus finite a.s.
Further, note that

E[(Wj ∧ x)] ≤
x∑

y=1

[1− F ](y) ≤ c
x∑

y=1

y−(τ−1) ≤ cy2−τ . (3.7)

and hence
E[(Wj ∧ aj)]
(j ∨ 1)α/2

≤ ca2−τ
j (j ∨ 1)−α/2 ≤ c(j ∨ 1)−α/2+(1+ε)(2−τ)/(τ−1). (3.8)

When γ = α(τ − 1) > 2, we have that −α/2 + (2 − τ)/(τ − 1) < −1. Therefore, we can take
ε > 0 so small that −α/2 + (1 + ε)(2 − τ)/(τ − 1) < −1, which makes Y1 have finite mean. In
particular, it is finite a.s.

4 Percolation – positivity of the critical value

In this section we show that λc > 0 if and only if the degrees have finite variance. We give the
proof in two subsections. First we show that there is no percolation for small λ when the degrees
have finite variance and then that there is percolation for all λ > 0 when the variance of the
degrees is infinite.

4.1 The critical value is positive for finite-variance degrees

Recall from Section 2 that, if the weight tail P(W > w) varies regularly with exponent τ − 1,
then the degree tail P(D0 > s) varies regularly with exponent γ = α(τ − 1)/d. In this section
we show that λc > 0 when γ > 2, that is, when the degrees have finite variance. Recall that we
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assume throughout that α > d. As pointed out after Theorem 2.2, finite variance for the weights
then implies finite variance for the degrees, but the degrees may have finite variance also if the
weights have infinite variance. We first prove that λc > 0 in the case when the weights have finite
variance. The proof is slightly simpler in that case and gives an explicit lower bound for λc. We
then extend the arguments to cover also the case when γ > 2 but τ ∈ (2, 3).

Theorem 4.1 (Positivity of the critical value for finite-variance weights). Assume that E[W 2] <
∞. Then, θ(λ) = 0 for every λ < 1/(E[W 2]

∑
x6=0 |x|−α), that is,

λc ≥ 1/
(
E[W 2]

∑

x6=0

|x|−α
)
.

Proof. Since E[W ] = 1 < ∞, every vertex has a.s. bounded degree. As a result, the event
{|C(0)| = ∞} implies that, for every n ≥ 1, there is a path of distinct occupied edges of length
at least n starting from the origin. Thus,

θ(λ) = P(|C(0)| =∞) ≤∑
(x1,...,xn) P((0, x1), (x1, x2), . . . , (xn−1, xn) occupied)

=
∑

(x1,...,xn) E
[
P

(
(0, x1), (x1, x2), . . . , (xn−1, xn) occupied | (Wx)x∈Zd

)]
,

where the sum is over (x1, . . . , xn) ∈ (
Zd

)n such that every vertex occurs at most once in the
path (0, x1, . . . , xn). We call such paths self-avoiding paths. By the conditional independence of
the edges given the weights, we have that

P
(
(0, x1), (x1, x2), . . . , (xn−1, xn) occupied | (Wx)x∈Zd) =

n∏

i=1

pxi−1,xi ,

where pxy is defined in (1.1) and, by convention, x0 = 0. Therefore,

θ(λ) ≤
∑

(x1,...,xn)

E
[ n∏

i=1

pxi−1,xi

]
.

We next use the fact that 1− e−x ≤ x to conclude that

px,y ≤ λWxWy/|x− y|α. (4.1)

It follows that

θ(λ) ≤
∑

(x1,...,xn)

E
[ n∏

i=1

λWxi−1Wxi/|xi−1 − xi|α
]

= λn
∑

(x1,...,xn)

( n∏

i=1

1
|xi−1 − xi|α

)
E

[
W0Wxn

n−1∏

i=1

W 2
xi

]
.

Since every vertex occurs at most once in the path (0, x1, . . . , xn) and (Wx)x∈Zd are i.i.d. with
mean 1, we have that

E
[
W0Wxn

n−1∏

i=1

W 2
xi

]
= E[W ]2E[W 2]n−1.

