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Abstract
The e�ciency of observational studies may be increased by apply-

ing multistage sampling designs. It is however not always transparent
how to construct such a design in order to obtain increased e�ciency.
We here present a general statistical framework for describing and con-
structing multistage designs. We also provide tools for e�ciency and
cost-e�ciency comparisons, to facilitate the choice of sampling scheme.
The comparisons are based on Fisher information matrices and the re-
sults are suggested being presented in graphs, where either e�ciency
or cost adjusted e�ciency is plotted against a normalized measure of
cost. The former curve resides in the unit square and is analogous to
the receiver operating characteristic curve used for testing.
KEY WORDS: Hierarchical multistage model, Multistage sampling,
E�cient design, Cost-e�ciency, Fisher information



1 Introduction
Likelihood-based methods, such as the maximum likelihood estimator and
likelihood ratio test, exhibit good e�ciency under rather weak regularity
conditions when the underlying model is correctly speci�ed. However, if the
cost of collecting the full sample is large, one may collect a subsample at lower
total cost, which, by careful choice of the sampling mechanism, only looses
little e�ciency compared to the full ML estimator. To choose an e�ective
design it is necessary to be able to calculate, and to compare, the e�ectiveness
of di�erent sampling strategies. The aim of this paper is to provide tools for
such comparisons, and to present a framework that is general enough be
applicable for a broad range of statistical models and sampling schemes.
To this end, we introduce a general hierarchical multistage model with k
stages. In this model, the investigator chooses the sampling probabilities at
each stage, for each individual, with Stages k and 1 corresponding to full
and minimal information. This is a special case of data coarsening (Heitjan
& Rubin 1991), where 1) the coarsening variable J ∈ {1, . . . , k} is observed
and 2) the degree of coarsening is hierarchical.
The term two-stage design was introduced by White (1982). Since then two-
stage and multistage designs have been explored for di�erent design settings
in various areas of research. For instance, Thomas et al. (2004) investigated
two-stage case-control designs within a genetic application - testing of asso-
ciation between Single Nucleotide Polymorphism (SNP) markers and disease
status. The two-stage design was motivated by the cost of genotyping. In the
�rst stage it is determined what genetic markers should be used in the larger
sample. Analytical design optimization was possible here for special cases
but generally simulation based optimization is more practical. Asymptotic
relative cost-e�ciency (ARCE) was used as a measure of performance.
In the example above the sequential design was motivated by di�erential costs
of collecting data on di�erent variables. This situation may arise for example
when registry data are available for some variables, while other variables are
more costly to measure. It may then be bene�cial to formally incorporate
costs in the e�ciency calculations. Maydrech & Kupper (1978) incorporate
cost when providing sample size requirement calculations for cohort and case-
control studies. Di�erent costs for exposed/nonexposed or cases/controls are
allowed for in the calculations.
Reilly (1996) investigates optimal allocation of available resources for two-
stage data. Stage 1 variables are sampled for all individuals, so that complete
information is available for these, whereas Stage 2 variables are sampled more
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sparsely for a subset of individuals, with sampling probabilities determined
by Stage 1 data. Either precision is maximized for a �xed budget or cost
is minimized for a �xed precision. Cost functions are used so that cost can
di�er between sampling in stage one and sampling in stage two. Examples
with di�erent data-sets are presented.
The main focus in this paper is to systematically describe the e�ciency-cost
tradeo� in multistage sampling. To this end we introduce plots of e�ciency
and cost-adjusted e�ciency as functions of average cost. We use the full
sampling scheme (J ≡ k) as reference, and thus report e�ciency as well as
average cost in relative terms. A key parameter is the choice of sampling
scheme π, de�ned as the distribution of J , by which the investigator may
control the cost-e�ciency tradeo�. In particular, we focus on sequential
multistage designs, where individuals enter higher stages sequentially based
on already collected data. In this way, more data are collected only from
individuals that are predicted informative. Mathematically, this corresponds
to coarsening at random (CAR, Heitjan & Rubin 1991), although our focus
is on design rather than estimation of π. Our framework can be viewed as a
generalization of Grünewald & Hössjer (2010), where two-stage retrospective
designs are treated.

In Section 2 the multistage sampling model is described. The cost and e�-
ciency of samples are de�ned in Section 3 and the choice of cost functional
is discussed in Section 4. In Section 5 stage-dependent cost functions are in-
corporated into sequential multistage designs. Strategies for how to compare
e�ciencies are presented in Section 6. Analytical solutions for the e�ciency
calculations are not tractable for all statistical models. Therefore, we out-
line in Section 7 how Monte Carlo methods can be used for computation. A
special case of multi-stage designs is the ascertainment problem, where data
are not recorded on units that do not have full data. The ascertainment
problem is discussed in Section 8. In Section 9 the general theory of multi-
stage sampling is illustrated with a number of examples. Finally, the main
conclusions of the paper are discussed in Section 10, and proofs are collected
in the appendix.

2 A Multistage Model
Consider a collection of independent and identically distributed (i.i.d.) ran-
dom variables Z1, . . . , Zn de�ned on a sample space Z with common density
f(z; θ) with respect to an underlying measure on (Z,B), where B is the Borel
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sigma algebra on Z. The p-dimensional parameter vector θ = (θ1, . . . , θp),
belongs to a parameter space Θ. If estimation of θ is of concern, we may use
the maximum likelihood estimator

θ̂ML = arg max
θ∈Θ

L(θ),

where L(θ) =
∏n

i=1 f(zi; θ) is the likelihood function and zi the observed
value of Zi. Instead, we may wish to test H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0,
given some null parameter set Θ0 ⊂ Θ. Then the log likelihood ratio test
statistic

TLR = 2
(
max
θ∈Θ

log L(θ)−max
θ∈Θ0

log L(θ)
)

,

can be used, with H0 rejected if TLR exceeds a given threshold.
Sometimes only part of the data are observed. To this end, we introduce a
k-stage sampling model, starting with Zk = Z, and then de�ning a sequence
of reduced sampling spaces Zk−1, . . . ,Z1. The reduction of complexity from
Stage j + 1 to Stage j is achieved by means of the non-invertible transfor-
mation gj : Zj+1 → Zj. Let Gj = gj ◦ gj+1 ◦ . . . gk−1 denote reduction of
information (or coarsening) from Stage k down to Stage j. If Z ∼ f(·; θ) is
drawn from the full (Stage k) distribution, let

Zj = Gj(Z), j = 1, . . . , k

be the corresponding Stage j random variable. For a graphical representation
of the model see Figure 1.
The sampling mechanism is de�ned using a discrete random variable J ∈
{1, . . . , k}, controlling which stage to sample from. The resulting sampled
random variable

Z̃ = ZJ

is de�ned on the combined sample space Z̃ = Z1 ∪ . . .∪Zk. The property of
the sampling mechanism is determined from the joint distribution of Z and
J . Write

