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Abstract

In this paper we consider a model for the spread of a stochastic
SIR (Susceptible → Infectious → Removed) epidemic on a network
of individuals described by a random intersection graph. The num-
ber of cliques a typical individual belongs to follows a mixed-Poisson
distribution, as does the size of a typical clique. Infection can be
transmitted between two individuals if and only if they belong to the
same clique. An infinite-type branching process approximation (with
type being given by the length of an individual’s infectious period) for
the early stages of an epidemic is developed and made fully rigorous
by proving an associated limit theorem as the population size tends
to infinity. This leads to a threshold parameter R∗, so that in a large
population an epidemic with few initial infectives can give rise to a
large outbreak if and only if R∗ > 1. A functional equation for the
survival probability of the approximating infinite-type branching is
determined; if R∗ ≤ 1, this equation has no non-zero solution, whist,
if R∗ > 1, it is shown to have precisely one non-zero solution. A
law of large numbers for the size of such a large outbreak is proved
by exploiting a single-type branching process that approximates the
susceptibility set of a typical individual.
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Abstract

In this paper we consider a model for the spread of a stochastic SIR (Susceptible→
Infectious → Removed) epidemic on a network of individuals described by a random
intersection graph. The number of cliques a typical individual belongs to follows
a mixed-Poisson distribution, as does the size of a typical clique. Infection can be
transmitted between two individuals if and only if they belong to the same clique. An
infinite-type branching process approximation (with type being given by the length
of an individual’s infectious period) for the early stages of an epidemic is developed
and made fully rigorous by proving an associated limit theorem as the population
size tends to infinity. This leads to a threshold parameter R∗, so that in a large
population an epidemic with few initial infectives can give rise to a large outbreak
if and only if R∗ > 1. A functional equation for the survival probability of the
approximating infinite-type branching is determined; if R∗ ≤ 1, this equation has
no non-zero solution, whist, if R∗ > 1, it is shown to have precisely one non-zero
solution. A law of large numbers for the size of such a large outbreak is proved by
exploiting a single-type branching process that approximates the susceptibility set of
a typical individual.
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1 Introduction

Traditional models for the spread of SIR (Susceptible → Infectious → Removed) epi-
demics [2, 14] are based on the homogeneous mixing assumption, that is, all pairs of
individuals in the population contact each other at the same rate, independently of each
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other. Generalizations of this model have been proposed by introducing household struc-
ture into the population [4], where contacts between household members are more frequent
than other contacts, or by introducing a (social) network structure [1, 19], where contacts
are only possible between pairs of individuals that share a connection in the network. These
extensions have been combined by the authors in [7, 8]. In most models for epidemics on
networks, the network is modelled by a random graph constructed via the configuration
model [15, Section 3]. In this construction one can control the degree distribution of the
vertices, but the resulting network is locally tree-like, in the sense that the network con-
tains hardly any cliques or short loops. In real social networks cliques are not sparse: “the
friends of my friends are likely to be my friends as well”. This feature of networks has
been captured (among other models) by random intersection graphs [11, 13, 23] (see [10]
for a related model). Random intersection graphs might be seen as a model for overlapping
groups/cliques, in which a contact between two individuals is possible only if there is at
least one group where they are both member of.

The aim of this paper is to study SIR epidemics on random intersection graphs. Specif-
ically, we use branching process approximations to derive (i) a threshold parameter R∗,
which determines whether an epidemic with few initial infectives can become established
and infect a non-negligible proportion of the population, an event we call a large outbreak;
(ii) the probability that a large outbreak occurs; and (iii) the fraction of the population
that is infected by a large outbreak. These approximations are made fully rigorous as the
population size tends to infinity by proving associated limit theorems.

The only previous rigorous study of epidemics on random intersection graphs is [11].
We extend the analysis of [11] in three directions. First, we allow more general distributions
for both group size and group membership (i.e. the number of groups a typical individual
belongs to). In [11], both of these quantities follow Poisson distributions; here we allow
them to follow mixed-Poisson distributions. Moreover, as discussed in Section 7, we expect
similar results to hold when group size and membership follow quite general distributions,
though our proofs are valid only for the mixed-Poisson case. Second, we allow for an
arbitrary infectious period distribution, unlike in [11] where a Reed-Frost type model is
used, so effectively the infectious period is fixed. Third, we give a formal proof of a law
of large numbers for the final outcome of a large outbreak, a result that was conjectured
but not proved in [11]. Introducing variable infectious periods significantly complicates
the analysis. We note that for random infectious periods, our model is not covered by [10,
Section 5], since we need directed inhomogeneous random graphs and the proofs in [10] rely
heavily on the structure of undirected graphs. Therefore, we need to develop alternative
techniques to determine the fraction of the population that is infected by a large outbreak.

The remainder of the paper is organized as follows. Section 2 gives a brief introduction
to random intersection graphs, having mixed-Poisson group size and group membership
distributions, and to SIR epidemics defined on them. Section 3 collects together and
extends some results of Ball and O’Neill [6] concerning final state random variables for
homogeneously mixing SIR epidemics, in terms of Gontcharoff polynomials. Section 4
contains the main results of the paper. In Section 4.1 an infinite-type (forward) branching
process that approximates the early stages of an epidemic is developed and analyzed, whilst
in Section 4.2 a single-type (backward) branching process, which enables the proportion of
the population that is infected by a large outbreak to be determined, is described. For both
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of these branching processes, the Gontcharoff polynomial results derived in Section 3 are
used to determine the probability generating function(als) of their offspring distribution(s).
The key limit theorems of the paper are stated in Section 4.3. They show that, if there are
few initial infectives, then in a large population, (i) a large outbreak can occur only if the
forward branching process is supercritical; (ii) the probability that a large outbreak occurs
is close to the probability that the forward branching process survives; and (iii) if there is
a large outbreak, then the proportion of the population that is infected by the epidemic
is close to the survival probability of the backward branching process. The limit theorems
corresponding to the forward and backward branching processes are proved in Sections 5
and 6, respectively. Extension to more general distributions of clique size and membership
is discussed briefly in Section 7.

2 Epidemics on random intersection graphs

2.1 Notation

Throughout, N denotes the set of natural numbers not including 0, while Z+ = N ∪ {0}.
For x ≥ 0, bxc := max(y ∈ Z+; y ≤ x) is the floor of x, and dxe := min(y ∈ Z+; y ≥ x) is
the ceiling of x.

Furthermore, we write

f(x) = O(g(x)) if lim sup
x→∞

|f(x)/g(x)| < ∞,

f(x) = o(g(x)) if lim
x→∞

f(x)/g(x) = 0 and

f(x) = Θ(g(x)) if 0 < lim inf
x→∞

|f(x)/g(x)| ≤ lim sup
x→∞

|f(x)/g(x)| < ∞.

A (directed or undirected) graph is simple if it contains no parallel edges (edges that share
both end-vertices) or self-loops (edges with only one end-vertex). In a directed graph,
edges are parallel if they share both end-vertices and have the same direction. In a multi-
graph self-loops and parallel edges are allowed. We may construct a directed graph from an
undirected one by replacing every undirected edge by two directed edges with the same end-
vertices but having opposite directions. If we construct a simple graph from a multi-graph,
we do this by merging parallel edges and removing self-loops.

We use P for general unspecified probability measures, for which the interpretation
is clear from the context, and E for the associated expectation. We use EX to denote
expectation with respect to the random variable X. However, if no confusion is possible
we sometimes drop the subscript. For the non-negative random variable X, a mixed-
Poisson(X) random variable, Y , is defined by P(Y = k) = EX [Xk

k!
e−X ], for k ∈ Z+. We say

that a random variable is P(x) if it is Poisson distributed with mean x and MP(X) if it
has a mixed-Poisson(X) distribution. We use X̃ to denote the size-biased variant of the
non-negative random variable X, so for x ≥ 0 we have

P(X̃ ≤ x) =

∫
y∈[0,x]

y dP(X ≤ y)

E[X]
=

E[X11(X ≤ x)]

E[X]
. (2.1)

Here 11(A), is the indicator function of A, which is 1 if A holds and 0 otherwise. Let
Xn ⇒ X denote convergence in distribution. By [16, Theorem 7.2.19] we know that if
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Xn ⇒ X, then E[Xn11(Xn ≤ x)] ⇒ E[X11(X ≤ x)] for all points of continuity of P(X ≤ x).
This implies that if E[Xn] → E[X] and Xn ⇒ X, then X̃n ⇒ X̃.

We also use the notation fX(s) = E[sX ] (s ∈ [0, 1]) for the probability generating
function (PGF) of a Z+-valued random variable X and φX(θ) = E[e−θX ] (θ ≥ 0) for the
moment generating function (MGF) of a real-valued random variable X. Lastly, for any
set A we denote its cardinality by |A|.

2.2 Random intersection graphs

We consider a variant of random intersection graphs [11, 13] constructed via a bipartite
generalization of Norros and Reittu’s [21] Poissonian random graph model. Random inter-
section graphs may be thought of as random graphs composed of overlapping groups/cliques
of individuals/vertices.

We construct a sequence of random intersection graphs as follows. Consider two infinite
sets of vertices V = (vi; i ∈ N) and V ′ = (v′j; j ∈ N). Fix a real number α > 0. Assign
independent and identically distributed (i.i.d.) weights (Ai; i ∈ N) to the vertices in V ,
all distributed as the non-negative random variable A and, independently, i.i.d. weights
(Bj; j ∈ N) to the vertices in V ′, all distributed as the non-negative random variable B.
Assume that µ := E[A] = αE[B] < ∞. Define

L(n) :=
n∑

i=1

Ai, (2.2)

L′(n) :=

bαnc∑
j=1

Bj. (2.3)

Let (Ω,F , ν) be the corresponding probability space, where

Ω = (R+)N × (R+)N

is the product space of non-negative real-valued infinite sequences (Ai; i ∈ N) and (Bj; j ∈
N). The σ-field F is generated by the finite dimensional cylinders on Ω and ν is the
appropriate (product) measure determined by the distributions of A and B. We note that,
by the strong law of large numbers, both L(n)/(µn)

a.s.−−→ 1 and L′(n)/(µn)
a.s.−−→ 1 as n →∞.