Further, by translation invariance,

∑

(x1,...,xn)

n∏

i=1

1
|xi−1 − xi|α ≤

( ∑

x 6=0

1
|x|α

)n
.
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As a result,

θ(λ) ≤ E[W ]2

E[W 2]

(
λE[W 2]

∑

x 6=0

1
|x|α

)n
.

Thus, when λ < 1/(E[W 2]
∑

x 6=0 |x|−α), the right hand side converges to 0 as n → ∞, which
implies that θ(λ) = 0.

We relax the assumption in Theorem 4.1 to finite variance for the degrees, that is, γ > 2.

Theorem 4.2 (Positivity of the critical value for finite-variance degrees). Assume that there
exists τ > 1 and c > 0 such that

[1− F ](x) = P(W > x) ≤ cx−(τ−1), x ≥ 0, (4.2)

with γ = α(τ − 1)/d > 2. Then, θ(λ) = 0 for small λ > 0, that is, λc > 0.

Proof. The proof is an adaptation of the proof of Theorem 4.1. Instead of (4.1) we use the bound

px,y ≤
(
λWxWy/|x− y|α ∧ 1

)
.

As a result,

θ(λ) ≤∑
(x1,...,xn) E

[ ∏n
i=1

(
λWxi−1Wxi/|xi−1 − xi|α ∧ 1

)]
.

By Cauchy-Schwarz’s inequality and the independence of (Wx)x∈Zd we obtain

E
[ ∏n

i=1

(
λWxi−1Wxi/|xi−1 − xi|α ∧ 1

)]2

≤ E
[ ∏dn/2e

i=1

(
λWx2i−1Wx2i/|x2i−1 − x2i|α ∧ 1

)2]

×E
[ ∏bn/2c

i=1

(
λWx2i−2Wx2i−1/|x2i−2 − x2i−1|α ∧ 1

)2]

=
∏n

i=1 E
[(

λWxi−1Wxi/|xi−1 − xi|α ∧ 1
)2]

.

Therefore,

θ(λ) ≤
∑

(x1,...,xn)

n∏

i=1

g(|xi−1 − xi|α/λ)1/2,

where we define
g(u) = E

[(
W1W2/u ∧ 1

)2]
.

By translation invariance,

θ(λ) ≤
( ∑

x 6=0

g
(
|x|α/λ

)1/2)n
.

We continue by investigating the asymptotics of u 7→ g(u) for u→∞:

Lemma 4.3 (Asymptotics of g). When the distribution function F satisfies (4.2) for some τ > 1,
then there exists a constant C > 0 such that

g(u) ≤ C(1 + log u)u−
(
(τ−1)∧2

)
.
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Proof. Let H denote the distribution function of W1W2, where W1 and W2 are two independent
copies of a random variable W with distribution function F . When F satisfies (4.2), then it is
not hard to see that there exists a C > 0 such that

[1−H](u) ≤ C(1 + log u)u−(τ−1). (4.3)

Indeed, assume that F has a density f(w) = cw−τ , for w ≥ 1. Then

[1−H](u) =
∫ ∞

1
f(w)[1− F ](u/w)dw.

Clearly, [1 − F ](w) = c′w−(τ−1) for w ≥ 1 and [1 − F ](w) = 1 otherwise. Substitution of this
yields

[1−H](u) = cc′
∫ u

1
w−τ (u/w)−(τ−1)dw + c

∫ ∞

u
w−τ ≤ C(1 + log u)u−(τ−1).

When F satisfies (4.2), then W1 and W2 are stochastically upper bounded by W ∗
1 and W ∗

2 with
distribution function F ∗ satisfying [1 − F ∗](w) = cw−(τ−1), and the claim in (4.3) follows from
the above computation.

Let V = W1W2, so that V has distribution function H. We complete the proof of Lemma 4.3 by
bounding

E
[(

V/u ∧ 1
)2

]
≤ 1−H(u) + u−2

∫ u

1
2v[1−H(v)]dv ≤ C(log u + 1)u−

[
(τ−1)∧2

]
,

where, in the last inequality, we distinguish between the case τ > 3, in which
∫∞
0 2v[1−H(v)]dv <

∞, and τ ∈ (1, 3].