πj(z) = P (J = j|Z = z)

for the probability of collecting information on z ∈ Z at Stage j, so that
J |Z = z ∈ Mult(1, π(z)) has a multinomial distribution, with parameters 1
and π(z) = (π1(z), . . . , πk(z)). Also, let

Πj(z) = P (J ≥ j|Z = z) =
k∑

l=j

πl(z)
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be the probability that z is sampled at least up to Stage j and

λj(z) = P (J ≥ j|J ≥ j − 1, Z = z) = Πj(z)/Πj−1(z),

j = 2, . . . , k be one minus the discrete hazard rate of J , i.e. the conditional
probability of collecting data from Stage j, given that data have been col-
lected from Stage j−1 already. For a two-stage design Π2(z) will simplify to∑2

l=2 πl(z) = π2(z), or more generally, for a k-stage design, Πk(z) will sim-
plify to ∑k

l=k πl(z) = πk(z). Also, λ2(z) will simplify to Π2(z)/Π1(z) = Π2(z)
for all k.
Let J i be the stage that data on individual i, Zi, are sampled from. Then
(Z1, J1), . . . , (Zn, Jn) is an i.i.d. sequence of random variables. It gives rise
to a cost-reduced sample Z̃1, . . . , Z̃n, where Z̃i = Zi

Ji . The corresponding
ML estimator and LR tests are

θ̂ML(π) = arg max
θ∈Θ

L(θ, π), (1)

and

TLR(π) = 2
(
max
θ∈Θ

log L(θ, π)−max
θ∈Θ0

log L(θ, π)
)

, (2)

where

L(θ, π) =
n∏

i=1

f(z̃i; θ, π) (3)

is the likelihood function, z̃i the observed value of Z̃i, π = {π(z); z ∈ Z} the
(possibly in�nite-dimensional) sampling parameter and f(·; θ, π) the density
of Z̃ on Z̃. It is de�ned as

f(z̃; θ, π) = f(zj; θ)E (πj(Z)|Gj(Z) = zj) , if z̃ = zj ∈ Zj, (4)
where f(zj; θ) is the density of Zj on Zj.
In (1) and (2), we implicitly assume π to be known. In Section 10, we
will discuss relaxation of this assumption. The full sample corresponds to
πk(·) ≡ 1. We denote this sampling scheme by πfull, so that L(θ) = L(θ, πfull).
At the other extreme, we let πmin denote the design π1(·) ≡ 1, yielding a data
set with minimal possible amount of information.
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3 Cost and E�ciency
Let Cj(z) be the cost of sampling z ∈ Z at Stage j. We will assume that

0 ≤ C1(z) ≤ . . . ≤ Ck(z), ∀z ∈ Z, (5)
so that cost increases when more information on z is gathered. Then, the
total average cost (TAC) of the cost-reduced sample is

TAC(θ, π) = nE(CJ(Z)) = n
k∑

j=1

∫

Z
πj(z)Cj(z)f(z; θ)dz (6)

and the relative average cost (RAC) compared to the full sample

RAC(θ, π) = TAC(θ, π)/TAC(θ, πfull).

Let

ψ(z̃; θ, π) =
∂ log f(z̃; θ, π)

∂θ
(7)

be the score function, which is a 1× p vector-valued function de�ned on Z̃.
The Fisher information of the whole cost-reduced sample {Z̃i}n

i=1 is

I(θ, π) = nE
(
ψ(Z̃; θ, π)T ψ(Z̃; θ, π)

)
(8)

where ψT is the transpose of ψ.
Let h(I) be a scalar function of I satisfying

h(tI) = th(I) for any t > 0,
h(I1) ≤ h(I2) if I1 ≤ I2,

(9)

where I1 ≤ I2 means that I2 − I1 is positive semide�nite. The relative
e�ciency of the cost-reduced sample compared to the full sample is de�ned
as

e(θ, π) = h (I(θ, π)) /h (I(θ, πfull)) . (10)
The �rst part of (9) ensures that e has the usual interpretation in terms
of relative sample sizes: Asymptotically, when n is large, a sample of size
n/e(θ, π) is needed for design π to attain the same accuracy as a sample of
size n using the full design πfull.
The cost adjusted e�ciency
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CE(θ, π) = e(θ, π)/RAC(θ, π)

quanti�es the relative e�ciency of design π at parameter θ compared to a
random sample (π = πfull) exhibiting the same total average cost. It has
been used in the context of planning genetic association studies by Thomas
et al. (2004).

4 Choice of e�ciency functional
If estimating θ̂ML(π) is of interest, the functional h(I) in (9) is typically a
function of the asymptotic covariance matrix V = I−1 = (Vrs)

p
r,s=1. Some

examples are det(V )−1/p, tr(V )−1 and V −1
rr , see for examlpe Melas (2006).

For testing, other functionals can be used. Assume a simple null hypothesis
Θ0 = {θ0}, and a true parameter value θ0 + a. Then asymptotically, in the
limit of large samples (large I) and local alternatives (small a), TLR(π) in (2)
has a noncentral χ2 distribution with p degrees of freedom and noncentrality
parameter h(I) = aT Ia, where I = I(θ0, π). See for instance Ser�ing (1980).
Hence the power of the LR-test is asymptotically a monotone function of
h(I). More generally, let H be a distribution on Rp satisfying ∫

adH(a) = m
and ∫

aT adH(a) = Σ. De�ne the linear functional

h(I) = EH(aIaT ) = tr
(
(mT m + Σ)I

)
, (11)

so that h(I) = aT Ia when H has a one-point distribution at a. The more
general criterion (11) is a robusti�ed version, which allows for uncertainty of
a in terms of a prior distribution H.
If θ = (ξ, γ) can be split into structural parameters ξ and nuisance parameters
γ, with parameter space Θ = Ξ× Γ, we write

I(θ, π) =

(
Iξξ(θ, π) Iξγ(θ, π)
Iγξ(θ, π) Iγγ(θ, π)

)
. (12)

The estimation-based functionals h are de�ned as before. For testing, con-
sider a composite null hypothesis Θ0 = {ξ0} × Γ. Then, an appropriate
functional when ξ0 + a is the true structural parameter, is h(I) = aIpro�lea

T ,
where

Ipro�le(θ, π) = Iξξ − IξγI
−1
γγ Iγξ.

is the pro�le likelihood Fisher information. More generally, h(I) = h̃(Ipro�le)
can be used for linear h̃, as in (11).
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More details on e�ciency functionals in the context of experimental design
can be found in Silvey (1980) and Melas (2006).