Here
a.s.−−→ denotes almost sure convergence with respect to the measure ν. Unless there

is a possibility of confusion we use unadorned E for the expectation with respect to the
measure ν.

In this paper we consider processes which depend on ω ∈ Ω, that is on the sequences
(Ai; i ∈ N) and (Bi; i ∈ N). The measure governing a process conditioned on ω is denoted

by Pω and the corresponding expectation by Eω. We use the notation Xn
pν−−−→

n→∞
X to

denote that Xn converges in probability to X as n → ∞, with respect to the measure ν.
That is, Xn

pν−−−→
n→∞

X means that for every ε > 0, δ > 0, we have ν(|Xn − X| > ε) < δ

for all sufficiently large n ∈ N. In particular, we often use the notation Pω(Xn ∈ A)
pν−−−→

n→∞
P(X ∈ A), which is to be interpreted as meaning that, for a subset A of the state space of
Xn and X, we have that for every ε > 0,∫

ω∈Ω

11(|Pω(Xn ∈ A)− P(X ∈ A)| > ε)ν(dω) → 0 as n →∞. (2.4)
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Figure 1: Construction of G(n) from A(n).

For given ω ∈ Ω, an auxiliary sequence of random undirected multigraphs (A(n); n ∈
N) := (A(n)(ω); n ∈ N) is constructed as follows. For each n, the vertex set of A(n) consists
of V (n) := (vi, 1 ≤ i ≤ n) and V ′(n) := (v′j, 1 ≤ j ≤ bαnc). Vertices vi ∈ V (n) and v′j ∈ V ′(n)

share a P(AiBj/(µn)) number of edges. Conditioned on the weights of vertices, i.e. on ω,
the numbers of edges between distinct pairs of vertices are independent and there is no
edge in A(n) connecting vertices either both in V (n) or both in V ′(n). Note that in A(n), the
degree of vertex vi ∈ V (n) is P(A

(n)
i ) with

A
(n)
i := AiL

′(n)/(µn)
a.s.−−→ Ai as n →∞, (2.5)

while the degree of vertex v′j ∈ V ′(n) is P(B
(n)
j ) with

B
(n)
j := BjL

(n)/(µn)
a.s.−−→ Bj as n →∞. (2.6)

The random variables A(n) and B(n) are defined by

P(A(n) ≤ x) := n−1|{1 ≤ i ≤ n; A
(n)
i ≤ x}|, (x ≥ 0) and (2.7)

P(B(n) ≤ x) := bαnc−1|{1 ≤ j ≤ bαnc; B(n)
j ≤ x}|, (x ≥ 0). (2.8)

Thus, A(n)(ω) and B(n)(ω) are random variables with the empirical weight distribution. By
the strong law of large numbers, A(n) ⇒ A and B(n) ⇒ B as n →∞.

For the purpose of this paper it is not important how the graphs in the sequence depend
on each other. For simplicity, we assume that conditioned on ω = (Ai; i ∈ N)× (Bj; j ∈ N),
the graphs (A(n), n ∈ N) are independent.

The vertices of the random intersection graph G(n) are precisely those in V (n). Two
(distinct) vertices share an edge in G(n) if and only if there is at least one path of length
2 between them in A(n). Thus, G(n) is a simple graph. This construction is visualized
in Figure 1. We note that G(n) is slightly different from an ordinary random intersection
graph. In [11, 13] the conditional probability that vertices with weights Ai and Bj share
an edge in A(n) is given by min(1, AiBj/(µn)), as opposed to 1− exp[−AiBj/(µn)] in this
paper.

Remark 2.1. In this paper we make use of the following equivalent way of constructing
A(n). Initially all vertices are unexplored. Pick a vertex from V (n) according to some law
(e.g. uniformly at random), say vertex vi with weight Ai; this vertex becomes active. Assign

a P(A
(n)
i ) number of edges to it (see (2.5)). The end-vertices in V ′(n) of these edges are
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chosen independently with replacement and the probability that v′j is chosen is Bj/L
′(n).

After this vertex vi is made explored, while the chosen vertices become active.
Now, if there are any, explore the active vertices from V ′(n) one by one. Suppose that

we explore vertex v′j, which has weight Bj, then assign a P(B
(n)
j ) number of edges to it.

These edges connect to vertices independently chosen from V (n). Vertex vl is chosen with
probability Al/L

(n). If the end vertex has already been explored then the edge is ignored and
not added to the graph, otherwise it is added and the end vertex in V (n) becomes active. If
all the edges from v′j are drawn, then v′j is explored.

The next step is to pick an active vertex from V (n), if there are any, according to some,
for now, unspecified law and explore it. Say that we chose vk with weight Ak. Then we
proceed as in the first step, i.e. we assign a P(A

(n)
k ) number of edges to it. Then the end-

vertices in V ′(n) of these edges are chosen independently with replacement and the probability
that v′j is chosen is Bj/L

′(n). If the end vertex has been explored before, then the edge is

ignored and deleted. After this, vertex vk is made explored and the chosen vertices in V ′(n),
which were previously unexplored, become active. We now explore all active vertices in
V ′(n) in turn, and so on until there is no active vertex left. After that an unexplored vertex
from V (n) is chosen and the process goes on until all vertices in V (n) are explored. Note
that if there are unexplored vertices left in V ′(n), they will have degree 0, since there is no
end-vertex left in V (n) to connect to.

Remark 2.2. Of course it is possible to construct a simple graph A′(n) immediately, in
which vertex vi shares an edge with vertex v′j with probability 1−exp[−AiBj/(µn)]. However,
in order to have the machinery ready for branching process approximations we choose the
present construction.

Remark 2.3. The graph G(n) is a graph of overlapping cliques, in which, asymptotically
as n → ∞, the number of cliques a vertex is part of has an MP(A) distribution and the
clique sizes have an MP(B) distribution. Both of these distributions have finite mean by
assumption.

2.3 SIR epidemics

We consider a stochastic Susceptible → Infectious → Recovered/Removed epidemic on
the random intersection graph G(n). The vertices of the graph correspond to individuals
and the edges to relationships/possible contacts. We assume that initially there is one
uniformly at random chosen infectious individual/vertex, while all other individuals are
susceptible. Every pair of individuals joined by an edge, makes directed contacts in both
directions according to independent Poisson processes with intensity 1. If an infectious
individual contacts a susceptible one, the susceptible becomes infectious. Infectious indi-
viduals stay infectious for a random infectious period, distributed as I, after which the
infectious individual becomes removed and plays no further part in the epidemic. Infec-
tious periods are i.i.d. and independent of the Poisson processes generating the contacts.
An infectious contact is a contact by an infectious individual, no matter what the state
of the receiving individual is. Note that there is no loss of generality in assuming that
the intensity of the Poisson processes governing the contacts is 1, since this can always be
achieved by rescaling time. For ease of exposition, primarily to avoid multitype branching
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processes that are reducible, we assume that P(I = 0) = 0. We omit the details but our
results are readily extended to the case P(I = 0) > 0. Note, however, that we do allow for
the possibility that P(I = ∞) > 0.

In order to study properties of the epidemic on a graph, G say, we introduce the Epi-
demic Generated Graph, which is a directed graph constructed as follows. If G is undirected,
we replace every edge by two edges connecting the same vertices but in opposite directions,
in order to transform it into a directed graph. To every vertex in the graph we assign
independently a random variable, distributed as I. Now we thin (the directed version of)
G as follows. For each vi ∈ V (n), edges starting at vi are removed independently with
probability e−Ii , where Ii is the random variable assigned to vi. Thus an edge starting at
vi is removed if infection would not pass along it were vi to become infected during the
epidemic. The set of vertices that can be reached in the Epidemic Generated Graph from
an initially infectious vertex v0 (including v0 itself), is distributed as the set of ultimately
removed individuals. The set of vertices from which there is a path in the Epidemic Gen-
erated Graph to vertex v′, including v′ itself, is said to be the susceptibility set of v′ [3, 5].
If one of the vertices in the susceptibility set of v′ is an initially infectious individual, then
v′ will be ultimately removed in the epidemic.

3 Final state random variables and Gontcharoff poly-

nomials

3.1 Results for homogeneously mixing populations

In this section we give a restatement of Theorem 4.2 from Ball and O’Neill [6], adapted
to the purposes of this paper (cf. [8]). We note that Ball and O’Neill provide appreciably
more general results than their Theorem 4.2. In order to state the theorem, we need the
following notation. We consider an SIR epidemic in a homogeneously mixing population
with m initial susceptible individuals and a initial infectious individuals. The initial sus-
ceptible individuals are labeled 1, 2, · · · , m and the initial infectious individuals have labels
−a + 1,−a + 2, · · · , 0. The random variable Ii represents the infectious period that indi-
vidual i will have if it becomes infected. Thus, the probability that individual i, if infected,
ultimately has an infectious contact with individual j is 1−e−Ii . (As before, infectious con-
tacts between pairs of individuals are governed by independent unit-rate Poisson processes.)
We assume that the random variables (Ii; i = −a + 1,−a + 2, · · · , m) are independent and
all distributed as I; they are also independent of the Poisson processes describing infectious
contacts. Let ĥ(x) : (0,∞] → [0,∞] be a measurable function (the relevant measures are
clear from the context) and θ > 0. Furthermore, let

Û := Û(ĥ, θ) = (ûi(ĥ, θ); i ∈ Z+) = (ûi; i ∈ Z+)

be an infinite vector, where ûk = E[e−kIe−θĥ(I)]. Let R be the set of ultimately removed
individuals. This set consists of both initially infected and, if any are infected, initially
susceptible individuals.
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The Gontcharoff polynomials Gm(x|Û), m ∈ Z+, are defined recursively by

xm

m!
=

m∑
k=0

(ûk)
m−k

(m− k)!
Gk(x|Û), (3.1)

for m ∈ Z+. We note that Gm(x|Û) is a polynomial of order m, which depends on
û0, û1, · · · , ûm−1. Some properties of Gontcharoff polynomials are mentioned in Section 2
of [6]. In this paper we use only (3.1) and

Gm(x|Û) =

∫ x

û0

∫ ξ0

û1

· · ·
∫ ξm−2

ûm−1

dξm−1 · · · dξ1dξ0, (3.2)

for m ∈ Z+. The following theorem is a special case of Theorem 4.2 in [6], which allows ĥ
to be random.