Lemma 4.3 yields

θ(λ) ≤
(
Cλ(τ−1)/2

∑

x6=0

(
log(|x|α/λ) + 1

)1/2
|x|−α

[
(τ−1)∧2

])n

≤
(
Cλ(τ−1)/4

∑

x6=0

(
log |x|α + 1

)1/2
|x|−α

[
(τ−1)∧2

]
/2

)n

where the last inequality holds when λ < 1 is small enough to ensure that λ(τ−1)/2(1− log λ) ≤ 1.

Now,
∑

x 6=0(log |x|α +1)1/2|x|−α
[
(τ−1)∧2

]
/2 <∞ when α[(τ −1)∧2]/d > 1. Since α > d, for τ < 3

we find as condition that γ = α(τ − 1)/d > 2. Thus, when λ is also so small that

Cλ(τ−1)/4
∑

x6=0

(log |x|α + 1)1/2|x|−α(τ−1)/2 < 1,

we have that θ(λ) = 0. This completes the proof of Theorem 4.2.

4.2 The critical value is zero for infinite-variance degrees

In this section we will investigate the case when γ < 2, so that the degrees have infinite variance.
As we will show, the critical value equals zero in this case.
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Theorem 4.4 (Critical value equals zero for infinite-variance degrees). Assume the existence of
τ > 1 and c > 0 such that the weight distribution F satisfies

[1− F ](x) = P(W > x) ≥ cx−(τ−1) x ≥ 0. (4.4)

Furthermore, assume that α > d and γ = α(τ − 1)/d < 2. Then, θ(λ) > 0 for every λ > 0, that
is, λc = 0.

Proof. Clearly, it suffices to show that θ(λ) > 0 as soon as λ > 0. To this end, take a radius
rλ = bλ−qc for some q > 0 to be determined later on. Let B(x, r) = {y : |y − x| ≤ r} denote the
Euclidean ball of radius r around x, and write B(r) = B(0, r). Furthermore, for x ∈ Zd, define

Mx(λ) = r
−d/(τ−1)
λ max

y∈Zd∩B(rλx,rλ)
Wy.

Then, for small λ > 0, we have

P(Mx(λ) ≥ ε) = 1− F
(
εr

d/(τ−1)
λ

)(2rλ+1)d ≥ 1− (
1− cε−(τ−1)rd

λ

)(2rλ+1)d ≥ 1− e−cε1−τ
.

Hence P(Mx(λ) ≥ ε)→ 1 uniformly in λ as ε→ 0. Say that x ∈ Zd is good when Mx(λ) ≥ ε. The
events that different sites are good are independent and have the same probability. Given two
nearest-neighbors x, y ∈ Zd, we say that (x, y) is λ-occupied when there is a direct edge between
x(λ) and y(λ), where x(λ) is the vertex that maximizes Wz for z ∈ B(rλx, rλ) and y(λ) the vertex
that maximizes Wz for z ∈ B(rλy, rλ). Then, when x, y are both good,

P((x, y) λ-occupied | x, y good) = E
[
px(λ),y(λ) | x, y good

]

= E
[
1− e−λWx(λ)Wy(λ)/|x(λ)−y(λ)|α | x, y good

]

≥ 1− e−λ(εr
d/(τ−1)
λ

)2/|x(λ)−y(λ)|α

≥ 1− e−λε2r
2d/(τ−1)−α
λ .

Recall that rλ = bλ−qc. Hence,

λr
2d/(τ−1)−α
λ ≥ λ1−q(2d/(τ−1)−α).

By assumption, γ < 2, so that α(τ − 1) < 2d. Thus, we can take q > 1/(2d/(τ − 1)− α), so that
λ1−q(2d/(τ−1)−α) →∞ when λ ↓ 0. Then, for every ε > 0, we have

lim
λ↓0
P((x, y) λ-occupied | x, y good) = 1.

The limit also holds for several edges simultaneously.