5 Sequential Multistage Designs and Stage-
Dependent Cost Functions

Consider a �xed observation Z = Zi and J = J i. It will be helpful to
introduce a measurable space (Ω,F) and think of Z : Ω → Z and J : Ω →
{1, . . . , k} as random variables measurable with respect to the sigma algebra
F . Let Fj be the σ-algebra on Ω generated by Zj, so that F1 ⊂ F2 ⊂ . . . ⊂
Fk ⊂ F de�nes a �ltration. We will mainly restrict ourselves to designs such
that J is a stopping time with respect to this �ltration. That is, we require
{J = j} ∈ Fj for j = 1, . . . , k. Less formally, we will write this as

πj(z) = πj(zj), z ∈ Z, j = 1, . . . , K, (13)
which is short for πj(·) being constant on G−1

j (zj) = {z ∈ Z; Gj(z) = zj}.
Condition (13) is equivalent to CAR and means that the probability of includ-
ing information from z up to but not exceeding Stage j should not depend
on the outcome of z at stages above j. If (13) was not satis�ed we would
need information above Stage j in order to decide whether or not to sample
Z at this level, which would imply loss of sampled information.
We will refer to all designs satisfying (13) as the class of sequential multi-
stage designs P . The name can be motivated as follows: Recall Πj(z), the
probability that z is sampled at least up to Stage j. It is easy to see that
(13) is equivalent to

Πj(z) = Πj(zj−1), z ∈ Z, j = 1, . . . , K, (14)
which naturally corresponds to collecting more and more data, starting from
Stage 1 and proceeding sequentially up to Stage k. Indeed (14) implies

λj(z) = Πj(z)/Πj−1(z) = Πj(zj−1)/Πj−1(zj−2) = λj(zj−1), (15)
so that the probability of collecting more data only depends on data already
present. For k > 2 transition between the parameters π (or Π) and λ requires
knowledge of Z, so in real data collection it is convenient to use λ, which
corresponds directly to the sampling procedure.
With condition (13), (4) simpli�es to

f(z̃; θ, π) = πj(zj)f(zj; θ), if z̃ = zj ∈ Zj. (16)
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Inserting (16) into (7) and (8), we get

I(θ, π) =
∑k

j=1 Ij(θ, π) (17)
with

Ij(θ, π) = n
∫

Zj

πj(zj)ψ(zj; θ)
T ψ(zj; θ)f(zj; θ)dzj

the part of the total information obtained from individuals sampled at (but
not above) Stage j, and

ψ(zj; θ) = ∂ log f(zj; θ)/∂θ = E(ψ(Z; θ)|Zj = zj) (18)
the score function for Stage j data. Notice in particular that (17) depends
linearly on the design distribution π. Alternatively, we may write the Fisher
information as

I(θ, π) = I(θ, πmin) +
k∑

j=2

Ij|j−1(θ, π), (19)

where

Ij|j−1(θ, π) = n
∫

Zj−1

Πj(zj−1)Cov(ψ(Zj; θ)|Zj−1 = zj−1)f(zj−1; θ)dzj−1

is that part of the total information from Stage j data that are not present
at Stage j − 1. See the appendix for a derivation of (17) and (19).
For cost functions, a simpli�cation similar to (13) is possible. Indeed, most
cost functions of practical interest will satisfy

Cj(z) = Cj(zj), z ∈ Z, j = 1, . . . , K, (20)
which means that Cj is Fj-measurable. When (20) holds, the cost of gath-
ering information at Stage j does not depend on information from stages
above j that is not present. We will refer to (20) as a stage-dependent cost
function. With (13) and (20), the total average cost (6) becomes

TAC(θ, π) = n
k∑

j=1

∫

Zj

πj(zj)Cj(zj)f(zj; θ)dzj. (21)
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6 Cost-E�ciency Plots and Optimal Designs
The tradeo� between cost and e�ciency at a given parameter θ can be il-
lustrated by varying π and plotting e(θ, π) as a function of RAC(θ, π), see
Grünewald & Hössjer (2010). Some simple but useful properties of such
cost-e�ciency plots are summarized in the following proposition:

Proposition 1 Consider a �xed θ ∈ Θ and functional h satisfying (9). Let
π, π′ be two designs with π ≤ π′, i.e. Πj(z) ≤ Π′

j(z) for all z ∈ Z and
j = 1, . . . , k. Then

0 ≤ RAC(θ, πmin) ≤ RAC(θ, π) ≤ RAC(θ, π′) ≤ RAC(θ, πfull) = 1,
0 ≤ e(θ, πmin) ≤ e(θ, π) ≤ e(θ, π′) ≤ e(θ, πfull) = 1,

(22)

with equalities 0 = RAC(θ, πmin) and 0 = e(θ, πmin) on the left hand sides
of (22) if Stage 1 corresponds to no cost (C1(·) ≡ 0) and no information
(I(θ, πmin) = 0) respectively.

It follows from Proposition 1 that each design π corresponds to a point in the
unit square [0, 1]× [0, 1] of the (RAC, e)-plane, with (1, 1) for the full design
and (0, 0) for the minimal design if Stage 1 has zero cost and no information.
An optimal design is one that given θ maximizes e(θ, π) subject to a con-
straint on RAC(θ, π). It will typically be a locally optimal design, i.e. depend
on θ, which is unknown (in fact, it is the quantity we wish to estimate). In
practice, we may use training data to compute a preliminary estimate of θ,
which is used as plug-in for the optimal design.
We consider a �nite-dimensional subclass

Q = {π ∈ P ; π(·) = π(·; η) for some η} (23)
of all sequential multistage designs P , parameterized by η = (η1, . . . , ηr).
Keep θ ∈ Θ �xed and let QR = {π ∈ Q; RAC(θ, π) ≤ R} be the class of
sequential multistage designs inQ with relative average cost not exceeding R.
The Q-optimal e�ciency function is de�ned as the non-decreasing function

R → emax(θ, R) = sup
π∈QR

e(θ, π). (24)

Write π(·; R) for the design attaining the maximum in (24). We will refer
to it as a Q-optimal design. When Q = P , we omit Q and simply speak of

10



optimal designs. De�ne

Rmin = minπ∈QRAC(θ, π),
Rmax = maxπ∈QRAC(θ, π),
emin = minπ∈Q e(θ, π),
emax = maxπ∈Q e(θ, π).

Proposition 2 Assume h satis�es (9) and that Q is convex with πfull ∈ Q.
Then, given any θ ∈ Θ, the optimal e�ciency curve (24) satis�es

emax(θ, R) = sup
π∈Q;RAC(θ,π)=R

e(θ, π), (25)

for any R ∈ (Rmin, 1], and hence the maximal cost e�ciency satis�es

CEmax(θ,R) := sup
{π∈Q;RAC(θ,π)=R}

CE(θ, π) = emax(θ, R)/R.