Theorem 3.1. For Û , R and ĥ as above, we have

E[xm+a−|R|e−θ
P

i∈R ĥ(Ii)] =
m∑

k=0

m!

(m− k)!
(ûk)

m−k+aGk(x|Û). (3.3)

We use the following corollary of this theorem.

Corollary 3.2. Let U := U(h) = (ui(h); i ∈ Z+) = (ui; i ∈ Z+), where ui = E[e−iI(1 −
h(I))] and h(x) : (0,∞] → [0, 1] is Borel-measurable, and let R be as above. Then

E[1−
∏
i∈R

(1− h(Ii))] = 1−
m∑

k=0

m!

(m− k)!
(uk)

m−k+aGk(1|U). (3.4)

Proof. Set x = θ = 1 and ĥ = − log(1− h) in Theorem 3.1.

We can use this corollary to compute the distribution of the number of initially suscep-
tible individuals that are ultimately removed, T̂ (m, a) := T̂ (m, a, I). If h(x) is constant on

R+, say h(x) = 1− s, then the corollary gives a formula for the PGF E[sT̂ (m,a)].
The distribution of the size of the susceptibility set of an individual in a group of a

given size can also be expressed using Gontcharoff polynomials. It turns out to be most
convenient here to consider the size of the susceptibility set, M(m) say, of an individual
amongst the m other individuals in a group of size m + 1, i.e. M(m) does not include the
individual in question. As will become clear later, we do not need to keep track of the
infectious periods of vertices in the susceptibility set. As in [8, Section 3], we have

P(M(m) = k) =
m!

(m− k)!
(vk)

m−kGk(1|V ) (k = 0, 1, · · · , m), (3.5)

where vk = E[e−(k+1)I ] and V = (v0, v1, v2, · · · ).
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3.2 Application

In the model of this paper we consider the impact of an epidemic in a group, started by a
single initial infectious individual with infectious period x. The number of initial susceptible
individuals is random and has an MP(Y ) distribution. (Later we choose Y to be B̃ or B̃(n),
the size-biased group weight distribution). We want to compute E[

∏
i∈R\{0}(1−h(Ii)) | I0 =

x], where 0 is the initial infectious individual. To compute this we use the following method.
We replace the epidemic in a group with m′ initial susceptibles and 1 initial infectious
individual, whose infectious period is x, by an epidemic with m initial susceptibles and
a initial infectives. In this epidemic m is binomially distributed with parameters m′ and
e−x, a = m′−m and the initial infectives have i.i.d. infectious periods all distributed as I.
Thus the initial susceptibles in the new epidemic are those initial susceptibles in the old
epidemic who, in that epidemic, avoid direct infection from the initial infective. Since m′ is
MP(Y ), we may deduce that, conditioned on Y , m and a are independent and respectively
P(Y e−x) and P(Y (1− e−x)).

Still conditioning on Y , integrating away the randomness in (m, a) and using (3.4) gives,
after repeatedly using Fubini’s theorem (note that Gk(1|U) > 0 for all k, using (3.2) and
the fact that (uk ∈ [0, 1]) is decreasing in k),

E[
∏

i∈R\{0}

(1− h(Ii)) |Y, I0 = x]

=
∞∑

m=0

∞∑
a=0

e−xmY m

m!

(1− e−x)aY a

a!
e−Y

m∑
k=0

m!

(m− k)!
(uk)

m−k+aGk(1|U)

=
∞∑

m=0

m∑
k=0

e−xmY m

m!

m!

(m− k)!
(uk)

m−kGk(1|U)e−Y (1−uk(1−e−x))

=
∞∑

k=0

∞∑
m=k

e−xmY m

(m− k)!
(uk)

m−kGk(1|U)e−Y (1−uk(1−e−x))

=
∞∑

k=0

e−xkY ke−Y (1−uk)Gk(1|U).

Taking expectations over Y gives

E[
∏

i∈R\{0}

(1− h(Ii))|I0 = x] = EY [
∞∑

k=0

e−xkY ke−Y (1−uk)Gk(1|U)]. (3.6)

This formula can be used to compute the distribution of T (x) := T (x, Y, I), the number
of initially susceptible individuals that are ultimately removed when the initial vertex has
infectious period x and the number of initial susceptibles has an MP(Y ) distribution. As
before, using h(y) = 1−s provides the PGF for T (x). This gives a way to compute E[T (x)],
a quantity we use later.

In a similar way, we use (3.5) to find the PGF of the size of the susceptibility set of an

9



individual in a group with size distribution H ∼ 1 +MP(Y ). It is given by

g(s; Y ) = EH [fM(H)(s)] = EH [E[sM(H)]] (3.7)

= EY [
∞∑

k=0

(sY )ke−Y (1−vk)Gk(1|V )],

where vk and V are as in (3.5).

4 Results

4.1 The forward branching processes

We consider a multi- (possibly infinite) type branching process, which is used to approx-
imate the early stages of an epidemic from a generation point of view. The branching
process is described by the following functional form. Let h(x) : (0,∞] → [0, 1] be a mea-
surable test function and let Xi, Yi and Ii be independent random variables associated to
individual i. The random variables denoted by the same letters are i.i.d. and distributed
as X, Y and I respectively. Let Γ(v) be the set of children of v in one clique (i.e. all
individuals infected by the epidemic initiated by v in that clique). If v has type x and is
an ancestor in the branching process, then define (cf. (3.6))

F (h)(x) := FX,I(h)(x) := 1− E[
∏

i∈Γ(v)

(1− h(Ii))|Iv = x]

= 1− EỸ [
∞∑

k=0

e−xkỸ ke−Ỹ (1−uk)Gk(1|U)]. (4.1)

Here uk, U and Gk(1|U) are as in Corollary 3.2, while Ỹ is the size-biased variant of Y .
Define

Φ(h)(x) := ΦX,Y,I(h)(x) := EX [1− e−X[F (h)(x)]], (4.2)

Φ̃(h)(x) := Φ̃X,Y,I(h)(x) := EX̃ [1− e−X̃[F (h)(x)]], (4.3)

where X̃ is the size-biased variant of X.
The formulae above can be interpreted as follows. If h(x) is the indicator function that

an individual with type x has a certain property, then F (h)(x) is the probability that at
least one of her children in a given clique has this property as well. The clique sizes are
i.i.d. and distributed as the number of ultimately removed individuals, which were initially
susceptible, in a group with 1 initial infective individual and a random number (MP(Ỹ )) of
initial susceptible individuals. Note that the ultimately susceptible individuals in a group
do not contribute to the clique sizes in the branching process. We assume that the ancestor
of the branching process has MP(X) cliques of children (some of which might be empty),
while other individuals in the branching process have MP(X̃) (possibly empty) cliques of
children. (An empty clique of children in the branching process corresponds to a clique in
which infection fails to spread in the epidemic process.) Then Φ(h)(x) is the probability
that at least one of the first generation individuals has the same property as the ancestor,
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while Φ̃(h)(x) is the probability that at least one child of an individual with type x, who
is not the ancestor, has this property.

The branching process described above is denoted by

Zf := Zf (X, Y, I) := (Zf
i , i ∈ Z+),

where Zf
i is a multiset of points in (0,∞] giving the types of individuals present in genera-

tion i of the process. (Note that if the distribution of I has atoms, at infinity or otherwise,
then Zf

i may contain repeated elements; on the other hand if the distribution of I is con-
tinuous then almost surely all elements of Zf

i are distinct and hence Zf
i is a set.) We

always assume that |Zf
0 | = 1 and that the type of this individual is distributed as I.

Let ρi := ρ(X, Y, I) be the probability that generation i of the branching process
Zf (X, Y, I) is non-empty, that is ρi = P(|Zf

i | > 0). By definition ρi is non-increasing,
so ρ := ρ(X, Y, I) := limi→∞ ρi exists and is the probability of survival of the branching
process. Let ρ̃i(x) = ρ̃i(x; X, Y, I) be the probability that the lineage of an individual
which is not the ancestor and has type x survives for at least i further generations and
let ρ̃(x) = limi→∞ ρ̃i(x) be the probability that this lineage survives forever. Note that
ρ̃1(x) = Φ̃(1)(x), where 1 is the function which is equal to 1 on its entire domain. It is
clear that ρ̃(x) satisfies

ρ̃(x) = Φ̃(ρ̃)(x), (4.4)

since in order for the lineage of an individual to survive, at least 1 of the children of that
individual must have a surviving lineage. Furthermore,

ρ =

∫
(0,∞]

Φ(ρ̃)(x) dP(I ≤ x).

Let Φ̃i be the i-th iterate of Φ̃. The functionals Φ(h)(x) and Φ̃(h)(x) are monotonic
increasing in h(x). Therefore, ρ̃(x) = limi→∞ Φ̃i(1)(x) is the pointwise maximal solution
of (4.4).