We now define a nearest-neighbor bond percolation model on Zd, where the bond between nearest-
neighbor sites x, y ∈ Zd is open when both x and y are good and there is a direct edge between
x(λ) and y(λ), that is, when (x, y) is λ-occupied. The probability that a vertex is good can be
made as close to 1 as we wish by taking ε > 0 small, and the edge probability can then be made
as close to 1 as we like by taking λ sufficiently small. Thus, by applying Theorem 3.2 as in the
proof of Theorem 3.1(a), we conclude that the model will percolate with probability 1 when ε
and λ are sufficiently small. Denote by θ(λ, ε) the probability that 0 percolates in the above
bond percolation model. Note that 0 percolates in our original inhomogeneous model when (a)
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0 percolates in the bond model; and (b) 0 is directly connected to 0(λ), which is the vertex that
maximizes Wz in B(0, rλ). Now, the probability that 0 is directly connected to 0(λ), conditionally
on 0 being good, is at least P(W ≥ ε)[1− e−ε2λr

d/(τ−1)−α
λ ]. Therefore,

θ(λ) ≥ P(W ≥ ε)
[
1− e−ε2λr

d/(τ−1)−α
λ

]
θ(λ, ε) > 0.

As a result, λc ≤ λ, which holds for every λ > 0, so that λc = 0.

5 Distances

For x ∈ Zd, write d(0, x) for the graph distance between 0 and x, that is, d(0, x) is the minimum
number of edges that form a path from 0 to x. If 0 and x are not connected, then we define
d(0, x) =∞. In this section we show that, conditionally on 0 and x being connected, the distance
d(0, x) is of order log log |x| as |x| → ∞ when the degrees have infinite variance and λ > λc.
When the degrees have a finite variance on the other hand, then d(0, x) is at least of order log |x|
when α > d and at least of order |x|ε for some ε > 0 when α > 2d.

5.1 Doubly logarithmic asymptotics for infinite-variance degrees

We start by proving a loglog upper bound when the degrees have infinite variance. Recall that
x←→ y denotes the event that x and y are in the same component.

Theorem 5.1 (Doubly logarithmic upper bound on distances for infinite-variance degrees). As-
sume that there exists τ > 1 and c > 0 such that (4.4) holds and such that γ = α(τ−1)/d ∈ (1, 2).
Finally, assume that λ > 0. Then, for every η > 0, we have

lim
|x|→∞

P
(
d(0, x) ≤ (1 + η)

2 log log |x|
| log(γ − 1)|

∣∣∣ 0←→ x
)

= 1.

Proof. Throughout this proof c1, c2, . . . denote strictly positive constants. Let (Wi)n
i=1 be an i.i.d.

collection of weight variables. When the weight distribution F satisfies (4.4), it is easy to see
that, for any δ ∈ (0, 1), we can bound

P
(

max
1≤i≤n

Wi ≤ n(1−δ)/(τ−1)
)
≤

(
1− c

n1−δ

)n

≤ e−cnδ
. (5.1)

Take x ∈ Zd with |x| large and let b ∈ (0, 1) be a constant whose value will be specified later.
For i = 0, 1, 2 . . ., write B̃(x, bi) for the ball with radius |x|bi

/4 centered at the point at distance
|x|bi

/2 from 0 on the line segment from 0 to x. Furthermore, let zi ∈ Zd be the (random) vertex
in B̃(x, bi) with maximal weight. We have

P
(
∪k−1

i=0 {(zi, zi+1) not occupied}
)
≤

k−1∑

i=0

E
[
e−λWziWzi+1/|zi−zi+1|α

]
.

Using (5.1) and the fact that the number of points in Zd ∩ B̃(x, bi) is of the order |x|dbi
, this can

be bounded by
k−1∑

i=0

(
exp

{
−c1|x|dbi(τ−1)−1(1−δ)|x|dbi+1(τ−1)−1(1−δ)

|x|αbi

}
+ exp

{
−c|x|δdbi

})
,
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where the exponent in the first term simplifies to

−c1|x|bi[d(τ−1)−1(1−δ)(1+b)−α].