It follows immediately from its de�nition that P is convex, so that Propo-
sition 2 applies with Q = P . It is easy to see that the full design πfull is
optimal, with (1, 1) the right-hand end point of the optimal e�ciency curve.
The minimal design πmin is optimal as well if we have strict inequalities in
(5) and then (Rmin, emin) is the left-hand end point of the optimal e�ciency
curve.
In the following two propositions, some more properties of the Q-optimal
e�ciency and cost-e�ciency curves are stated. We will consider e�ciency
functionals h with the property

h((1− t)I1 + tI2) ≥ (1− t)h(I1) + th(I2), (26)
for 0 ≤ t ≤ 1 and any positive semide�nite I1 and I2. For instance, the linear
functional (11) satis�es (26), but not, in general, functionals that operate
directly on the covariance matrix V .

Proposition 3 In addition to the conditions of Proposition 2, suppose that
h satis�es (26). Then the Q-optimal e�ciency curve (24) is concave for any
θ ∈ Θ.

Proposition 4 Assume the regularity conditions of Proposition 2 hold. Then,
the Q-optimal cost-e�ciency curve R → CEmax(θ, R) is non-increasing if ei-
ther
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Rmin = 0,
I(θ, π) = 0,∀π ∈ Q0,

(27)

or if Rmin > 0, h satis�es (26) and

e′max(θ, Rmin) ≤ emax(θ, Rmin)/Rmin (28)
where e′max(θ,Rmin) = ∂emax(θ,R)/∂R.

7 Computation
For simple models with low-dimensional Zj, we may compute cost and e�-
ciency directly from (17) and (21). Alternatively, for more complex models,
we may use Monte Carlo. Generate an i.i.d. sample {Zi}N

i=1 from f(·; θ) and
estimate

T̂AC(θ, π) = nN−1 ∑N
i=1

∑k
j=1 πj(Z

i
j)Cj(Z

i
j),

R̂AC(θ, π) = T̂AC(θ, π)/T̂AC(θ, πfull),

Î(θ, π) = nN−1 ∑N
i=1

∑k
j=1 πj(Z

i
j)ψ(Zi

j; θ)
T ψ(Zi

j; θ),

ê(θ, π) = h(Î(θ, π))/h(Î(θ, πfull)),

(29)

where Zi
j = Gj(Z

i). Since ψ(Zi
j; θ) is de�ned by means of an integral when

j < k (cf. (18)), we may need to approximate it by a Monte Carlo estimate
ψ̂(Zi

j; θ). When Zj is �nite, we put

ψ̂(zj; θ) =
1

Nzj

∑

i;Zi
j=zj

ψ(Zi; θ),

where Nzj
= |{i; Zi

j = zj}|. When Zj is continuous, more re�ned methods
based nonparametric regression (e.g. local polynomial kernel regression) can
be used.
If I(θ, π) and e(θ, π) are to be computed for several parameter vectors θ, a
new sample {Zi}N

i=1 has to be generated for each new θ. Alternatively, we
may use importance sampling (Hammersley & Handscomb 1964) based on
one sample {Zi}N

i=1 from f(·; θ′), with

T̂AC(θ, π) = nN−1 ∑N
i=1

∑k
j=1 πj(Z

i
j)Cj(Z

i
j)w(Zi; θ),

Î(θ, π) = nN−1 ∑N
i=1

∑k
j=1, πj(Z

i
j)ψ(Zi

j; θ)
T ψ(Zi

j; θ)w(Zi; θ),
(30)
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and weight function w(z; θ) = f(z; θ)/f(z; θ′). Each term ψ(Zi
j; θ) with j < k

may be replaced by an estimate ψ̂(Zi
j; θ). For instance, when Zj is discrete,

ψ̂(zj) =
∑

i;Zi
j=zj

ψ(Zi
j; θ)w(Zi

j)/
∑

i;Zi
j=zj

w(Zi
j).

The advantage of importance sampling is that that {Zi} can be reused for
several θ. On the other hand, the accuracy may be poor if the candidate
parameter θ′ is far away from θ (Hesterberg 1995).
Approximate Q-optimal designs may be found using (29) or (30) and maxi-
mizing ê(θ, ·) over Q̂R = {π ∈ Q; R̂AC(θ, π) ≤ R}.

8 Ascertainment
In Grünewald & Hössjer (2010), ascertainment is viewed as a two-stage prob-
lem, where only data from Stage 2 is observed. Various methods of parameter
estimation for ascertained data is discussed in Grünewald et al. (2010) and
references therein. More generally, ascertainment can be viewed as originat-
ing from a multistage design: Suppose that in a k-stage sample, only data
from Stage k are observed and used in the analysis. That is, Stage 1, . . . , k−1
data are not recorded at all. Such sampling is often referred to as ascertain-
ment when k = 2, although we use the word more generally here for k ≥ 2.
A k = 2 example of ascertainment is the case-control design, which is fre-
quently used i epidemiology. In the case-control design, selection is typically
based on a dichotomous disease status variable, and exposure variables are
measured for selected individuals. Often there is not a well de�ned sampling
frame, but patients are instead recruited at clinics.
For ascertainment (13) does not hold in general, and it does thus not ful�ll
the conditions for coarsening at random. It is well known that the ascertain-
ment procedure must be incorporated into the likelihood in order to avoid
inconsistent estimators (Fisher 1934, Rao 1965).

8.1 Unconditional Ascertainment
If it is known which observations that are not ascertained (although their
values are unknown), we modify the likelihood (3) to an unconditional ascer-
tainment likelihood

Lasc(θ, π) =
n∏

i=1

fasc(z̃
i; θ, π), (31)
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where

fasc(z̃; θ, π) =

{
πk(z)f(z; θ); if z̃ ∈ Zk,
1− P (A|θ, π); if z̃ ∈ Z1 ∪ . . .Zk−1,

where
A = {J = k}

denotes the event that data are ascertained and P (A|θ, π) = P (J = k|θ) is
the ascertainment probability.
The total average cost becomes

TACasc(θ, π) = nP (A|θ, π)E(CJ(Z)|J = k)

and the Fisher information (8) changes to

Iasc(θ, π) = Ik(θ, π) + nP ′(A|θ, π)T P ′(A|θ, π)/(1− P (A|θ, π)),

where Ik is the information from individuals sampled at Stage k and P ′(A|θ, π) =
∂P (A|θ, π)/∂θ.
E�ciency is calculated as easc(θ, π) = h(Iasc(θ, π))/h(Iasc(θ, πfull)). Since
Iasc(θ, π) ≤ I(θ, π), it follows from (9) that easc(θ, π) ≤ e(θ, π).