Lemma 4.1. There is at most one non-zero solution ρ̃(x) of (4.4).

Proof. We use an idea from Riordan [22]. To apply this we consider Φ̃′, a variant of the
functional Φ̃, which acts on functions of m and a, where m and a are as in Section 3.2. Thus
m+a is the number of initial susceptibles in a clique, in which there is one initial infective,
and a is the number of individuals that are contacted by the initial infective during his/her
infectious period. Here the cliques are the basic quantities we study.

Let p′a,m(k; x−a+1, x−a+2, · · · , x0, x1, · · · , xk), be the probability (or density) that in a
group with a initial infectives, k out of the m initial susceptibles are infected during the
epidemic and the infectious periods/types of the ultimately removed individuals (not in-
cluding the initial infective, which infected the a individuals used in this analysis) are given
by x−a+1, · · · , xk. Then, recalling that φX̃ is the MGF of X̃,

Φ̃′(h′)(m, a) = 1−
m∑

k=0

∫
(0,∞]a+k

p′a,m(k; x−a+1, · · ·xk)×

k∏
i=−a+1

φX̃

(
1− EỸ [

∞∑
mi=0

∞∑
ai=0

(e−xiỸ )mi

mi!

((1− e−xi)Ỹ )ai

ai!
e−Ỹ (1− h′(mi, ai))]

)
dx−a+1 · · · dxk. (4.5)
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The survival probability of the branching process (now with countably many types, indexed
by (m, a)) is the maximal solution of ρ̃′(m, a) = Φ̃′(ρ̃′)(m, a). If either m →∞ or a →∞,
then for any (m′, a′) and any K ∈ N, the probability that a type-(m, a) individual has at
least K type-(m′, a′) children in the next generation tends to 1. Furthermore, it is easy
to deduce from (4.5) that for any (m, a), the number of (m′, a′) children is non-zero with
positive probability. Using the same argument as in [22, pp. 911-912], we conclude that
there is at most one non-zero solution of ρ̃′(m, a) = Φ̃′(ρ̃′)(m, a).

Next, note that

Φ̃(h)(x) =

1− φX̃

(
1− EỸ [

∞∑
m=0

∞∑
a=0

(e−xỸ )m

m!

((1− e−x)Ỹ )a

a!
e−Ỹ A(m, a, h)]

)
, (4.6)

where

A(m, a, h) :=

m∑
k=0

∫
(0,∞]a+k

pa,m(k; x−a+1, · · ·xk)
k∏

i=−a+1

(1− h(xi)) dx−a+1 · · · dxk. (4.7)

Suppose that
h(x) = Φ̃(h)(x). (4.8)

Then (4.6) and (4.7) imply that

A(m, a, h) =
m∑

k=0

∫
(0,∞]a+k

pa,m(k; x−a+1, · · ·xk)×

k∏
i=−a+1

φX̃

(
1− EỸ [

∞∑
mi=0

∞∑
ai=0

(e−xiỸ )mi

mi!

((1− e−xi)Ỹ )ai

ai!
e−Ỹ A(mi, ai, h)]

)
dx−a+1 · · · dxk. (4.9)

Thus, by (4.5), if h is treated as fixed, h′(m, a) = 1− A(m, a, h) satisfies

h′(m, a) = Φ̃′(h′)(m, a). (4.10)

Let h be a non-zero (i.e. not identically zero) solution of (4.8), assuming such a solution
exists. Then h′ must be the unique non-zero solution of (4.10), ρ̃′ say. (Note that if h′

is identically zero then (4.8) and (4.6) imply that h is identically zero.) Thus h′(m, a) =
1 − A(m, a, h) is independent of h, and ρ̃(x) is given by the right hand side of (4.6) with
A(m, a, h) replaced by 1− ρ̃′(mi, ai), which proves the lemma.

Let Ii be distributed as I. Define

R∗ := EIi
[ET [T (Ii, Ỹ , I)]]E[X̃]. (4.11)
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Note that in [11], the notation R0 is used instead of R∗. We use the notation of [7, 8],
because R0 is usually defined as the expected number of new direct infections caused by an
infectious individual in the first stages of an epidemic [2, 14], while in (4.11) all individuals
infected by a local epidemic are “assigned to” the initial infectious individual in the clique.
The following result shows that R∗ is a threshold parameter for our model, provided the
population is sufficiently large (cf. the limit theorems stated in Section 4.3).

Theorem 4.2. The survival probability satisfies ρ > 0 if and only if R∗ > 1.

Proof. Firstly, note that whether or not an individual in a group becomes infected is inde-
pendent of that individual’s own infectious period. Hence, the distribution of the infectious
period of the individual which brings an infection into a group is distributed as I. Since the
interpretation of clique sizes and types in the branching process correspond with group sizes
(minus 1) and infectious periods of infected individuals, EIi

[ET [T (Ii, Ỹ , I)]] corresponds to
the expected number of children within a clique, averaged over the infectious period and
over the clique sizes.

Returning to the epidemiological interpretation, we can also condition on the group sizes
(ultimately removed + ultimately susceptible). Say that the group sizes are distributed
as 1 + H (where 1 counts the initial infective and H is the random number of initial
susceptibles). The distribution of H is not relevant at the moment. Suppose that R∗ > 1.
Then there exists K ∈ N such that

E[X̃]
K∑

m=0

EIi
[ET [T (Ii, Ỹ , I)|H = m]]P(H = m) > 1. (4.12)

We refer to EIi
[ET [T (Ii, Ỹ , I)|H = m]] as L(m) := L(m, I).

For ε > 0, let Îε be the discrete random variable obtained from I by Îε = εbI/εc (with
the convention that b∞c = ∞) and note that Îε is stochastically smaller than I. Since all
group sizes are now finite and L(m) depends on the realization of a finite number of edges
in the Epidemic Generated Graph, there exists ε > 0 such that

E[X̃]
K∑

m=0

L(m, Îε)P(H = m) > 1.

Analagously to the derivation of (4.12), there is some K ′
ε ∈ N such that for Î ′ε := Îε11(Îε 6∈

(K ′
ε,∞)), we have

E[X̃]

K′
ε∑

m=0

L(m, Î ′ε)P(H = m) > 1.

Therefore, if R∗ > 1, the branching process under consideration dominates an irreducible
finite-type supercritical branching process, which we know from the standard theory [17,
Theorem 4.2.2] has a strictly positive probability of survival.

For R∗ ≤ 1 we use the following idea from [10]. Suppose that R∗ ≤ 1 and that ρ̃(x) > 0.
Then using (4.4) and (4.3) gives

ρ̃(x) = Φ̃(ρ̃)(x) = EX̃ [1− e−X̃[F (ρ̃)(x)]] < E[X̃]F (ρ̃)(x).
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As in [10], we observe that

F (ρ̃)(x) = 1− E

 ∏
i∈Γ(v)

(1− ρ̃(Ii))
∣∣ Iv = x


< E

∑
i∈Γ(v)

ρ̃(Ii)
∣∣ Iv = x

 = E[T (x, Y, I)]EI [ρ̃(I)].

Therefore, EI [ρ̃(I)] < R∗EI [ρ̃(I)] and it follows that R∗ > 1, which is a contradiction.
Thus, if R∗ ≤ 1 then ρ̃(x) is identically zero on the support of I and it then follows that
ρ = 0.

4.2 The backward branching processes

In this section we study a single type branching process, which is used to approximate the
susceptibility set of a uniformly at random chosen vertex from V (n) in the large population
limit. Let X, Y and I be as in the previous subsection. The Galton-Watson branching
process

Zb := Zb(X, Y, I) = (Zb
i (X, Y, I); i ∈ Z+)

is described as follows. The single ancestor has a random number of cliques of children
distributed as MP(X). The number of children in different cliques are independent and
distributed as M(Ỹ ), where M(·) is defined as in (3.5) and Ỹ is the size-biased variant
of Y . Subsequent individuals in the process have a random number of cliques of children
distributed as MP(X̃). The clique sizes are independent and distributed as the clique sizes
of children of the ancestor. Note that since Zb is a single-type branching process, Zb

i is
determined by its cardinality |Zb

i |, in contrast to Zf
i (unless I is almost surely equal to a

fixed constant).
Let Rb

∗ := E[M(Ỹ )]E[X̃] be the mean number of children of an individual who is not the
ancestor. As explained in the appendix of [4], Rb

∗ = R∗; we therefore use only the notation
R∗. From (3.7), we know that the PGF of a typical clique size is

g(s) := g(s; Y, I) = EỸ [
∞∑

k=0

(sỸ )ke−Ỹ (1−vk)Gk(1|V )], (4.13)

where V = (vk; k ∈ Z+) is as in (3.5); so the PGF of the number of children of an individual
who is not the ancestor is given by

f̃(s) := f̃(s; X, Y, I) = EX̃ [e−X̃(1−g(s))]. (4.14)

Let qb(X, Y, I) =: qb := EX [e−X(1−g(q̃))] where q̃ := q̃b(X, Y, I) is the minimal solution of
f̃(s) = s in [0, 1]. From the standard theory of branching processes [17], we know that
qb is the extinction probability of Zb. Let ρb(X, Y, I) := 1 − qb(X, Y, I) be the survival
probability of Zb.
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4.3 Limit theorems for SIR epidemics on random intersection
graphs

Let E (n)(ω, I) be the set of ultimately removed vertices, including the single initial in-
fective, in an SIR epidemic (as defined in Section 2.3) on the random intersection graph
G(n), constructed using the infectious period distribution I and the sequences (Ai; i ∈ N),
(Bj; j ∈ N) denoted by ω ∈ Ω. Our focus is on the properties of |E (n)|, the number
of individuals ultimately removed in the epidemic. For a branching process, Zf say, let
|Zf | :=

∑∞
i=0 |Z

f
i | denote its total size (total progeny), including the ancestor.

