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Abstract

Let each point of a homogeneous Poisson process on R independently
be equipped with a random number of stubs (half-edges) according to
a given probability distribution µ on the positive integers. We consider
two natural schemes for perfectly matching the stubs to obtain a simple
graph with degree distribution µ, both derived from Gale-Shapley stable
marriage. We prove results on the existence of an infinite component and
on the length of the edges, with focus on the case µ({2}) = 1.

Keywords: Poisson process, random graph, degree distribution, match-
ing, percolation.
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1 Introduction

Let P be a homogeneous Poisson process with intensity 1 on Rd and µ a prob-
ability measure on the strictly positive integers. We shall study translation-
invariant simple random graphs whose vertices are the points of P and where,
conditional on P, the degrees of the vertices are i.i.d. with law µ. Previ-
ously, Deijfen [2] has studied achievable moment properties for the edges, and
Deijfen, Häggström and Holroyd [3] have studied the question of whether the
graph contains a component with infinitely many vertices. In the latter work a
particular matching scheme, called the stable multi-matching, was introduced,
leading to a number of challenging open questions. Here we restrict to d = 1
and the focus is on the case µ({2}) = 1, one of the simplest cases for which the
question of existence of an infinite component is non-trivial. For the stable
multi-matching and a variant of it with prescribed random stub directions,
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Figure 1: The stable multi-matching (top) and the random-direction stable
multi-matching, for 10 vertices on a finite interval, with 2 stubs per vertex.

we prove results on the component structure and on the length of the edges.
Figure 1 shows schematic pictures of the two matchings, which are described
below.

First we formally describe the objects that we will work with. Write
[P] := {x ∈ R : P({x}) > 0} for the support, or point-set, of P. Let ξ
be a random integer-valued measure on R with the same support as P, and
which, conditional on P, assigns i.i.d. values with law µ to the elements of [P].
The pair (P, ξ) is a marked point process with positive integer-valued marks.
For x ∈ [P] we write Dx for ξ({x}) and interpret this as the number of stubs
at vertex x.

A matching scheme for a marked process (P, ξ) is a point process M
on the space of unordered pairs of points in R, with the property that almost
surely for every pair (x, y) ∈ [M] we have x, y ∈ [P], and such that in the graph
G = G(P,M) with vertex set [P] and edge set [M], each vertex x has degree
Dx. Our primary interest is in the connected components of G. The matching
schemes under consideration will always be simple, meaning that G has al-
most surely no self-loops and no multiple edges, and translation-invariant,
meaning that M is invariant in law under the action of all translations of R.
We say that a translation-invariant matching is a factor if it is a deterministic
function of the Poisson process P and the mark process ξ, that is, if it does
not involve any additional randomness. We write P and E for probability and
expectation on the probability space supporting the random triplet (P, ξ,M).

Let (P∗, ξ∗,M∗) be the Palm versions of (P, ξ,M) with respect to P and
write P∗ and E∗ for the associated probability law and expectation operator.
Informally speaking, P∗ describes the conditional law of (P, ξ,M) given that
there is a point at the origin, with the mark process and the matching scheme
taken as stationary background; see e.g. [9, Chapter 11] for more details. Since
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P is a Possion process, we have [P∗] d= [P] ∪ {0}.
We now define the two matching schemes that will be analyzed in the

paper.

Stable multi-matching

The concept of stable matching was introduced by Gale and Shapley [5]. It
has been studied in [7] and [8] in the context of spatial point processes (with
µ({1}) = 1 in our notation). A natural generalization to other degree distri-
butions µ was introduced in [3] and is referred to as the stable multi-matching.
Formally, a matching scheme M is said to be a stable multi-matching if
a.s., for any two distinct points x, y ∈ [P], either they are linked by an edge
or at least one of them has no incident edges longer than |x − y|. Here and
throughout, distance and edge length refer to the Euclidean norm | · | on R.

We will restrict our attention to the case when P is a Poisson process. For
this case, it was proved in [3, Proposition 2.2] that there is an a.s. unique stable
multi-matching, which moreover can be constructed by the following iterative
procedure. First connect all mutually closest pairs of points in [P] and remove
one stub from each of these point. Then call two points compatible if they do
not already have an edge between them and if both of them have at least one
stub left. Connect all mutually closest compatible pairs and remove one stub
from each point. Repeat indefinitely. See [3, Propostion 2.2].