8.2 Conditional Ascertainment
More commonly, it is not known which observations that are not ascertained,
and then also n is unknown. We then condition on ascertainment status and
use the likelihood

Lcondasc(θ, π) =
∏n

i=1 fcondasc(z̃
i; θ, π)

where

fcondasc(z̃; θ, π) =

{
fZ̃|J=k(z̃; θ, π) = πk(z)f(z; θ)/P (A|θ, π), if z̃ ∈ Zk,

1, if z̃ ∈ Z1 ∪ . . . ∪ Zk−1,

so that
Lcondasc(θ, π) =

∏
i; Ji=k fcondasc(z̃

i; θ, π)
=

∏
i; Ji=k πk(z

i)f(zi; θ)/P (A|θ, π)

∝
∏

i; Ji=k
f(zi;θ)

P (A|θ,π)nasc ,

where nasc = |{i; 1 ≤ i ≤ n, J i = k}|. The expected value of nasc is E(nasc) =
nP (A|θ, π).

14



The resulting total average cost

TACcondasc(θ, π) = nP (A|θ, π)E(CJ(Z)|J = k),

is the same as for unconditional ascertainment, but the Fisher information
(8) changes to

Icondasc(θ, π) = nP (A|θ, π)Cov
(
ψ(Z̃; θ, π)

)

= Ik(θ, π)− nP ′(A|θ, π)T P ′(A|θ, π)/P (A|θ, π),

where Cov(ψ(Z̃)) is the p× p covariance matrix of ψ(Z̃).
E�ciency is calculated as econdasc(θ, π) = h(Icondasc(θ, π))/h(Icondasc(θ, πfull)).
Since Icondasc(θ, π) ≤ Iasc(θ, π), it follows from (9) that econdasc(θ, π) ≤ easc(θ, π).

9 Examples
In this section, we illustrate the general theory by giving a number of examp-
les. The calculations are run in the software R (R Development Core Team
2008).

Example 1 (Two-stage designs and missing data.) If

C1(·) ≡ 0
C2(·) ≡ 1,

(32)

we get

RAC(θ, π) = P (J = 2) =
∫

Z
π2(z)f(z; θ)dz =: P (A|θ, π). (33)

In the simplest case when no variables are collected in Stage 1, Z1 = ∅, data
are either completely missing or completely observed. The likelihood (3) is
then very similar to the unconditional likelihood (31). Indeed, the density
and score functions of the sampled random variable Z̃ are then

f(z̃; θ, π) =

{
π2(z)f(z; θ), z̃ = z,
1− P (A|θ, π), z̃ = ∅,

and
ψ(z̃; θ, π) =

{
ψ(z; θ), z̃ = z,
−P ′(A|θ, π)/(1− P (A|θ, π)), z̃ = ∅,

respectively. Inserting the last two equations into (8) we get

I(θ, π) = n
(∫
Z π2(z)ψ(z; θ)T ψ(z; θ)f(z; θ)dz

+ P ′(A|θ, π)T P ′(A|θ, π)/(1− P (A|θ, π))
)
.

(34)
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When k = 2, we can characterize π(·) by the single function π2(·) = 1−π1(·).
For a sequential design (13) with k = 2, we further have

π2(z) = Π2(z1) = π2(z1), (35)
so that the inclusion probability at Stage 2 is a function of the outcome at
Stage 1 only. Viewing all un-sampled data from Stage 2 as missing, we �nd
that (35) corresponds to data missing at random (MAR), which is a special
case of CAR (Rubin 1976, Little & Rubin 2002). With completely missing
observations, Z1 = ∅, (35) simpli�es to

λ2(·) = π2(·) ≡ η (36)

for some 0 ≤ η ≤ 1. Hence the class of sequential designs is one-dimensional
for completely missing data, with the resulting sample resembling a simple
random sample (SRS). Condition (36) is referred to as data missing com-
pletely at random (MCAR), cf. Little & Rubin (2002). Then (33)-(34)
imply that (RAC(θ, π), e(θ, π)) = (η, η) is located along the diagonal in a
cost-e�ciency plot. 2

Example 2 (Design of 'x-random' experiments.) Let z = (x, y), where
x is a set of covariates and y the response. Put θ = (γ, ξ) and

f(z; θ) = Pγ(x)Pξ(y|x) (37)
where γ contains nuisance parameters involved in the covariate distribution,
and ξ are the regression parameters. Consider a two stage design

z1 = x,
z2 = (x, y),

(38)

so that f(z1; θ) = Pγ(x). According to (35), a sequential design satis�es

λ2(z) = π2(z) = π2(x).

Suppose cost function (32) is used, so that

RAC(θ, π) =
∫

π2(x)Pγ(x)dx

equals the probability that y is collected for a randomly chosen x, cf. (33).
Finding an optimal design π2(·) amounts to deciding for which x to include
response information. That is, for which fraction R of the x-variables {xi}n

i=1

we should collect responses yi in order maximize e�ciency when estimating
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or testing ξ. This is very similar in spirit to optimal design, as described
in Silvey (1980) and Melas (2006), although our framework is for random
x-variables. Since x is ancillary for estimating ξ, the likelihood function can
factorized as

L(θ, π) ∝
n∏

i=1

Pγ(x
i) · ∏

i;Ji=2

Pξ(y
i|xi), (39)

with the proportionality constant depending on π and data, but not on θ.
This implies that only the last term of (39) is important for estimating ξ
and Iγξ(θ, π) = Iξγ(θ, π) = 0 in (12). Hence, any functional h(I(θ, π)) that
involves estimation or testing of ξ will be a function of Iξξ(θ, π) only. The
�rst term of (39) is the marginal likelihood of covariate data and the second
term the prospective likelihood of response data given covariate data. It gives
rise to a decomposition (19) of the Fisher information matrix, given by

I(θ, πmin) =

(
0 0
0 Iγγ(θ, πmin)

)
, I2|1(θ, π) =

(
Iξξ(θ, π) 0

0 0

)
,

so that 1) the design π has no e�ect on estimation of γ and 2) all information
about the e�ect parameters ξ is contained in the prospective likelihood. 2

Example 3 (Binary response-selective sampling. ) We retain model (37),
but consider the two-stage design

z1 = y,
z2 = (x, y),

(40)

so that f(z1; θ) =
∫

Pξ(y|x)Pγ(x)dx. According to (35), a sequential multi-
stage design must satisfy

π2(z) = π2(y).