Theorem 4.3. For k ∈ N, we have

Pω(|E (n)(ω, I)| = k)
pν−−−→

n→∞
P(|Zf (A, B, I)| = k).

Theorem 4.4. Let ρb(A, B, I) be the survival probability of the backward branching process
Zb(A, B, I), as in Section 4.2, and ρ(A, B, I) be the survival probability of the forward
branching process Zf (A, B, I), as in Section 4.1. For every 0 < ε < ρb(A, B, I),

Pω

(∣∣n−1|E (n)(ω, I)| − ρb(A, B, I)
∣∣ < ε

) pν−−−→
n→∞

ρ(A, B, I).

Theorems 4.3 and 4.4 are proved in Sections 5 and 6, respectively. Before giving the
proofs, we discuss briefly their implications. Note first that, for fixed k ∈ N, the sequence
of random variables (Pω(|E (n)(ω, I)| = k); n ∈ N) is uniformly integrable, so, by taking
expectations with respect to the measure ν, Theorem 4.3 implies that

lim
n→∞

P(|E (n)(ω, I)| ≤ k) = P(|Zf (A, B, I)| ≤ k) (k ∈ N), (4.15)

where P is the probability measure over the joint space of vertex weights, random graphs
and the epidemic processes defined on them. Hence, for any ε > 0 and any k ∈ N,

lim inf
n→∞

P
(
n−1|E (n)| ≤ ε

)
≥ P(|Zf (A, B, I)| ≤ k),

so, letting k →∞,
lim inf
n→∞

P
(
n−1|E (n)| ≤ ε

)
≥ 1− ρ(A, B, I). (4.16)

Suppose that R∗ ≤ 1. Then ρ(A, B, I) = 0 and 4.16 implies that, for any ε > 0,
limn→∞ P

(
n−1

∣∣E (n)
∣∣ ≤ ε

)
= 1, i.e. that

n−1|E (n)| ⇒ 0 as n →∞. (4.17)

On the other hand, suppose that R∗ > 1, so ρ(A, B, I) > 0. Taking expectations
in Theorem 4.4 and using uniform intergrability as above yields that, for any 0 < ε <
ρb(A, B, I),

lim
n→∞

P
(∣∣n−1|E (n)| − ρb(A, B, I)

∣∣ < ε
)

= ρ(A, B, I). (4.18)

Note that (4.18) implies that lim supn→∞ P
(
n−1|E (n)| ≤ ε

)
≤ 1− ρ(A, B, I), provided 0 <

ε < ρb(A, B, I), which, together with (4.16), yields that, for such ε, limn→∞ P
(
n−1|E (n)| ≤ ε

)
= 1 − ρ(A, B, I). This observation, together with (4.18) and (4.17), yields the following
theorem.

Theorem 4.5. Let TF be a random variable with distribution specified by P(TF = ρb(A, B, I))
= ρ(A, B, I) = 1− P(TF = 0). Then, as n →∞,

n−1|E (n)| ⇒ TF .
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5 Proof of Theorem 4.3

In this proof we use three processes,

• the branching process Z := Zf (A, B, I),

• the branching process Z(n) := Zf (A(n), B(n), I),

• the exploration process of the Epidemic Generated Graph on G(n), denoted by E (n) :=
E (n)(ω, I) = (E (n)

0 , E (n)
1 , · · · ).

To prove Theorem 4.3 we first show that the distribution of the total size of Z(n) is ap-
proximately that of Z, then that the distribution of the total size of E (n) is approximately
that of Z(n).

Lemma 5.1. For k ∈ N, it holds that Pω(|Z(n)| = k)
pν−−−→

n→∞
P(|Z| = k).

Proof. Let the total number of (possibly empty) cliques of children in Z and Z(n) be de-
noted by H and H(n), respectively. Note that if Xn ⇒ X, then MP(Xn) ⇒MP(X) [16,
Theorem 7.2.19]. Recall further that A(n) ⇒ A and B(n) ⇒ B as n →∞. These latter con-
vergence results also hold for the size-biased variants, as shown just below equation (2.1).
It follows that the numbers of cliques of children (which for brevity we call child cliques)
of the first k individuals in the branching processes we compare (according to some order,
which does not depend on the number of cliques they are part of) also converge in dis-
tribution, as do the sizes of the first l child cliques we compare. Hence, for k ∈ N and
l ∈ Z+,

Pω(|Z(n)| = k,H(n) = l)
pν−−−→

n→∞
P(|Z| = k,H = l).

Therefore, for every L ∈ N, we have

Pω(|Z(n)| = k,H(n) ≤ L)
pν−−−→

n→∞
P(|Z| = k,H ≤ L).

Note that

Pω(|Z(n)| = k) = Pω(|Z(n)| = k,H(n) ≤ L) + Pω(|Z(n)| = k,H(n) > L)

and
Pω(|Z| = k) = Pω(|Z| = k,H ≤ L) + Pω(|Z| = k,H > L).

Now, let c1 > 0 and c2 > 0 be constants. We note that the probability of the intersection
of the following events can be made arbitrarily close to 0, by taking c1 and c2 small enough
and L large enough (L is finite, but might depend on c2):

(i) |Z| = k,

(ii) H > L,

(iii) the first k vertices evaluated in the branching process Z all have infectious periods
larger than c1, and

(iv) at least c2L out of the first L cliques evaluated in Z have size ≥ 2.
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The probability that neither (iii) nor (iv) holds can also be made arbitrarily close to 0 by
tuning c1 and c2.

Combining these observations, it follows that for every ε > 0, there exists L ∈ N, such
that for all l > L,

P(|Z| = k) < P(|Z| = k,H ≤ l) + ε/3.

Note that the probability that (iii) does not hold is the same for Z(n) and Z; whilst given
any δ > 0, the fact that MP(B̃(n)) ⇒MP(B̃) implies that there exists N ′ ∈ N such that
the probability that (iv) does not hold is at most δ/3 for all n ≥ N ′. It then follows that
for given ε > 0, there exists L′ ∈ N, such that for all l > L′,

ν
(
Pω(|Z(n)| = k) < Pω(|Z(n)| = k,H(n) ≤ l) + ε/3

)
> 1− δ/2

for all sufficiently large n. Now

Pω(|Z(n)| = k,H(n) ≤ l)
pν−−−→

n→∞
P(|Z| = k,H ≤ l)

implies that for all ε > 0 and δ > 0,

ν
(∣∣Pω(|Z(n)| = k,H(n) ≤ l)− P(|Z| = k,H ≤ l)

∣∣ < ε
)

> 1− δ/2,

for all sufficiently large n. Thus, by choosing l large enough, it follows that for all sufficiently
large n,

ν
(∣∣Pω(|Z(n)| = k)− P(|Z| = k)

∣∣ < ε
)

> 1− δ

and the lemma then follows.

Lemma 5.2. For k ∈ N, Pω(|Z(n)| ≤ k)− Pω(|E (n)| ≤ k)
pν−−−→

n→∞
0.

Proof. The proof follows from a standard coupling argument, described below. Firstly
though, for each n ∈ N, let v

(n)
0 be a vertex chosen uniformly at random from V (n) and

let v
(n)
1 , v

(n)
2 , · · · be independently chosen vertices from V (n), where the probability that a

given vertex is chosen is proportional to its A-weight. Let a
(n)
0 , a

(n)
1 , · · · be the respective A-

weights of v
(n)
0 , v

(n)
1 , · · · . Let I(n)

0 be the type assigned to vertex v
(n)
0 . Let v

′(n)
1 , v

′(n)
2 , · · · be

independently chosen vertices (representing cliques) from V ′(n) where the probability that

a given vertex is chosen is proportional to its B-weight. The B-weights of v
′(n)
1 , v

′(n)
2 , · · ·

are denoted by b
(n)
1 , b

(n)
2 , · · · , respectively. Let the random variable

T (n) := min(i ∈ N; v
(n)
i = v

(n)
j for some j < i)

be the smallest index at which a vertex from V (n) is chosen a second time. Similarly, define

T ′(n) := min(i ∈ N; v
′(n)
i = v

′(n)
j for some j < i).

The constructions of Z(n) and E (n) are coupled as follows. The ancestor of Z(n) has a
P(a

(n)
0 ) number of (possibly empty) child cliques, l′ say. The cliques that the initial infective

in E (n) belongs to are given by v
′(n)
1 , v

′(n)
2 , · · · , v

′(n)
l′ , which might contain duplicates; the
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B-weights associated with these child cliques are b
(n)
1 , b

(n)
2 , · · · , b

(n)
l′ . If T ′(n) > l′, then there

are no duplicates amongst v
′(n)
1 , v

′(n)
2 , · · · , v

′(n)
l′ and the processes stay coupled. If not, the

construction can be continued but the details are not important for our purposes.
If the coupling continues the sizes of the cliques are then determined. For each i =

1, 2, · · · , l′, the size of clique i is distributed as the number of initially susceptible indi-
viduals which are ultimately infected by a local epidemic in a group with one initially
infectious individual, having infectious period I(n)

0 , and a P(b
(n)
i ) distributed number of

initially susceptible individuals. The clique sizes are all independent. Say that the total
number of vertices in the l′ cliques is l, then they get A-weights a

(n)
1 , a

(n)
2 , · · · , a

(n)
l and

types I(n)
1 , I(n)

2 , · · · , I(n)
l , which are i.i.d. and distributed as I. If l < T (n) the coupling

continues and the generation 1 vertices are v
(n)
1 , v

(n)
2 , · · · , v

(n)
l . The coupling now proceeds

in the obvious way. Note that in this construction we have not yet decided which vertices
are in the same group as v

(n)
1 but are not infected by the local epidemic.