Random direction stable multi-matching

We introduce a variant of stable multi-matching where the directions of the
edges are prescribed independently of the Poisson process. As described
above, the process ξ assigns a mark Dx to each point x ∈ [P]. Let ψ be
a second mark process which, conditionally on P and ξ, assigns an integer
Rx ∼ Binomial(Dx, 1/2) independently to each point x ∈ [P]. We think of Rx

as the number of stubs incident with x that are to be matched to the right of
x. If x < y, and (x, y) is an edge of a matching scheme M, we call (x, y) a
right-edge of x, and a left-edge of y. A matching scheme M is now said to be
a random direction stable multi-matching if each point x ∈ [P] has ex-
actly Rx incident right-edges and if a.s., for any two distinct points x, y ∈ [P]
with x < y, either they are linked by an edge, or x has no incident right-edges
longer than |x− y|, or y has no incident left-edges longer than |x− y|.

Let each point x ∈ [P] be equipped with Rx stubs pointed to the right and
Lx := Dx − Rx stubs pointed to the left, and consider the following iterative
procedure for matching right-stubs to left-stubs. First consider all pairs of
consecutive points in [P]. Create an edge between every such pair x < y such
that x has at least one right-stub and y has at least one left-stub, and remove
the corresponding stubs. Then consider pairs of points in [P] with precisely
one point in [P] in between them. Create an edge between every such pair of
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points x < y such that x has at least one right-stub and y has at least one
left-stub left, and remove the corresponding stubs. Continue indefinitely, with
pairs of points separated by an increasing number of points. This procedure
has previously been studied in [4]. We show in Section 2 that it leads to the
unique stable multi-matching subject to the prescribed (random) directions
for the edges.

1.1 Results

In this section we collect the main results. The proofs are then given in Section
3. The first result concerns uniqueness of the infinite component.

Proposition 1.1. For a Poisson process on R and any degree distribution,
in the stable multi-matching and the random direction stable multi-matching,
there is at most one infinite component.

The next result asserts that, in the case µ({2}) = 1 of two stubs per vertex,
the random direction stable multi-matching has no infinite components. For
other degree distributions the existence of an infinite component remains an
open question. Part (b) of the theorem however provides some information on
the edge length. See [4, Theorem 4.1] and [7, Theorem 2] for related results.

For x ∈ [P], let Xx denote the average length of all edges incident to x, and
write X = X0 for the value at the origin in the Palm version of the process.

Theorem 1.1. For a Poisson process on R, consider the random direction
stable multi-matching.

(i) For µ({2}) = 1, almost surely there is no infinite component.

(ii) For any degree distribution with bounded support, we have E∗[X1/2] = ∞.

Turning to the stable multi-matching, it was proved in [3, Theorem 1.2(b)]
that there is no infinite component when the only possible values for the
degrees are 1 and 2, with a strictly positive probability of degree 1. In d ≥ 2
it was also proved that there is an integer k = k(d) such that if all vertices
almost surely have degree at least k, then there is almost surely an infinite
component, [3, Theorem 1.2(a)]. Note that, by ergodicity, the event that there
exists an infinite component has probability 0 or 1 for any degree distribution.
It is an open problem to determine which of these possibilities holds for all
degree distribution except for those described above, and in particular for the
especially interesting case µ({2}) = 1. However, we can relate the existence
of an infinite component to a certain property concerned with the lengths of
the edges. To this end, let Mx denote the length of the longest edge incident
to x ∈ [P], say that x desires a site y ∈ R if |y − x| < Mx and write N for
the number of points in [P] that desire the origin.

Theorem 1.2. For a Poisson process on R, consider the stable multi-matching.
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(i) For any degree distribution, if there is no infinite component, then N =
∞ almost surely.

(ii) If µ({1, 2}) = 1 and there is an infinite component, then N <∞ almost
surely.

For degree distributions with µ({1, 2}) = 1, existence of an infinite component
in the stable multi-matching is hence equivalent to N < ∞. On the other
hand, N is related to edge lengths, as follows. Write M = M0.

Lemma 1.1. For any translation-invariant matching scheme, we have that
E∗[M ] <∞ if and only if E[N ] <∞.