Two important di�erences of (38) and (40) are that the x-variables are no
longer ancillary for estimating ξ, and the �rst stage sample is informative for
estimating ξ in (40). As an e�ect, the likelihood no longer factorizes as in
(39).
For the logistic regression model the response is binary, with

Pξ(y|x) = F (α + βxT ){y=1}(1− F (α + βxT )){y=0},

where ξ = (α, β) consists of one intercept parameter α, a number of slope
parameters β and F (x) = exp(x)/(1 + exp(x)). Putting P = Q in (23), any
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sequential multistage design is parametrized by η = (η0, η1), where ηm =
π2(m) = P (J = 2|Y = m).
In Figure 2 RAC and e�ciency for a logistic regression model with X ∼
Bin(1, F (γ)) is illustrated. Three di�erent costs are included, (C1, C2) =
(0, 1), (1/3, 1) and (1/2, 1), representing scenarios where the cost per indi-
vidual of collecting Y is none, half the cost of collecting X, and the same cost
as collecting X, respectively. As x-axis η0 is chosen, since this measure easily
translates into sampling probabilities when planning a study. Other measures
can however be used as x-axis, for example the total sampling probability,
P (J = 2|π, θ) = η0P (Y = 0|θ) + η1P (Y = 1|θ), or the relative average cost,
RAC. The graphs show an e�ciency gain of response selective sampling in
the example setting. However, the relative e�ciency di�ers greatly between
parameters, and with the values of C1 and C2.

2

Example 4 Continuous response selective sampling, with a genetic
application.

For continuous y, P is in�nite-dimensional, so we consider Q ⊂ P , parame-
terized by η = (η1, . . . , ηr), corresponding to step functions

λ2(y) = π2(y) =
q∑

i=1

ηi1{y∈Yi}, (41)

where 0 ≤ ηi ≤ 1, i = 1, . . . , q and {Yi}q
i=1 is a decomposition of the response

region into q mutually disjoint subsets. ηq+1, . . . , ηr are parameters of this
decomposition.
Lyon et al. (2007) investigate the association between the C/C genotype
of genetic marker rs7566605 and Body Mass Index (BMI) in a number of
cohorts. One of these samples (Maywood) was enriched for obese individ-
uals (BMI≥ 30), while four other cohorts (FHS 1, Iceland, KORA S3 and
Scandinavia) were not. We investigate if over-sampling of obese individuals
would have been cost e�cient in these four samples, if analyzing the data as
two-stage samples with continuous response variables Y = BMI and binary
covariate X = 1{genotype=CC}. We assume that

X ∼ Bin(1, F (γ)),

where F is the logistic distribution function, and a linear regression model

log(Y )|X = x ∼ N(α + βx, σ2),
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for the logarithm of BMI. This yields regression parameters ξ = (α, β, σ). We
use BMI=30 as cuto� value, giving q = 2 regions in (41), with Y1 = (0, 30)
and Y2 = [30,∞). Since these regions are �xed, we have r = q = 2, η =
(η1, η2), with η2 = 1 kept �xed and 0 < η1 < 1 varying. Parameter values are
calculated as indicated in Table 1. The calculations were adjusted for age and
sex in Lyon et al. (2007) while we did not make this adjustment. In Figure
3 the cost adjusted e�ciency is illustrated for (C1, C2) = (0, 1), (1/3, 1) and
(1/2, 1), representing scenarios where the cost per individual of collecting
BMI is none, half the cost of genotyping, and the same cost as genotyping,
respectively. As can be seen in Figure 3, using η1 < 1 (over-sampling obese
subjects for genotyping) is only bene�cial if the cost of measuring BMI is
substantially lower than the cost of genotyping. Also, over-sampling obese
subjects was e�cient only in three of the four cohorts, while in the Island
cohort η1 = 1 was most e�cient.

2

Example 5 (Sequential inclusion of covariates.) We retain (37), but con-
sider a k-stage design

zj = (x1, ..., xj−1, y), j = 1, . . . , k,

where zj contains an increasing number of covariates from x as j increases.
Put

f(zj; θ) =
∫

Pξ(y|x)Pγ(x|x1, ..., xj−1)dxPγ(x1, ..., xj−1), j = 1, . . . , k.

(42)
A sequential multi-stage design satis�es

πj(z) = πj(x1, ..., xj−1, y), j = 1, . . . , k.

In particular, for k = 2 this means π2(z) = π2(x1, y), i.e. the sampling
probability depends on (x1, y).
As an illustration we consider a three-stage design, as follows: In the �rst
step of the design Y is collected for the whole sample. In the second step a
proportion of X1 is selected, with selection probabilities determined by the
value of Y . A cut-o� value t is used, letting

λ2(y) =





a; y < tY ,

1; y ≥ tY ,

19



and vary the value of a. In the third step X2 is collected, with selection
probabilities determined by the values of Y and X1 simultaneously. For
individuals with X1 observed selection probabilities are

λ3(y, x1) =





b; y < tY , x1 < tx1

1; else,
while for individuals with X1 is missing, X2 is not eligible for selection.
For this example we further specify dependencies between the variables, as
illustrated in Figure 4, and distributions

X2 ∼ Bin(1,
exp(αX2)

1 + exp(αX2)
),

X1|{X2 = x2} ∼ Bin(1,
exp(αX1 + βX2X1 × x2)

1 + exp(αX1 + βX2X1 × x2))
),

Y |{X1 = x1, X2 = x2} ∼ N(αY + βX1Y × x1 + βX2Y × x2, σ
2
Y ).

The resulting likelihood contains seven model parameters of potential inter-
est for estimation θ = (αX2 , αX1 , βX2X1 , αY , βX1Y , βX2Y , σY ). To simplify the
presentation we focus on the three e�ect parameters βX2X1 , βX1Y and βX2Y ,
and investigate the e�ciency in estimating these parameters. The e�ciency
can be assessed for each parameter individually, as well as for all three para-
meters simultaneously. As a summary measure of the e�ciency of the three
e�ect parameters

h(I(π)) = (
∑

i=3,5,6

Vii

Vii(πfull)
)−1 (43)

is used. This measure assumes equal interest in the three parameters, and
disregards the e�ciency in estimating the four remaining parameters. Note
that when computing e = h(I(π))/h(I(πfull) the denominator is reduced to a
constant. To visualize the results of the three-stage design three-dimensional
plots are used in Figure 5 with two di�erent plot designs. In the upper
graphs a surface is representing the cost e�ciency. The same information
is visualized in the graphs below, here instead projecting the height of the
surface on a two-dimensional grid, letting a color gradient represent the cost
e�ciency. Cost e�ciency is presented both for each e�ect parameter indi-
vidually (green) and for the combined e�ciency (red) de�ned through (43).
Two cost functions are included in Figure 5, one with cost associated only
with sampling X2 and the second with equal cost of sampling the variables
X2 and X1, that is (C1, C2, C3) are (0, 0, 1) and (0, 1, 2) respectively.

2
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Example 6 (Ascertainment sample.) As an illustration of e�ciency of
conditional ascertainment, econdasc(θ, π) is calculated for the logistic regres-
sion model introduced in Example 3. The results are presented in Figure 6,
together with the two-stage design e�ciency, e(θ, π), for comparison. A two-
stage design is preferable to an ascertainment design if collecting the Stage 1
data are not associated with extra cost, i.e. C1 = 0 , since more information
is available in the two-stage data set. In this example the e�ciency gain is
however most prominent in estimating α, while no such e�ect is observed in
the estimation of β, which is often the parameter of main interest.