Let H(n) be as in the proof of Lemma 5.1 and let H(∗n) be the corresponding number
for E (n). We need to prove that for k ∈ N and l ∈ Z+,

Pω(|Z(n)| = k,H(n) = l)− Pω(|E (n)| = k,H(∗n) = l)
pν−−−→

n→∞
0,

and then deduce the statement of the lemma as in the latter part of the proof of Lemma 5.1.
Note that the coupling gives

Pω(|Z(n)| = k,H(n) = l, T (n) > k, T ′(n) > l) (5.1)

= Pω(|E (n)| = k,H(∗n) = l, T (n) > k, T ′(n) > l).

Furthermore, for C(n)(k, l) := {T (n) ≤ k} ∪ {T ′(n) ≤ l}, we have

Pω(|Z(n)| = k,H(n) = l) = Pω(|Z(n)| = k,H(n) = l, T (n) > k, T ′(n) > l)

+Pω(|Z(n)| = k,H(n) = l, C(n)(k, l)).

Note that the second term on the right hand side of this expression is bounded above by
Pω(C(n)(k, l)).

Recall from Section 2.2 that µ = E[A] = αE[B] < ∞, which implies that the total
weight of vertices in V (n) with weight exceeding log n is ν-almost surely o(n). (To show
this, note that, since µ < ∞, for any N > 0,

n−1

n∑
i=1

Ai11(Ai > N)
a.s.−−→ E[A11(A > N)] as n →∞

and E[A11(A > N)] → 0 as N →∞.) A similar result holds for the weights of the vertices

in V ′(n). Hence, for every k, l ∈ N, the probability that both max(a
(n)
i ; 0 ≤ i ≤ k) ≤ log n

and max(b
(n)
j ; 1 ≤ j ≤ l) ≤ log n converges to 1 as n →∞. Thus, the total weights of the

first k vertices and the first l cliques chosen in the branching process is ν-almost surely
O(log n). By a birthday problem argument we deduce that Pω(C(n)(l, k))

pν−−−→
n→∞

0. (Note

that if Mn(k) is the number of distinct pairs (i, j) with 0 ≤ i < j ≤ k and v
(n)
i = v

(n)
j , then

under the above restrictions, Eω[Mn(k)] ≤ k(k−1)
2

log n
L(n)

pν−−−→
n→∞

0). Thus, for every k, l ∈ N,

Pω(|Z(n)| = k,H(n) = l)− Pω(|Z(n)| = k,H(n) = l, T (n) > k, T ′(n) > l)
pν−−−→

n→∞
0.
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Similarly, we deduce that, again for all k, l ∈ N,

Pω(|E (n)| = k,H(∗n) = l)− Pω(|E (n)| = k,H(∗n) = l, T (n) > k, T ′(n) > l)
pν−−−→

n→∞
0;

which, together with (5.1), yields the lemma.

Theorem 4.3 follows immediately by combining Lemmas 5.1 and 5.2.

6 Proof of Theorem 4.4

Before considering susceptibility sets and backward branching processes, we prove the fol-
lowing extension of Lemma 5.1 which is required later in this section.

Lemma 6.1. ρ(A(n), B(n), I)
pν−−−→

n→∞
ρ(A, B, I).

Proof. For every k ∈ Z+, define the random variable

Ik(I) =


2−kb2kIc if I < 2k,

2k if I ∈ [2k,∞),

∞ if I = ∞.

That is, Ik is a random variable which can take only finitely many values and for j =
1, 2, · · · , 4k − 1,

P(Ik = j2−k) = P
(
I ∈ [j2−k, (j + 1)2−k)

)
,

while P(Ik = 2k) = P(I ∈ [2k,∞)) and P(Ik = ∞) = P(I = ∞). It is clear that Ik ⇒ I
as k →∞ and that Ik is stochastically smaller than Ik+1 for all k ∈ Z+.

For non-negative random variables X and Y , the function ρ̃(X, Y, Ik) is pointwise non-
decreasing in k, since it is the survival probability of a branching process and (stochasti-
cally) increasing the distribution of the infectious periods, and thus also of the offspring
distribution, cannot decrease the survival probability of the process. By monotonicity we
have that limk→∞ ρ̃(X, Y, Ik) exists pointwise, and by the monotone convergence theorem
this limit satisfies (4.4) for ρ̃(X, Y, I). By Lemma 5.1 we know that for every k ∈ N,

Pω(|Z(n)| > k)
pν−−−→

n→∞
P(|Z| > k). This implies that for every ε > 0 and δ > 0, there exists

N0 ∈ N such that for n > N0, we have

ν(ρ(A(n), B(n), I) < ρ(A, B, I) + ε) > 1− δ/3. (6.1)

Furthermore, for every ε > 0, there exists K ∈ N such that for k > K, we have

ρ(A, B, Ik) > ρ(A, B, I)− ε/2.

Similarly, for every ε > 0, δ > 0 and k ∈ N, there exist Nk ∈ N such that for n > Nk, we
have

ν(ρ(A(n), B(n), Ik) > ρ(A, B, Ik)− ε/2) > 1− δ/3,

while for every k ∈ N (and ω ∈ Ω), ρ(A(n), B(n), I) ≥ ρ(A(n), B(n), Ik). Combining these
statements establishes that, for every ε > 0 and δ > 0, there exists N ∈ N such that for all
n > N , we have

ν(ρ(A(n), B(n), I) > ρ(A, B, I)− ε) > 1− 2δ/3.

Combining this with (6.1) completes the proof of the lemma.
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In order to prove Theorem 4.4, we investigate the susceptibility sets of two uniformly
at random chosen vertices in the subgraph Ĝ(n) (of G(n)), which is defined as follows. Let
Â(n) be constructed from A(n) by ignoring all vertices in V (n) and V ′(n) that have weights
larger than log n and ignoring all edges that are incident to such vertices. The graph Ĝ(n)

is constructed from Â(n) in the same way that G(n) is constructed from A(n).
We can create a realization of Â(n) as follows. Define the vertex sets V̂ (n) := (vi ∈

V (n); Ai ≤ log n) and V̂ ′(n) := (v′j ∈ V ′(n); Bj ≤ log n). Conditional upon the weights of the

vertices in A(n), (i) vertices vi ∈ V̂ (n) and v′j ∈ V̂ ′(n) share in Â(n) a P(AiBj/(µn)) number
of edges and (ii) the number of edges between distinct pairs of vertices are independent.
Let

L̂(n) :=
∑

i:vi∈V̂ (n)

Ai and (6.2)

L̂′(n) :=
∑

j:v′j∈V̂ ′(n)

Bj. (6.3)

Then the degree of vertex vi ∈ V̂ (n) in Â(n) is P(AiL̂
′(n)/(µn)) and the degree of v′j ∈ V̂ ′(n) is

P(BjL̂
(n)/(µn)). We construct from Â(n) an identically distributed copy of A(n) by adding

the vertices from V (n) \ V̂ (n) and V ′(n) \ V̂ ′(n) and, if vi ∈ V (n) and v′j ∈ V ′(n) are not both in

Â(n), letting vi and v′j share a P(AiBj/(µn)) number of newly-added edges, independently
of the number of edges between other vertices.

We compute the probability that the susceptibility sets of two vertices in Ĝ(n) survive
until at least generation

tn = dlog log ne.

Next, we show that, given any ε > 0, there exists K ∈ N such that the probability that
the tn-th generation of an individual’s susceptibility set is empty on Ĝ(n) and the total
size of its susceptibility set on G(n) exceeds K is less than ε for all sufficiently large n; see
Lemma 6.6. We then explore the forward process in G(n), where we ignore the vertices
and cliques already explored in the two backward processes. We show that if the epidemic
size is not Θ(1), then, with probability tending to 1 as n → ∞, it is Θ(n). After this we
attempt to connect the forward process with the generation tn vertices of the backward
processes and show that, in the event of a large outbreak, the probability that at least 1
of the vertices in generation tn of a susceptibility set (if this generation is not empty) is
ultimately removed converges to 1 as n →∞.

We construct a coupling of two independent branching processes and the susceptibility
sets of v1 and v2 in Ĝ(n) (which by exchangeability is equivalent to choosing two distinct
vertices uniformly at random), assuming that A1, A2 ≤ log n. We therefore define (cf. equa-

tions (2.5)–(2.8)) Â
(n)
i := Ai 11(Ai ≤ log n)L̂′(n)/(µn) and B̂

(n)
i := Bi 11(Bi ≤ log n)L̂(n)/(µn);

and let ĉ
(n)
A =

∑n
i=1 11(Ai ≤ log n) and ĉ

(n)
B =

∑bαnc
i=1 11(Bi ≤ log n). The random variables

Â(n) and B̂(n) are defined by

Pω(Â(n) ≤ x) := |{1 ≤ i ≤ ĉ
(n)
A ; Â

(n)
i ≤ x}|/ĉ(n)

A (x ≥ 0) and

Pω(B̂(n) ≤ x) := |{1 ≤ i ≤ ĉ
(n)
B ; B̂

(n)
i ≤ x}|/ĉ(n)

B (x ≥ 0).
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The processes through which the construction of the susceptibility set of vi (i ∈ {1, 2})
takes place are denoted by

Ŝ i := Ŝ i(Â(n), B̂(n), I) = (Ŝ i
0, Ŝ i

1, · · · ).

The two independent branching processes are Zb,i = Zb,i(Â(n), B̂(n), I), for i ∈ {1, 2},
where Â(n) and B̂(n) are as above. The corresponding susceptibility set processes in G(n)

are denoted by S i for i ∈ {1, 2}. When no confusion is possible, we sometimes suppress
the reference to the starting vertex i.

We use the following lemmas.

Lemma 6.2. Let 0 < ε < 3/e − 1. For k ∈ N, let (Xi(k); i ∈ N) be a sequence of i.i.d.
P((1 + ε) log k) random variables. Then, for every C > 0,

P( max
1≤i≤bCkc

Xi(k) ≤ 3 log k) → 1 as k →∞.