In view of this relation, E∗[M ] <∞ would imply that N <∞, and thereby
establish the existence of an infinite component for µ({2}) = 1 in the stable
multi-matching. However, the best result we have in this direction is the
following, which applies in any dimension d ≥ 1 (the stable multi-matching is
defined analogously in all dimensions; see [3]).

Proposition 1.2. For a Poisson process of intensity 1 on Rd, and any de-
gree distribution with bounded support, in the stable multi-matching we have
P∗(M > t) ≤ ct−d for some c ∈ (0,∞) (depending only on d and the bound on
degree).

Say that an edge (x, y) ∈ [M] crosses a site z ∈ R if x < z < y. Our last
result is the following.

Proposition 1.3. For a Poisson process on R, and any degree distribution µ
whose support includes some odd integer, for any factor matching scheme, the
number of edges that cross the origin is infinite.

If the number of edges that cross the origin if infinite, then clearly alsoN = ∞.
Hence, appealing to Lemma 1.1, Proposition 1.3 implies that E∗[M ] = ∞ in
any factor matching scheme for degree distributions whose support contains an
odd integer. Since the stable multi-matching is a factor, combining Proposition
1.3 with Theorem 1.2(b) gives an alternative proof (in d = 1) of the result of
[3] that the stable multi-matching does not percolate when the only possible
values for the degrees are 1 and 2 and the probability of degree 1 is strictly
positive. For degree distributions with support on larger values this approach
is inconclusive, since Theorem 1.2(b) does not apply.

The rest of the paper is organized as follows. In Section 2, a few prelim-
inary results are collected. The above results are then proved in Section 3.
Section 4 contains examples that demonstrating that there is no general rela-
tion between the edge length and the existence of an infinite component valid
for any matching scheme, and that for point processes other than the Pois-
son process, both percolation and non-percolation are possible in the degree
2 case. Finally, in Section 5 some simulation results and directions for further
work are presented. For background on the problem we refer to [3, Section
2.1] and [2, Section 1].
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2 Preliminaries

We first show that the iterative procedure described for the stable multi-
matching with random directions leads to the unique stable multi-matching
with the prescribed directions for the edges.

Proposition 2.1. Let (P, ξ, ψ) be a doubly marked Poisson process. Almost
surely, the iterative multi-matching procedure described in the introduction ex-
hausts the set of stubs, and the limiting graph (after an infinite number of
iterations) is a random direction stable multi-matching. No other such match-
ing scheme exists.

Proof. Let P ′r (respectively P ′l) be the process of points with at least one
unmatched right-stub (left-stub) on them after the above matching procedure
is completed. By symmetry P ′r and P ′l have the same intensity and they are
both ergodic point processes. Hence either both have a.s. infinitely many
points or both have a.s. no points. The first option however would produce
a contradiction, since the iterative procedure could then be applied to the
remaining configuration of stubs giving rise to edges that would have been
created already in the original procedure.

That the resulting multi-matching is stable subject to the prescribed (ran-
dom) directions follows from the definition: an unstable pair of points – that
is, a pair x and y with x < y with no edge between them and where x (y)
has an edge connected to the right (left) of y (x) – would have had an edge
created between them at some stage of the matching procedure. That it is the
unique matching with this property follows by induction over the stages in the
algorithm to show that each edge that is present in the resulting configura-
tion must be present in any stable matching of the stubs with the prescribed
directions.

We proceed by formulating a version of the mass transport principle suit-
able for our needs. For background, see [1]. A mass transport is a random
measure T on (Rd)2 that is invariant in law under translations of Rd. For Borel
sets A,B ⊂ Rd, we interpret T (A,B) as the amount of mass transported from
A to B. Write Q for the unit cube [0, 1)d.

Lemma 2.1 (Mass Transport Principle). Let T be a mass transport. Then

ET (Q,Rd) = ET (Rd, Q) .

Proof.

ET (Q,Rd) =
∑

z∈Zd

ET (Q,Q+ z) =
∑

z∈Zd

ET (Q− z,Q) = ET (Rd, Q) .