2

10 Discussion
Even though multistage designs are often used in observational studies, it
is usually not transparent in the design phase how the data selection will
a�ect the e�ciency of the study. This paper provides a framework describing
the design procedure, in the attempt to facilitate description and discussion
of such. We also describe how e�ciency, and cost adjusted e�ciency, can
be calculated using Fisher information matrices adjusted for the selection
procedure. We suggest presenting the results in graphs, to assist in choosing
between alternative designs. Some examples are presented, using di�erent
types of graphs to compare selections schemes.
The relative performance of di�erent selection schemes in the examples var-
ied with costs and parameters values, which illustrates that it may prove
unfortunate to rely on rules of thumb in the choice of selection scheme. The
results from the examples also suggest it is advisable to consider e�ciency
at some di�erent sets of parameter values, and choose a design that has
acceptable e�ciency for most plausible parameter values. An advantage of
presenting e�ciencies in graphs, rather than calculating only the optimal
sampling scheme, is that a graph provides a broader picture of a range of
sampling schemes, so that the investigator may decide on a sampling scheme
which is more robust to misspeci�cation of the model parameters than the
optimal sampling scheme.
A technique that is successfully used in experimental design is to take an
iterative approach to design, that is, to �rst do a small study and then
�ll in more data where the initial sample suggest is e�cient (Montgomery
1984). Similarly pilot studies are sometimes used in observational studies.
These are often directed to identify practical issues in data collection (such as
phrasing of questionnaires) but can be used for assessment of crude parameter
estimates for e�ciency calculations.
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When investigating the e�ciency it is also important to consider the conse-
quences of model assumptions not being valid, such as assuming errors to
be normally distributed in an overly simpli�ed model. For example, Allison
et al. (1998) argue that selecting only extreme outcomes is not advisable in
genetical studies searching for quantitative trait loci (QTL), since extremes
are likely to result from rare exposures with strong e�ects (which are not in
the model), rather than from the QTL.
We have implicitly assumed that π is known and only θ is estimated, cf. (1).
This is a natural view if the sampling scheme is controlled by the investigator.
In many observational studies this is however not the case. Then π is an
unknown nuisance parameter, which can be estimated from training data
for which the full data set {Zi} is known. Otherwise, when only {Z̃i} is
available, we can maximize L(θ, π) jointly with respect to θ and π. However,
for sequential multistage designs, it is not necessary to estimate π. Indeed,
because of (16), the joint likelihood can be factorized as

L(θ, π) = A(θ)B(π). (44)
so that inference on θ can be based solely on A(θ) if the joint parameter
space of θ and π is the product of the individual parameter spaces. See
Rubin (1976), Heitjan & Rubin (1991) and Little & Rubin (2002) for more
details. In particular, (44) implies that the Fisher information for estimating
θ is the same whether we know or estimate π.
We have motivated sequential multi-stage designs as a bottom-up proce-
dure (15) for successively including more information. However, in many
applications of data coarsening, such as various types of censoring, group-
ing, rounding and heaping, it is more appropriate to regard Z̃ = GJ(Z) as
a top-down procedure, and focus on the loss of information induced by GJ ,
see Heitjan (1993). In such application, the CAR condition is not always
realistic, although it greatly simpli�es analysis, as the nuisance parameter π
need not be estimated.
The methodology outlined in this paper is equally valid for other estimators
and tests than ML and LR. For instance, let θ̂(π) be a given estimator of
θ using design parameter π, with asymptotic covariance matrix V (θ̂; θ, π).
Then, the e�ciency of estimating the rth component of θ, compared to the
ML-estimator θ̂ML of the full data set, is

e(θ̂; θ, π) = Vrr(θ̂ML; θ, πfull)/Vrr(θ̂; θ, π). (45)
This corresponds to our previous de�nition (10) when θ̂ = θ̂ML and h(I) =
V −1

rr . When π = πfull, (45) is the usual de�nition of e�ciency, see for example
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Lehmann & Casella (1998). Similarly, e(T ; θ, π) for a test statistic T , with
design π, is de�ned by comparing its noncentrality parameter with that of
TLR for the full data set (πfull).
There may be several reasons for choosing other estimators and tests than
ML and LR such as 1) robustness against model misspeci�cation, 2) ease
of computation or 3) ease of �nding designs that optimize e�ciency for the
given test/estimator subject to a cost-constraint. For instance, Pepe, Reilly
& Fleming (1994), Reilly & Pepe (1995) and Reilly (1996) consider mean-
score estimators for the two-stage model (42) and derive explicit expressions
for designs π that minimize the variance of this estimator given a bound on
the cost.

Appendix A.
Veri�cation of (17). From (16) we deduce

ψ(z̃; θ, π) = ψ(zj; θ), if z̃ = zj ∈ Zj. (A.1)
This proves the �rst equality of (17), and the second follows by writing

E
(
ψ(Z̃; θ)T ψ(Z̃; θ)

)
=

k∑

j=1

∫

Zj

ψ(zj; θ)
T ψ(zj; θ)f(zj; θ, π)dzj

which inserted into (8) proves the result. 2

Veri�cation of (19). Let ψ̄(z1) = ψ(z1) and
ψ̄(zj) = ψ(zj) − E(ψ(Zj)|Zj−1 = zj−1) = ψ(zj) − ψ(zj−1) for j = 2, . . . , k.
Then, using (A.1), we get

ψ(z̃; θ, π) =
k∑

r=1

1{j≥r}ψ̄(zr; θ), if z̃ = zj ∈ Zj.

and
I(θ, π) = E

(
ψ(Z̃; θ)T ψ(Z̃; θ)

)

=
∑k

r,s=1 E
(
1{J≥max(r,s)}ψ̄(Zr; θ)

T ψ̄(Zs; θ)
)

=
∑k

r=1 E
(
1{J≥r}ψ̄(Zr; θ)

T ψ̄(Zr; θ)
)

= I(θ, πmin)
+

∑k
r=2

∫
Zr−1

P (J ≥ r|zr−1)Cov(ψ(Zr)|Zr−1 = zr−1)f(zr−1; θ)dzr−1,

where, in the second equality the non-diagonal terms e 6= s vanish by condi-
tioning on Zs−1 when r < s (and vice versa on Zr−1 when r > s ). In the
last equality we conditioned on Zr−1 for each r ≥ 2. This proves (19). 2
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Proof of Proposition 1. The identities RAC(θ, πfull) = e(θ, πfull) = 1
follow immediately from the de�nitions of RAC and e. Since π ≥ πmin and
π′ ≤ πfull, it su�ces to prove the middle inequalities of (22).
To start with, RAC(θ, π) ≤ RAC(θ, π′) follows from (5) and