Proof. Since ek =
∑∞

i=0 ki/k!, we have k! > kke−k. Then

P(X1(k) > 3 log k) =
∞∑

j=d3 log ke

((1 + ε) log k)j

j!

1

k1+ε

≤ 1

k1+ε

∞∑
j=d3 log ke

((1 + ε) log k)j

jje−j

<
1

k1+ε

∞∑
j=d3 log ke

((1 + ε)e/3)j

<
3

3− (1 + ε)e
k−1−ε+3(1+log[1+ε]−log 3).

The probability that none out of bCkc independent copies of X1(k) exceeds 3 log k is thus
given by

(1− P(X1(k) > 3 log k))bCkc >

(
1− 3

3− (1 + ε)e
k−1−ε+3(1+log[1+ε]−log 3)

)Ck

> 1− Ck
3

3− (1 + ε)e
k−1−ε+3(1+log[1+ε]−log 3)

= 1− 3C

3− (1− ε)e
k3(1+log[1+ε]−log 3)−ε,

which converges to 1 as k →∞, since 0 < ε < 3/e− 1.

Recall that the distance between two vertices in a graph is the number of edges in the
shortest path connecting those vertices.

Lemma 6.3. For ν-almost all ω ∈ Ω, the probability that the total number and the total
weight of vertices within distance 2tn of the set {v1, v2} in Â(n) are both smaller than n1/3

converges to 1 as n →∞.
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Proof. All vertices in Â(n) have weight at most log n, so their degrees in Â(n) are stochasti-
cally dominated by i.i.d. P(log n max(L̂(n), L̂′(n))/(µn)) random variables. For every ε > 0,
we have by the strong law of large numbers that 11(max(L̂(n), L̂′(n))/(µn) < 1 + ε)

a.s.−−→ 1 as
n →∞. We know by Lemma 6.2 that, with probability tending to 1 as n →∞, none of the
at most n + bαnc vertices in Â(n) has degree exceeding 3 log n. So, using a straightforward
branching process approximation, the number of vertices within graph distance 2tn of v1

and v2 is, with probability tending to 1 as n →∞, bounded above by

2
2tn∑
k=1

(3 log n)k = O((3 log n)2tn+1).

Since 2tn + 1 = 2dlog log ne+ 1 < 2 log log n + 3, we have

(3 log n)2tn+1 < (3 log n)3+2 log log n

= (3 log n)3e2 log log n(log 3+log log n) = o(n1/3/ log n),

so the total weight of the vertices is o(n1/3).

For i ∈ {1, 2}, let Ki(tn) be the set of vertices in V (n) within distance 2tn of vi in Â(n),
and let K ′i(tn) be the set of vertices in V ′(n) within distance 2tn of vi in Â(n). Lemma 6.3
implies that, with probability tending to 1 as n → ∞, none of the sets K1(tn), K2(tn),
K ′1(tn) and K ′2(tn) has total vertex or clique weight exceeding n1/3. Furthermore, with
probability tending to 1 as n →∞, the total number of vertices in K1(tn) is less than n1/3.
Conditioned on K2(tn) having total weight less than n1/3 and K1(tn) containing less than
n1/3 vertices, the probability that K1(tn) and K2(tn) share an edge is bounded above by

1 − (1 − n1/3/L̂n)n1/3
< n2/3/L̂n, which converges ν-almost surely to 0 as n → ∞. So, for

ν-almost all ω ∈ Ω, the Pω-probability that K1 and K2 share a vertex converges to 0 as
n →∞. Similarly, we deduce that for ν-almost all ω ∈ Ω, the Pω-probability that K ′1 and
K ′2 share a clique converges to 0 as n →∞.

Lemma 6.4. Let R∗ = R∗(A, B, I) be as in (4.11). For 0 < c < log R∗, it holds that

Pω

(
|Ŝ i

tn| > (log n)c
∣∣ |Ŝ i

tn| > 0
) pν−−−→

n→∞
1.

Proof. By Lemma 6.3 and standard coupling arguments, similar to those used in the proof
of Lemma 5.2, we can replace Ŝ by the branching process Zb(Â(n), B̂(n), I).

For n ∈ N, let Â
(n)
∗ be a random variable having distribution function given by Pω(Â

(n)
∗ ≤

x) = supi≥n Pω(Â(i) ≤ x) (x ∈ R) and define B̂
(n)
∗ similarly. Observe that Â

(n)
∗ ⇒ A and

B̂
(n)
∗ ⇒ B as n →∞. Furthermore, for all n ∈ N, Â

(n)
∗ (respectively, B̂

(n)
∗ ) is stochastically

dominated by Â
(n+1)
∗ (respectively, B̂

(n+1)
∗ ). Therefore R∗(Â

(n)
∗ , B̂

(n)
∗ , I) is also stochastically

increasing in n. By the Skorokhod representation theorem [16, Theorem 7.2.14] and the

monotone convergence theorem we have that R∗(Â
(n)
∗ , B̂

(n)
∗ , I)

pν−−−→
n→∞

R∗(A, B, I). In partic-

ular, there exists N = N(ω) such that for every n > N , we have that R∗(Â
(n)
∗ , B̂

(n)
∗ , I) > ec,

so, by [17, Theorem 2.7.1] it follows that

Pω(|Zb
tn(Â(n)

∗ , B̂(n)
∗ , I)| > (log n)c)− Pω(|Zb

tn(Â(n)
∗ , B̂(n)

∗ , I)| > 0)
pν−−−→

n→∞
0.
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The second probability in this expression converges to ρb(A, B, I) by [12, Lemma 4.1] and

the lemma then follows by observing that |Zb
tn(Â

(n)
∗ , B̂

(n)
∗ , I)| is stochastically smaller than

|Zb
tn(Â(n), B̂(n), I)|.

Up to now, we have investigated the behavior of the susceptibility sets of vertices in
Ĝ(n). This is only an intermediate step before analyzing susceptibility sets in G(n). To
make the connection between the two graphs we use the following two lemmas.

Lemma 6.5. For k ∈ N,

Pω(|Ŝ(Â(n), B̂(n), I)| = k)− Pω(|S(A(n), B(n), I)| = k)
pν−−−→

n→∞
0.

Proof. In order to simplify the notation we suppress the explicit dependence on Â(n), B̂(n)

and I. We denote by S ′i the set of cliques containing vertices in the susceptibility set S i.
We prove that

Pω(|Ŝ| = k, |Ŝ ′| = l)− Pω(|S| = k, |S ′| = l)
pν−−−→

n→∞
0, (6.4)

from which the lemma follows using similar arguments to those in the proof of Lemma 5.1,
which are not repeated here.

Recall that we can construct G(n) from Ĝ(n), by considering the vertices in V (n) \ V̂ (n)

and V ′(n) \ V̂ ′(n) and then connecting them in the usual way with each other and with
vertices in V (n) and V ′(n) to obtain A(n). As in the proof of Lemma 5.2, µ < ∞ implies
that

n∑
i=1

Ai11(Ai > log[n]) = L(n) − L̂(n) = o(n) ν-almost surely.

Therefore,
L(n) − L̂(n)

L(n)

a.s.−−→ 0 as n →∞.

This implies that 1 − L̂(n)/L(n) converges in probability to 0. In particular there is an
increasing sequence of natural numbers (pi; i ∈ N), such that for all n > pi, we have
Pω(1 − L̂(n)/L(n) > 4−i) > 1 − 2−i. Define the function ξ : N → N by ξ(n) = 2i if
pi ≤ n < pi+1. This function increases to infinity and

Pω(L(n) − L̂(n) < (ξ(n))−1L(n))
pν−−−→

n→∞
1. (6.5)

Similarly, there exists a function ξ′(n) which increases to ∞, such that

Pω(L′(n) − L̂′(n)) < (ξ′(n))−1L′(n))
pν−−−→

n→∞
1. (6.6)

Let L̂
(n)
(k) (respectively, L̂

′(n)
(k) ) be the weight of the first k vertices from V̂ (n) (respectively,

V̂ ′(n)) explored in Ŝ. Since

Pω

(
|Ŝ| = k, |Ŝ ′| = l

∣∣∣ L̂(n)
(k) ≥ (ξ′(n))1/2 ∪ L̂

′(n)
(l) ≥ (ξ(n))1/2

)
pν−−−→

n→∞
0,
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we have

Pω

(
|Ŝ| = k, |Ŝ ′| = l, L̂

(n)
(k) < (ξ′(n))1/2, L̂

′(n)
(l) < (ξ(n))1/2

)
− Pω(|Ŝ| = k, |Ŝ ′| = l)

pν−−−→
n→∞

0.

Combining this with (6.5), (6.6) and the facts that L(n)/(nµ)
a.s.−−→ 1 and L′(n)/(nµ)

a.s.−−→ 1
as n →∞ establishes that

Pω

(
|Ŝ| = k, |Ŝ ′| = l,S ∩ (V (n) \ V̂ (n)) 6= ∅,S ′ ∩ (V ′(n) \ V̂ ′(n)) 6= ∅

)
pν−−−→

n→∞
0,

which completes the proof of (6.4) and thus of of the lemma.

Lemma 6.6. For every ε > 0 there exists K ∈ N such that

11(Pω(|Ŝtn(Â(n), B̂(n), I)| = 0, |S(A(n), B(n), I)| > K) < ε)
pν−−−→

n→∞
1.