Fix b ∈ (γ − 1, 1), and then take δ small so that d(τ − 1)−1(1− δ)(1 + b)− α > 0. Using the fact

that
∑k−1

i=1 e−|x|b
i

= Θ
(
e−|x|b

k−1 )
as k →∞, we can hence bound

P
(
∪k−1

i=0 {(zi, zi+1) not occupied}
)
≤ c2 exp

{
−c3

(|x|bk−1)c4
}

for large k.

Now fix ε > 0. Take A = A(ε) large so that c2e−c3Ac4 ≤ ε and then choose k such that |x|bk
= A,

that is,

k =
log log |x|+ log log A

| log b| .

Then P
(
(zi, zi+1) occupied for all i = 1, . . . , k−1

) ≥ 1− ε and, on the event that all (zi, zi+1) are
occupied, we have that

d(0, x) ≤ k + d(0, zk),

where |zk| ≤ |x|bk ≤ A. We now let |x| → ∞ and use the fact that the model has a unique infinite
cluster. If 0 ←→ x and all (zi, zi+1) are occupied, then 0 ←→ zk, which in turn implies that
d(0, zk) <∞ almost surely (since |zk| ≤ A). Hence, on the event that 0←→ x, for any κ > 0, we
have that P(d(0, zk) ≤ κ log log |x|) ≥ 1− ε when k is large. It follows that

lim
|x|→∞

P
(

d(0, x) ≤ 2(1 + η/2) log log |x|
| log b|

∣∣∣ 0←→ x

)
≥ 1− 2ε.

The proof is completed by taking b close enough to γ − 1 to ensure that

1 + η/2
| log b| ≤

1 + η

| log(γ − 1)| .

We continue by proving that, for γ ∈ (1, 2), typical distances really are of the order log log |x|.
Theorem 5.2 (Doubly logarithmic lower bound on distances for infinite-variance degrees). As-
sume that there exists τ > 1 and c > 0 such that (4.4) holds and such that γ = α(τ−1)/d ∈ (1, 2).
Finally, assume that λ > 0. Then, for every η > 0,

lim
|x|→∞

P
(
d(0, x) ≥ (1− η)

2 log log |x|
| log(κ)|

)
= 1,

where κ = γ − 1 when τ ∈ (1, 2] and κ = α/d− 1 when τ > 2.

When τ ∈ (1, 2], we see that the constants in Theorems 5.1–5.2 agree, so that we obtain conver-
gence in probability:

Corollary 5.3 (Doubly logarithmic distances for infinite-variance degrees and infinite-mean
weights). Assume that there exists τ ∈ (1, 2] and c > 0 such that (2.1) holds and such that
γ = α(τ − 1)/d ∈ (1, 2). Finally, assume that λ > 0. Then, conditionally on 0 ←→ x, we have
for every η > 0 that

d(0, x)
log log |x|

P−→ 2
| log(γ − 1)| .
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Proof. By Potter’s Theorem ([8]), for every ε > 0, there exist constants cε and Cε such that for
all x sufficiently large,

cεw
−(τ−1+ε) ≤ [1− F ](w) ≤ Cεw

−(τ−1−ε). (5.2)

The result follows from Theorems 5.1–5.2 and the fact that κ = γ − 1 for τ ∈ (1, 2].

Proof of Theorem 5.2. Define

Sn(x) = sup{|x− y| : d(x, y) ≤ n}, (5.3)

to be the distance between x and the furthest point y ∈ Zd that can be reached via at most n
edges. Then, clearly,

P(d(0, x) ≤ 2n) ≤ P(Sn(x) ≥ |x|/2) + P(Sn(0) ≥ |x|/2) = 2P(Sn(0) ≥ |x|/2), (5.4)

where the last equality follows from translation invariance. Now, for any s ≤ t, we obtain the
recursive bound

P(Sn(0) ≥ t) ≤ P(Sn−1(0) ≥ s) + P(Sn−1(0) < s, Sn(0) ≥ t), (5.5)

where, using Boole’s inequality, we can further bound

P(Sn−1(0) < s, Sn(0) ≥ t) = P(∃u, v, satisfying: |u| ≤ s and |v| ≥ t such that u←→ v)