Lemma 1.1 is now easily established using the mass transport principle.
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Proof of Lemma 1.1. Consider the mass transport in which each point x ∈ [P]
sends out mass 2Mx, and distributes it uniformly to the interval (x−Mx, x+
Mx). The expected mass sent out from the unit interval [0, 1) equals 2E∗[M ].
On the other hand, the mass received by the unit interval is

∫ 1
0 Nx dx, where

Nx denotes the number of points that desire x ∈ R. Hence the expected mass
received by the unit interval is EN . The result hence follows from the mass
transport principle.

Next we observe that an infinite component in a translation-invariant
matching scheme must be unbounded both to the right and to the left, that
is, for any r ∈ R+ it must contain points both to the right of r and to the left
of −r.
Lemma 2.2. A translation-invariant matching scheme almost surely cannot
have an infinite component that is unbounded in only one direction.

Proof. Assume that there is a matching scheme that with positive probability
gives rise to an infinite component that is unbounded in only one direction,
say to the left, and consider the mass transport in which each vertex in such
an infinite component sends mass 1 to the rightmost point in the component.
With positive probability such a rightmost point is located in the unit interval,
which then receives infinite mass. The expected mass sent out from the unit
interval is however bounded by 1, so we have a contradiction with the mass
transport principle.

Finally, the following result will be of use in proving Theorem 1.2(b).

Lemma 2.3. Let Γ be a translation-invariant simple point process of finite
intensity on R. For x ∈ [Γ], write Zx for the maximum of the distances from
x to the nearest point of [Γ] on the left and the nearest point on the right. The
number of points x ∈ [Γ] with Zx > |x| is finite almost surely.

Proof. Consider the mass transport in which an interval sends out mass equal
to its length, and the mass sent out by an interval (x, y) between consecutive
points x < y of [Γ] is distributed uniformly to the interval (x−(y−x), y+(y−
x)). If there were infinitely many points x ∈ [Γ] with Zx > |x|, then the unit
interval would receive infinite mass, which conflicts with the mass transport
principle, since the mass sent out from the unit interval equals 1.

3 Proofs

We now proceed to prove the results in Section 1.1, starting with the unique-
ness of an infinite component. We say that two edges (a, b) and (c, d) in [M]
cross each other if a < c < b < d.
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Proof of Proposition 1.1. Observe that both matching schemes have the prop-
erty that,

if two edges (a, b) and (c, d) cross each other, then
the edge (c, b) must also be present in the matching.

(1)

– this follows from the definitions of the matching schemes. Two distinct
components hence cannot have crossing edges. However, by Lemma 2.2, any
infinite component must be unbounded in both directions. Hence two distinct
infinite components would necessarily have crossing edges.

Proof of Theorem 1.1 (a). Recall that Lx (respectively Rx) is the number of
edges incident with x ∈ [P] that are connected to the left (right) of x. Let
µ({2}) = 1. We call x a bird if Lx = Rx = 1, a left-beak if Lx = 2 and a
right-beak if Rx = 2 (see Figure 1). Let (· · · <)x1 < · · · < xk(< · · · ) ∈ [P] be
the ordered vertices of some (finite or infinite) component of the stable multi-
matching (recall by Lemma 2.2 that a component is either finite or unbounded
in both directions). Clearly, if the component is finite, then its leftmost point
is a right-beak and its rightmost point is a left-beak. We claim that if xi is a
right-beak, and not one of these extreme points of the component, then xi+1 is
a left-beak. To check this, let the two edges from xi have their other endpoints
at xj and xk, where xi < xj < xk. We claim that the other neighbour of xj

must lie left of xi. To see this, follow the path formed by the cluster starting
with the edge (xi, xj) - eventually we must leave the interval [xi, xk], since the
cluster contains points to the left of xi. When we do so, it is via an edge that
crosses (xi, xk). Unless it is the first edge encountered after xj , this entails
a violation of (1). Thus xj is a left beak. Now there cannot be any further
vertices of the cluster in the interval [xi, xj ], since such a vertex would have
an incident edge crossing (xi, xj), again contradicting (1).

Therefore, the non-extreme vertices of a component consist of birds to-
gether with consecutive right-beak/left-beak pairs. Note that between the
points of a component there may be points belonging to other components,
but since two components cannot have crossing edges, any other such compo-
nent must lie in a single interval (xi, xi+1).