TAC(θ, π) =
k∑

j=1

∫

Zj

(Cj(z)− Cj−1(z))Πj(z)f(zj; θ)dzj,

with C0(·) ≡ 0. It remains to prove e(θ, π) ≤ e(θ, π′). Assume Z ∼ f(·; θ)
and that U is independent of Z and has a uniform distribution on (0, 1).
Put J = J(Z, U, π) = max{j; U ≤ Πj(Z)}. Then, it is easy to check that
Z̃ = ZJ ∼ f(·; θ, π). Let IV denote the Fisher information matrix of a
random variable V with distribution depending on theta. It is easy to show
that IZ̃ = I(θ, π) = IZ̃,U , where the �rst equality follows directly from the
de�nition of I(θ, π) and the second equality since the conditional distribution
of U |Z̃ = z̃ does not depend on θ. Similarly, IZ̃′ = I(θ, π′) = IZ̃′,U . But
(Z̃, U) = H(Z̃ ′, U), where H is a non-invertible transformation from Z×[0, 1]
into itself, de�ned through

H(z̃′, u) = (GJ(G−1
J ′ (z̃

′)), u).

That H is well-de�ned follows from (13) and the fact that π ≤ π′, which
implies J ≤ J ′. Hence IZ̃,U ≤ IZ̃′,U , which is equivalent to I(θ, π) ≤ I(θ, π′).
Finally, e(θ, π) ≤ e(θ, π′) follows from (9).

2

Proof of Proposition 2. To prove (25), �x R ∈ (Rmin, 1] and assume, on
the contrary, that

sup
π;RAC(θ,π)=R

e(θ, π) ≤ emax(θ, R)− ε (A.2)

for some ε > 0. Pick π ∈ QR such that RAC(θ, π) < R and e(θ, π) ≥
emax(θ,R)−ε. Let π′ = (1−t)π+tπfull, where t = (R−R(θ, π))/(1−R(θ, π)).
Since π, πfull ∈ Q and Q is convex, it follows that π′ ∈ Q. By linearity of
RAC(θ, ·) (cf. (6), RAC(θ, π′) = R. Since π ≤ π′ ≤ πfull, it follows from
Proposition 1 that e(θ, π′) ≥ e(θ, π) ≥ emax(θ,R) − ε, which contradicts
(A.2). 2

Proof of Proposition 3.
Given Rmin ≤ R < R′ ≤ 1, pick π and π′ such that RAC(θ, π) = R and
RAC(θ, π′) = R′. Given 0 < t < 1, let π′′ = (1 − t)π + tπ′. Then π′′ ∈ Q
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since Q is convex. By linearity (cf. (6) and (17)), RAC(θ, π′′) = (1−t)R+tR′

and I(θ, π′′) = (1− t)I(θ, π) + tI(θ, π′). Invoking (26), we obtain e(θ, π′′) ≥
(1− t)e(θ, π) + te(θ, π′). Hence

emax((1− t)R + tR′) ≥ e(θ, π′′) ≥ (1− t)e(θ, π) + te(θ, π′).

Since π and π′ can be chosen so that e(θ, π) ≥ emax(θ, R)− ε and e(θ, π′) ≥
emax(θ,R

′)− ε for arbitrarily small ε > 0, concavity of emax(θ, ·) follows. 2

Proof of Proposition 4.
It su�ces to establish

emax(θ, tR) ≥ temax(θ, R) (A.3)
for Rmin < R ≤ 1 and Rmin/R < t < 1, since this is equivalent to CEmax(θ, ·)
being non-increasing on (Rmin, 1]. If (27) holds, (A.3) follows as in the proof
of Proposition 3. If (26) and (28) hold, we use Proposition 3 and the concavity
of emax(θ, ·) to deduce that

emax(θ, R) = emax(θ, tR) +
∫ R

tR
e′max(θ, r)dr

≤ emax(θ, tR) + R(1− t)e′max(θ, tR)

≤ emax(θ, tR) + R(1− t)emax(θ, tR)/(tR)

= emax(θ, tR)/t.
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Figures and tables

Figure 1: A Multistage Model where sampling spaces are reduced sequen-
tially. Stage k represents the most complex sampling space and Stage 1
represent the most sparse one.
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Figure 2: E�ciency and Cost adjusted e�ciency for a logistic regression
model. For the cost adjusted e�ciency solid, dashed and dotted lines repre-
sent costs C1 = 0, 1/3 and 1/2 respectively, for C2 = 1. γ = −1, α = −2, β =
2.
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Figure 3: E�ciency of over-sampling obese individuals (BMI≥ 30) in dif-
ferent cohorts in Lyon et al. (2007) when estimating the e�ect (β) of the
C/C genotype of genetic marker rs7566605 on log(BMI) in a linear regres-
sion model. Solid, dashed and dotted lines represent C1 = 0, 1/3 and 1/2
respectively, for C2 = 1.
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FHS Iceland KORA Scandinavia
γ̂ -2.04 -2.02 -2.12 -2.11
α̂ 3.22 3.36 3.29 3.28
β̂ 0.0136 0.0237 0.0016 0.0111
σ̂ 0.169 0.232 0.165 0.137

Table 1:
Speci�cation of parameter values in Example 4 that were used in Figure
3. Parameter values were calculated from values presented in Table 1. and
Table 2. in Lyon et al. (2007) as follows:

F (γ̂) = exp(γ̂)/(1 + exp(γ̂)) = nC/C/(nC/C + nC/G + nG/G),
α̂ = log[(Mean BMIC/G × nC/G + Mean BMIG/G × nG/G)/(nC/G + nG/G)],

β̂ = log(Mean BMIC/C)− α̂,
σ̂2 = (SD BMI)2 × (1/BMI Mean)2

Calculation of σ2 was performed using the propagation of error formulas (Ku
1966).

X1

↗ ↘
X2 ↓ Selection.

↘ ↗
Y

Figure 4: A three-stage design.
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Figure 5: Individual (green) and combined (red) CE for three parameters in a
three-stage design, as described in Example 5. Two cost functions are applied,
(C1, C2, C3) = (0, 0, 1) (upper rows) and (C1, C2, C3) = (0, 1, 2) (lower rows).
tY = 3, tx1 = 0.5, αX2 = 0, αX1 = −3, βX2X1 = 2, αY = 0, βX1Y = 1, βX2Y =
1, σ2

Y = 1. Monte Carlo approximation, based on (29), is used with N =
10000.
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Figure 6: E�ciency for estimation of parameters using two-stage (dashed
line) likelihood and conditional ascertainment likelihood (solid line) in logistic
regression, cf. Examples 3 and 6, with γ = −1, α = −2, β = 2, η1 = P (J =
2|Y = 1) = 1 and 0 < η0 = P (J = 2|Y = 0) ≤ 1.
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