≤
∑

u,v : |u|≤s,|v|≥t

E[pu,v] ≤
∑

u,v : |u|≤s,|v|≥t

E
[(λWuWv

|u− v|α ∧ 1
)]

≤
∑

u,v : |u|≤s,|v|≥t

g1

( |u− v|α
λ

)
, (5.6)

where
g1(u) = E

[(W1W2

u
∧ 1

)]
. (5.7)

It follows quite easily from the statement in Lemma 4.3, that there exists a constant C > 0 such
that

g1(u) ≤ C(1 + log u)u−((τ−1)∧1). (5.8)

By a computation, similar to the one in the proof of Proposition 2.3 we find that

P(Sn−1(0) < s, Sn(0) ≥ t) ≤ C
∑

u,v : |u|≤s,|v|≥t

|u− v|−α((τ−1)∧1)(1 + log |u− v|α/λ)

≤ K|s|d|t|d−α[(τ−1)∧1]+η,

where η > 0 may be taken arbitrarily small and compensates the log-term. Recall the definition
of κ in the theorem. Fix A ≥ 1 to be large, and take δ > 0 so that κ − δ ∈ (0, 1). Then take
t = A(κ−δ)−n

and s = A(κ−δ)−(n−1)
, so that s = tκ−δ, and

K|s|d|t|d−α[(τ−1)∧1]+η = K|t|d−α[(τ−1)∧1]+(κ−δ)d = K
(
A(κ−δ)−n

)−ζ
, (5.9)

with
ζ = α[(τ − 1) ∧ 1]− d− (κ− δ)d− η > 0, (5.10)
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since κ = α[(τ − 1) ∧ 1]/d− 1. Combining (5.5) with these bounds yields the explicit recursion

P
(
Sn(0) ≥ A(κ−δ)−n

)
≤ P

(
Sn−1(0) ≥ A(κ−δ)−(n−1)

)
+ K

(
A(κ−δ)−n

)−ζ
. (5.11)

As a result we obtain that

P
(
Sn(0) ≥ A(κ−δ)−n

)
≤ P

(
S1(0) ≥ A1/(κ−δ)

)
+

n∑

k=2

KA−ζ(κ−δ)−k
, (5.12)

which can be made small by choosing A ≥ 1 large enough.

Finally, by (5.4) and when n = (1 − η) log log |x|
| log(κ)| , then A(κ−δ)−n ≤ |x|/2, and we conclude that

P(d(0, x) ≤ 2n) = o(1).

5.2 Lower bounds on distances for finite-variance degrees

We begin by establishing a general logarithmic lower bound valid for γ > 2.

Theorem 5.4 (Logarithmic lower bound on distance for finite variance degrees). Assume that
there exists τ > 1 and c > 0 such that (4.2) holds and that γ = α(τ − 1)/d > 2. Then, there
exists an η > 0 such that

lim
|x|→∞

P(d(0, x) ≥ η log |x|) = 1.

Proof. We follow the proof of Theorem 4.2, and obtain

P(d(0, x) = n) ≤
∑

(x1,...,xn−1)

n∏

i=1

g(|xi−1 − xi|α/λ)1/2, (5.13)

where we adopt the convention that x0 = 0 and xn = x. Define

h(x) = (log |x|+ 1)|x|−α
(
(τ−1)/2∧1

)
,

for x 6= 0 and h(0) = 0. Then, using the bound in Lemma 4.3 and the fact that the sum in (5.13)
acts like a convolution, the right-hand side of (5.13) can be bounded by

P(d(0, x) = n) ≤ (
Cλ(τ−1)/2)n

h∗n(x),

where h∗n denotes the n-fold convolution of h with itself. Now, it is easy to see that

h∗n(x) ≤ n
(

sup
y : |y|≥|x|/n

h(y)
)( ∑

u6=0

h(u)
)n−1

. (5.14)

Indeed, to see (5.14), we note that

h∗n(x) =
∑

x1+···+xn=x

n∏

i=1

h(xi). (5.15)

When x1 + · · ·+ xn = x, there must be (at least one) xi with |xi| ≥ |x|/n. We bound that factor
by supy : |y|≥|x|/n h(y), and sum out over the remaining xj for j 6= i, noting that that sum is now
unrestricted.