Now consider the function F : R→ Z defined by F (0) = 0, and

F (y)− F (x) =
∑

t∈[P]∩[x,y)

(Lt −Rt), x < y.

Thus, F takes a up-step (of size 2) at each left-beak and a down-step at each
right-beak. Hence it is a continuous-time simple symmetric random walk on
the even integers. On the other hand, by the observations above concerning
components, if there is an infinite component, then F is bounded above a.s.
by some (random) constant, which is impossible.
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Proof of Theorem 1.1 (b). We use a variant of an argument from [7, Theo-
rem 2(b)]. For A ⊂ R, write R(A) for the total number of right-stubs at
points x ∈ [P] ∩ A, that is, R(A) =

∑
x∈[P]∩ARx, and define L(A) analo-

gously as the total number of left-stubs in A. Furthermore, for A,B ⊂ R,
let R(A → B) denote the number of right-stubs in A that are matched with
left-stubs in B, and D(A ↔ B) the total number of edges connecting points
in [P] ∩ A to points in [P] ∩ B. Write k for the supremum of the support of
µ. For t > 0, we have

ER
(
[0, 2t] → [0, 2t]c

)
=

1
2
ED

(
[0, 2t] ↔ [0, 2t]c

)

≤ k

2

∫ 2t

0
P∗

(
X > x ∧ (2t− x)

)
dx

= k · E∗[X ∧ t].

Furthermore, since µ has bounded support, we can use the central limit theo-
rem to get that

ER
(
[0, 2t] → [0, 2t]c

) ≥ E
[(
R[0, 2t]− L[0, 2t]

)+
]
∼ ct1/2

as t→∞ for some c > 0. Hence t−1/2E∗[X ∧ t] ≥ c′ for sufficiently large t and
some c′ > 0. On the other hand, if E∗[X1/2] <∞, then t−1/2E∗[X ∧ t] → 0 as
t→∞ by the dominated convergence theorem, a contradiction.

Proof of Theorem 1.2 (a). Let

H = {x ∈ [P] : Mx > |x| − 1},

that is, H is the set of vertices that desire some point in the unit interval
(−1, 1). Write Ñ for the cardinality of H. We will show that Ñ = ∞ a.s. By
symmetry this implies that with positive probability infinitely many vertices
in (1,∞) desire 1. However, on the latter event, for any a > 1, infinitely many
vertices in (a,∞) desire a, so by ergodicity it follows that N = ∞ a.s.

First we show that P(Ñ = 0) = 0. Assume for contradiction that P(Ñ =
0) > 0. For a configuration (P, ξ) with Ñ = 0, consider a modified config-
uration where a vertex is added uniformly at random in [0, 1] independently
of P. If follows from [7, Lemma 18] and a straightforward modification of [7,
Lemma 16] that all stubs at this vertex would be unmatched in the stable
multi-matching, which contradicts [3, Proposition 2.2].

Now assume that all components are finite a.s., and suppose that for a
contradiction that P(Ñ < ∞) > 0. For a configuration (P, ξ) with Ñ < ∞,
consider a modified configuration where the vertices in H are removed, along
with all vertices in their components. The number of vertices that are removed
is almost surely finite. But in this configuration, we have Ñ = 0, which is a
contradiction to a straightforward modification of [7, Lemma 18].
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Proof of Theorem 1.2 (b). First note that, when the only possible values for
the degrees are 1 and 2, the stable multi-matching cannot contain any crossing
edges. If a < c < b < d and the edges (a, b) and (c, d) are present, then, as
pointed out in the proof of Proposition 1.1, the edge (c, b) must also be present
in the matching. But if b− a > d− b, then b and d desire each other, and are
hence connected by an edge, so b has degree at least 3. Similarly, if b−a < d−b
then c has degree at least 3.

Lemma 2.2 and the fact that edges do not cross imply that an infinite com-
ponent must consist of a set of degree-2 vertices, unbounded in both directions,
with an edge between each consecutive pair. It follows from Lemma 2.3 that
the number of vertices in this infinite component that desire the origin is finite
almost surely.

As for the finite components, each must be contained in a single interval
defined by an edge of the infinite component (since there are no crossing edges).
Note also (although this observation will not be needed) that a component of
size k must consist of vertices x1 < . . . < xk with edges (xi, xi+1) for all
i = 1, . . . , k − 1 together with the edge (x1, xk).

