

Stable Poisson Graphs in One Dimension

Maria Deijfen * Alexander E. Holroyd [†]

December 2010

Abstract

Let each point of a homogeneous Poisson process on \mathbb{R} independently be equipped with a random number of stubs (half-edges) according to a given probability distribution μ on the positive integers. We consider two natural schemes for perfectly matching the stubs to obtain a simple graph with degree distribution μ , both derived from Gale-Shapley stable marriage. We prove results on the existence of an infinite component and on the length of the edges, with focus on the case $\mu(\{2\}) = 1$.

Keywords: Poisson process, random graph, degree distribution, matching, percolation.

AMS 2000 Subject Classification: 60D05, 05C70, 05C80.

1 Introduction

Let \mathcal{P} be a homogeneous Poisson process with intensity 1 on \mathbb{R}^d and μ a probability measure on the strictly positive integers. We shall study translationinvariant simple random graphs whose vertices are the points of \mathcal{P} and where, conditional on \mathcal{P} , the degrees of the vertices are i.i.d. with law μ . Previously, Deijfen [2] has studied achievable moment properties for the edges, and Deijfen, Häggström and Holroyd [3] have studied the question of whether the graph contains a component with infinitely many vertices. In the latter work a particular matching scheme, called the stable multi-matching, was introduced, leading to a number of challenging open questions. Here we restrict to d = 1and the focus is on the case $\mu(\{2\}) = 1$, one of the simplest cases for which the question of existence of an infinite component is non-trivial. For the stable multi-matching and a variant of it with prescribed random stub directions,

^{*}Department of Mathematics, Stockholm University, 106 91 Stockholm. mia at math.su.se

 $^{^{\}dagger} \rm Microsoft$ Research, 1 Microsoft Way, Redmond, WA 98052, USA; holroyd at microsoft.com