19



When n ≤ η log |x|, we can define κ > 0 such that

sup
y : |y|≥|x|/n

h(y) ≤ C ′(log |x|)κ|x|−α
(
(τ−1)/2∧1

)
.

Furthermore,
∑

u6=0 h(u) <∞ when γ = α(τ − 1)/d > 2. As a result, we obtain that

P(d(0, x) = n) ≤ n
(
Cλ

(
(τ−1)/2∧1

))n(log |x|)κ|x|−α
(
(τ−1)/2∧1

)
,

which is bounded by |x|−ε when n ≤ η log |x| with η > 0 sufficiently small. This is true for any
n ≤ η log |x|, so

P(d(0, x) ≤ η log |x|) ≤ |x|−ε,

and the proof of Theorem 5.4 is completed.

We next improve the above result to a polynomial lower bound when α > 2d.

Theorem 5.5 (Polynomial lower bound on distance for finite variance degrees when α > 2d).
Assume that there exists τ > 1 and c > 0 such that (4.2) holds, that γ = α(τ − 1)/d > 2 and that
α > 2d. Then, for every ε < d[(γ ∧ α/d)− 2]/(d + 1), we have

lim
|x|→∞

P(d(0, x) ≥ |x|ε) = 1.

Proof. We follow the proof of Theorem 5.2, that is, (5.4)–(5.8), and start by investigating
P(Sn(0) ≥ t). Now, for t→∞ and n = o(t), we bound

P(Sn(0) ≥ t) ≤ P(S1(0) ≥ t/n) +
n−1∑

k=1

P(Sk(0) ≤ tk/n, Sk+1(0) ≥ t(k + 1)/n) (5.16)

= o(1) +
n−1∑

k=1

∑

u,v : |u|≤tk/n,|v|≥t(k+1)/n

g1(|u− v|α/λ)

≤ o(1) + K
n−1∑

k=1

(
tk/n

)d(
t/n)−α[(τ−1)∧1]+d+η ≤ o(1)nd+1td[(2−γ∧α/d)]+η,

where η > 0 can be taken arbitrarily small. This is o(1) when n ≤ tε, where

ε <
d

d + 1
[(γ ∧ α/d)− 2]. (5.17)

According to (5.4), we have

P(d(0, x) ≤ 2n) ≤ P(Sn(0) ≥ |x|/2),

and hence P(d(0, x) ≤ |x|ε) = o(1) for every ε satisfying (5.17).
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6 Further work

In this paper, we have studied degrees, percolation and distances in a long-range percolation
model with i.i.d. vertex weights. Using relatively simple tools, we have carved out the phase
diagram by identifying appropriate bounds on degrees, critical values and distances as a function
of the model parameters. Our model has power-law degrees, small- (and even ultra-small-) world
behavior, with spatial connections on various spatial scales, and its properties depend in an
intricate way on the number of finite moments of its degree distribution. The model shares
many interesting features of both inhomogeneous random graphs having power-law degrees, and
long-range percolation. We remark that, while we have assumed that the edge probabilities
has the precise form in (1.1), it is not hard to see that our results extend to settings where
pxy = h(λWxWy/|x − y|α), for some function x 7→ h(x) for which x/2 ≤ h(x) ≤ x, whenever
x ∈ [0, 1]. In the random graph setting, this is established in [11, 25].

There are a number of questions about the studied model that deserve further investigation. In
this section we mention some of them.

Finiteness of the critical value. In Theorem 3.1, conditions are given that ensure percolation
for large values of λ. In d = 1 (with α ∈ (1, 2]), the condition is that the weights are bounded
away from 0 and, in d ≥ 2, that the weight distribution satisfies F (0) < 1. These conditions are
presumably not optimal and it would be interesting to investigate how far they can be relaxed.
Indeed, some condition on the weight distribution near 0 is presumably necessary in order for
percolation to be possible.