Now let I0 denote the interval defined by the edge in the infinite path that
crosses the origin. This interval is finite and hence contains almost surely
finitely many points of [P] in finite components. These points might desire
the origin. A vertex x > 0 (respectively, x < 0) in a finite component outside
this interval however cannot desire the origin: if it did, it would also desire
the left-most (right-most) end-point of the interval Ix defined analogously to
I0. But this vertex also desires x, which means that there would be an edge
between them.

We conclude that N <∞ almost surely, as desired.

Proof of Proposition 1.2. Say that a point x ∈ [P] is t-bad if Mx > t. If
D ≤ k almost surely, then there can be at most k t-bad points in the ball
B(0, t/2). Hence

k ≥ E[number of t-bad points in B(0, t/2)}] = vol(B(0, t/2))P∗(M > t),

giving the result.

Proof of Proposition 1.3. Assume that the number of edges that cross the ori-
gin is finite with positive probability. On the event that the origin is crossed
by finitely many edges, the same is true for any other x ∈ R, since the differ-
ence between the number of edges crossing x and the number of edges crossing
the origin is bounded above by the total degree of the vertices between the
origin and x. Now consider the intervals between the points x ∈ [P] with odd
degrees. When passing a point with odd degree, the number of crossing edges
changes parity, that is, if it is even (odd) immediately to the left of the point,
it is odd (even) to the right. When passing a point with even degree on the
other hand, the parity of the number of crossing edges remains unchanged.
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This means that we can assign the value 0 (even number of edges crossing) or
1 (odd number of edges crossing) to the intervals separating the odd degree
vertices in a deterministic way (indeed, the stable multi-matching is a factor).
Furthermore, the odd degree vertices constitute a Poisson process. Now, [7,
Lemma 11] asserts that it is impossible to assign alternating values 0 and 1
to the intervals separating the points of a Poisson process as a factor of the
Poisson process. Here we need the stronger statement that this cannot be
done even using the randomness in the degrees of the vertices and in the posi-
tion of the even degree vertices. This however follows from a straightforward
modification of the proof of [7, Lemma 11].

4 Some counter-examples

Theorem 1.1 asserts that the random-direction stable multi-matching has no
infinite component when all vertices have degree 2, and that it has long edges
in the sense that E∗[X1/2] = ∞. Furthermore, it follows from Theorem 1.2
that existence of an infinite component in the stable-multi matching with all
degrees equal to 2 is equivalent to N < ∞. This might lead one to suspect
that there is a simple relation between the component structure and the edge
length for µ({2}) = 1 that holds for any matching scheme. Below, we give
two examples of factor matching schemes that demonstrate that this is not
the case.

Example 1. Our first example is a matching scheme where all components
are infinite and where also the number of edges crossing the origin is a.s.
infinite. Note that, if the origin is crossed by infinitely many edges, then
also N = ∞ and thus, by Lemma 1.1, E∗[M ] = ∞. Existence of an infinite
component hence does not imply short edges in any of these respects.

To describe the matching scheme, let each point in [P] be equipped with
two stubs. Recall that the stable multi-matching in the special case where
µ({1}) = 1 is known as the stable matching. First use one stub per point to
form edges according to the stable matching of the points. Then orient the
remaining stub at each point in the opposite direction (left or right) from that
of the first stub, and connect these directed stubs according to the procedure
used for the random direction stable matching. This gives a graph where each
point has one edge connected to the right and one edge connected to the left
– that is, all points are birds in the in the terminology used in the proof of
Theorem 1.1 – which implies that all components in the graph are infinite.
That the number of edges crossing the origin is infinite almost surely follows
from Proposition 1.3 applied to the configuration after the first stub per point
is connected. 2
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Example 2. The next example is a matching scheme that gives almost surely
only finite components and where the expected edge length is finite. Finite
expected edge length hence does not imply existence of an infinite component.

The matching scheme proceeds by dividing the vertices into groups of size
at least 3 as follows. Call a point of P a seed if it has some other point within
distance 1. Call a seed x good if the number of non-seed points between x
and the next seed to its right is at least 2. Now whenever x < y are two
consecutive good seeds, let all the points in [x, y) constitute one group.

Define the matching as follows. For a group x1 < . . . < xk, connect the
two stubs per vertex to form the edges (xi, xi+1) for i = 1, . . . , k − 1 and
the edge (x1, xk). This clearly gives a configuration with almost surely finite
components and finite expected edge length. 2

Next we give simple examples of translation-invariant point processes on
R for which the stable multi-matching in the case µ({2}) = 1 provably does,
and does not, have an infinite component.

Example 3. Let (Xi)i∈Z be i.i.d. and uniformly distributed on [0, 1/3], and
let U be independent and uniform on [0, 1]. Consider the point process with
support {i+Xi + U : i ∈ Z}. It is easy to see that each point connects to its
left-neighbour and its right-neighbour, so there is an infinite component.

Example 4. Let (Xi,j)i∈Z, j=1,2,3 be i.i.d. and uniformly distributed on
[0, 1/3], and let U be independent and uniform on [0, 1]. Consider the point
process with support {i+Xi,j + U : i ∈ Z, j = 1, 2, 3}. Then each component
has size exactly 3.

5 Open problems and simulation results

The random direction stable multi-matching

For degree distributions other than µ({2}) = 1, it remains an open problem to
determine if the stable multi-matching with random directions generates an
infinite component.

The stable multi-matching

Firstly, it would of great interest to determine whether the stable multi-
matching has an infinite component or not in the case with deterministically
two stubs per vertex in d = 1. If there is almost surely an infinite component,
then there is a strictly positive probability p that a given vertex belongs to
this component. Simulations of the stable multi-matching on large finite cycles
indicate a largest component comprising about 0.3 of the vertices; see Table 1.
This suggests the existence of an infinite component with p ≈ 0.3.
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Points Proportion in largest cluster
D ≡ 2 P(D = 3) = 1

10

25 0.472± 0.164 0.547± 0.217
27 0.384± 0.116 0.250± 0.096
29 0.308± 0.086 0.122± 0.042
211 0.270± 0.074 0.041± 0.014
213 0.299± 0.022 0.013± 0.002
215 0.289± 0.015 0.0042± 0.0005
217 0.290± 0.009 0.0014± 0.0003

Table 1: Simulation results for the stable multi-matching of uniformly random
points on the cycle. The proportion of points in the largest connected compo-
nent is given (sample mean ± sample standard deviation for a sample of size
10) for two degree distributions: (a) deterministically degree 2; (b) degree 2
or 3 with probabilities 9/10, 1/10.

It remains an open problem to determine whether there exists an infinite
component the stable multi-matching for other degree distributions (an excep-
tion being the case D ∈ {1, 2} with P(D = 1) > 0; see [3]). Another interesting
case arises when most vertices have 2 stubs, but a small fraction have 3; this
case can be expected to be very different from the 2-stub case since there are
local configurations which can end a long path. Indeed, simulations of the case
P(D = 2) = 9/10, P(D = 3) = 1/10 appear to indicate that the proportion of
vertices in the largest component converges to 0 as the system size increases,
thus suggesting no infinite component; see Table 1.

Iterated stable matching

An alternative matching scheme, based on the stable matching, is obtained
by repeatedly applying the stable matching of the points with the restriction
that multiple edges are not allowed. More specifically, first take the stable
matching of [P], connect the points accordingly and remove one stub per
point. Then consider the stable matching of the points that have at least
one stub left on them and with the modification that two points that already
have an edge between them cannot be matched. This matching is obtained
by repeatedly matching mutually nearest neighbors in the set of points with
at least one stub left on them, avoiding matchings of points that are already
connected. As remarked in [3, Remark 2.2], the proof of [3, Proposition 2.2]
is easily modified to show that this yields a perfect matching. Connect the
points according to this matching and remove one stub from each point that
is connected. Repeat indefinitely.

Does this matching scheme generate an infinite component? How does the
answer depend on the degree distribution? Note that it follows from Proposi-
tion 1.3 that the number of edges that cross the origin is a.s. infinite already
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after the first stub of the vertices has been connected. For degree distributions
with degrees larger than 1 however the matching contains crossing edges. This
means for instance that the proof of Theorem 1.2(b) cannot be applied to draw
the same conclusion (that N < ∞ if there is an infinite component) for the
iterated stable matching.
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