Distances. We have given a logarithmic lower bound on the graph distance when γ > 2 and
α > d, a polynomial lower bound when γ > 2 and α > 2d, and doubly logarithmic asymptotics
when γ < 2. These bounds, though, leave much room for improvement. When γ ∈ (1, 2) and
τ > 2, it would be of interest to find the constant in front of the log log |x|. Is this constant
2/| log(γ − 1)| or 2/| log(α/d − 1)| or something in between? Is the behavior for γ > 2 and
α ∈ (d, 2d] really polylogarithmic, as it is in the deterministic case (see [9], where Biskup proves
that distances for long-range percolation are Θ((log |x|)∆+o(1)), with ∆ = 1/ log2(2d/α))? When
γ > 2 and α > 2d, can we identify the exponent µ such that d(0, x) = |x|µ+o(1) whenever 0 and
x are in the infinite component?

Diameter in infinite mean case. In [3], it has been proved that, for long-range percolation
with infinite mean degrees (that is, when Wx is constant and α < d), then the diameter of the
infinite component is equal to dd/(d−α)e. The proof crucially relies on the notion of the stochastic
dimension for random relations in the lattice. It would be of interest to investigate whether the
diameter of the infinite component is bounded also in our model when γ = α(τ − 1)/d < 1.

Critical behavior. The most interesting phenomena in percolation models can be found close
to the critical value. A central question is if the percolation function θ(λ) is continuous. See [19]
and [10] for the rich history of this problem. In [4], it is shown that the percolation function is
continuous when α ∈ (d, 2d). Is this also true in our model? Further, percolation in two dimen-
sions has received tremendous attention in the past years, due to the connection to conformal
invariance, see e.g. [31]. In particular, the percolation function is continuous, and many critical
exponents are identified on the triangular lattice. The continuity of the percolation function
extends to many finite-range percolation models in d = 2. Is the percolation function λ 7→ θ(λ)
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also continuous for our model? Further, how do the critical exponents depend on the randomness
in the medium? In [21], the mean-field behavior of long-range percolation is investigated, and it
is shown that when d > 3((α − d) ∧ 2), the model has mean-field critical exponents. This raises
the question what the upper-critical dimension in the presence of vertex weights is.

Critical behavior on the torus. In random graph theory, there is recently a substantial interest
in the critical behavior of inhomogeneous random graphs of so-called rank-1, that is, the setting of
our model on the complete graph. See e.g. [6, 7, 20, 22, 33] for the relevant results. In this setting,
we see that the critical behavior when γ > 3 is similar to that of the Erdős-Rényi random graph
as identified in [2], while, for γ ∈ (2, 3), it is rather different (see [7, 22]). This raises the question
whether also for our inhomogeneous percolation model, the critical behavior is different for γ > 3
and for γ ∈ (2, 3). To best compare the situations of (non-spatial) inhomogeneous random graphs
and their spatial counterparts, it would be useful to examine the setting on a finite torus. Our
model on the torus is translation invariant, and has a unique critical value above which the largest
connected component contains a positive proportion of the vertices. It would be interesting to
investigate the critical behavior of this spatial finite inhomogeneous random graph.

Continuum analogues. A continuum analogue of long-range percolation, known as the random
connection model, is described in [27]. There, the vertex set is taken to be the points of a Poisson
process on Rd and two vertices x and y are connected by an edge with a probability given by
a function g of their separation |x − y|. An inhomogeneous version of this model is known as
the Poisson Boolean model, or continuum percolation. Each Poisson point x is then assigned a
random radius Rx and two points x and y are connected if |x− y| ≤ Rx + Ry. Results on these
models revolve around the existence of non-trivial critical intensity for the underlying Poisson
process. There are no results so far on graph distances. It would be of interest to study a
continuum version of the model in the setting of the current paper. This would constitute an
alternative inhomogeneous formulation of the random connection model.
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