Proof. For ease of presentation we suppress the dependence on the distributions of the
weights and infectious periods, writing Ŝ for Ŝ(Â(n), B̂(n), I) and S for S(A(n), B(n), I).
First note that, as in the proof of Lemma 6.4, we can use branching process approximations
to show that for every K ∈ N we have

Pω(|Ŝtn| = 0, |Ŝ| > K)

− Pω(|Zb
tn(Â(n), B̂(n), I)| = 0, |Zb(Â(n), B̂(n), I)| > K)

pν−−−→
n→∞

0. (6.7)

Now,

Pω(|Zb
tn(Â(n), B̂(n), I)| = 0, |Zb(Â(n), B̂(n), I)| > K)

= Pω(|Zb(Â(n), B̂(n), I)| > K)

− Pω(|Zb
tn(Â(n), B̂(n), I)| > 0, |Zb(Â(n), B̂(n), I)| > K)

= Pω(|Zb(Â(n), B̂(n), I)| > K)− Pω(|Zb
tn(Â(n), B̂(n), I)| > 0), (6.8)

for all sufficiently large n, since |Zb
tn(Â(n), B̂(n), I)| > 0 implies that |Zb(A(n), B(n), I)| > tn.

Arguing as in the proof of Lemma 5.1 shows that

Pω(|Zb(Â(n), B̂(n), I)| > K)
pν−−−→

n→∞
Pω(|Zb(A, B, I)| > K). (6.9)

To deal with the second term on the right hand side of (6.8), observe that

Pω(|Zb
tn(Â(n), B̂(n), I)| > 0)

= Pω(|Zb(Â(n), B̂(n), I)| = ∞)

+ Pω(|Zb
tn(Â(n), B̂(n), I)| > 0, |Zb(Â(n), B̂(n), I)| < ∞)

≤ Pω(|Zb(Â(n), B̂(n), I)| = ∞) + Pω(|Zb(Â(n), B̂(n), I)| ∈ (tn,∞)). (6.10)
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Now, given any ε > 0, there exists L ∈ N such that P(|Zb(A, B, I)| ∈ (L,∞)) < ε.
Further, (6.9) and [12, Lemma 4.1] imply that

Pω(|Zb(Â(n), B̂(n), I)| ∈ (L,∞))
pν−−−→

n→∞
P(|Zb(A, B, I)| ∈ (L,∞)),

so
11(Pω(|Zb(Â(n), B̂(n), I)| ∈ (L,∞)) < ε)

pν−−−→
n→∞

1,

which implies that

11(Pω(|Zb(Â(n), B̂(n), I)| ∈ (tn,∞)) < ε)
pν−−−→

n→∞
1.

As this holds for any ε > 0, it follows from (6.8), (6.9) and (6.10), with another application
of [12, Lemma 4.1], that

Pω(|Zb
tn(Â(n), B̂(n), I)| = 0, |Zb(Â(n), B̂(n), I)| > K)

pν−−−→
n→∞

P(|Zb(A, B, I)| ∈ (K,∞)). (6.11)

Now P(|Zb(A, B, I)| ∈ (K,∞)) can be made arbitrarily close to 0 by choosing K
sufficiently large. Thus (6.7) and (6.11) imply that, for every ε > 0, we can choose K ∈ N
such that

11(Pω(|Ŝtn| = 0, |Ŝ| > K) < ε)
pν−−−→

n→∞
1. (6.12)

Finally, note that

Pω(|Ŝtn| = 0, |Ŝ| > K) = Pω(|Ŝtn| = 0)− Pω(|Ŝtn| = 0, |Ŝ| ≤ K)

= Pω(|Ŝtn| = 0)− Pω(|Ŝ| ≤ K)

for all sufficiently large n. Similarly, since |S| ≥ |Ŝ|,

Pω(|Ŝtn| = 0, |S| > K) = Pω(|Ŝtn| = 0)− Pω(|S| ≤ K)

for all sufficiently large n. Hence, by Lemma 6.5,

Pω(|Ŝtn| = 0, |Ŝ| > K)− Pω(|Ŝtn| = 0, |S| > K)
pν−−−→

n→∞
0,

whence the lemma follows from (6.12).

For the remainder of the proof of Theorem 4.4, we re-analyze an exploration process of
the forward epidemic process and we couple it to a multi-type branching process, such that
the epidemic process is bigger than the branching process for as long as the total weight
of both the vertices and the cliques in the exploration process is less than a predefined
fraction of the total weight. The survival probability of this branching process can be
made arbitrarily close to the probability of a large outbreak as n → ∞. After that we
“glue” the susceptibility sets, if they are large, to the forward epidemic process.
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We need some extra notation. Since the weights of the vertices are exchangeable, the
model does not change if we order the vertices such that A

(n)
i ≤ A

(n)
i+1, and B

(n)
j ≤ B

(n)
j+1, for

1 ≤ i < n and 1 ≤ j < bαnc. For γ ∈ (0, 1), we define

R(n)(γ) := inf

(
i ≤ n;

∑i
j=1 Aj

L(n)
≥ 1− γ

)
and

R′(n)(γ) := inf

(
i ≤ bαnc;

∑i
j=1 Bj

L′(n)
≥ 1− γ

)
.

Furthermore, define

γ̄ := γ̄(γ, n) = 1−
∑R(n)(γ)

j=1 Aj

L(n)
and

γ̄′ := γ̄′(γ, n) = 1−
∑R′(n)(γ)

j=1 Bj

L′(n)
.

We claim that, for γ ∈ (0, 1), γ̄
pν−−−→

n→∞
γ. This can be seen by the following reasoning. Let

x = inf(y ≥ 0; µ−1E[A11(A < y)] > 1 − γ/2). Then x is finite, since µ = E[A] < ∞. By
the strong law of large numbers, we have n−1

∑n
i=1 Ai11(Ai ≤ x)

a.s.−−→ E[A11(A ≤ x)] and

n−1L(n) a.s.−−→ µ as n →∞. Thus,∑n
i=1 Ai11(Ai ≤ x)

L(n)

a.s.−−→ µ−1E[A11(A ≤ x)] ≥ 1− γ/2

as n →∞, whence ν(AR(n) ≤ x) → 1 as n →∞. Combining this with

1− γ̄ =

∑R(n)(γ)
j=1 Aj

L(n)
≥ 1− γ

and

1− γ̄ − AR(n)

L(n)
=

∑R(n)(γ)−1
j=1 Aj

L(n)
< 1− γ

completes the proof of the claim. Similarly we can prove that γ̄′
pν−−−→

n→∞
γ. This also shows

that the vertices in V (n) \ V̂ (n) (respectively, V ′(n) \ V̂ ′(n)) all have labels exceeding R(n)(γ)
(respectively, R′(n)(γ)) with probability tending to 1 as n →∞.

For c1 > 0, let I(c1) be the set of vertices with type/infectious period less than c1. Let
I(c1) denote a random variable having distribution function given by P(I(c1) ≤ x) = P(I ≤
x|I ≥ c1), for x ≥ c1. We use the multi-type branching process Zf (A(n), B(n), I(c1), γ),
which is obtained from Zf (A(n), B(n), I(c1)) by:

(i) Killing upon birth all children with A-weight strictly larger than the weight of vertex
R(n)(γ). Children with A-weight equal to the weight of vertex R(n)(γ) are killed
independently with probability given by the fraction of those vertices in V (n) having
weight equal to the weight of vertex R(n)(γ) that also have label strictly larger than
R(n)(γ).
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(ii) Killing upon birth all cliques of children with B-weight strictly larger than the weight
of vertex R′(n)(γ). Cliques with B-weight equal to the weight of clique R′(n)(γ) are
killed independently with probability given by the fraction of those vertices in V ′(n)

having B-weight equal to the weight of clique R′(n)(γ) that also have label strictly
larger than R′(n)(γ).

If A1, A2, · · · , An are distinct, which happens ν-almost surely if the distribution of A has no
atoms, then (i) reduces to killing upon birth all children with A-weight strictly larger than
the weight of vertex R(n)(γ). If B1, B2, · · · , Bbαnc are distinct then (ii) simplifies similarly.

We observe that the corresponding survival probability function (cf. Section 4.1)
ρ̃(x; A(n), B(n), I(c1), γ) increases as γ ↘ 0. Thus, the limit function, as γ ↘ 0, exists
and satisfies (4.4) by the monotone convergence theorem. Invoking Lemma 4.1, this limit
function is

lim
γ↘0

ρ̃(x; A(n), B(n), I(c1), γ) = ρ̃(x; A(n), B(n), I(c1)).

Similarly, since ρ̃(x; A(n), B(n), I(c1)) is decreasing as c1 ↘ 0, one can show that

lim
c1↘0

ρ̃(x; A(n), B(n), I(c1)) = ρ̃(x; A(n), B(n), I).

For ρ(A(n), B(n), I) as in Section 4.1, this leads to the first assertion of the following lemma.
The second assertion then follows using Lemma 6.1.

Lemma 6.7. For every ε > 0, ω ∈ Ω and n ∈ N, there exist γ > 0 and c1 > 0 small
enough such that

|ρ(A(n), B(n), I(c1), γ)− ρ(A(n), B(n), I)| < ε/2.

For every ε > 0, there exist γ > 0 and c1 > 0 such that

11(|ρ(A(n), B(n), I(c1), γ)− ρ(A, B, I)| < ε)
pν−−−→

n→∞
1.

Let c1 > 0 and γ ≥ 0 be constants. We consider the forward epidemic process Ē (n,γ) =
Ē (n)(ω, I, c1, γ/3), which is obtained from E (n)(ω, I) by removing all vertices (and adjacent
edges) in I(c1), K1(tn) and K2(tn) and not allowing for contacts in the cliques K ′1(tn) and
K ′2(tn) or in cliques with label R′(n)(γ/3) or larger. As before, we deduce that for every
γ > 0 and large enough n, all vertices in V ′(n) \ V̂ (n) have label at least R′(n)(γ/3), with
probability arbitrarily close to 1. Also define Ē (n) = Ē (n,0) = Ē(ω, I, c1, 0) and let the total
weight of the cliques in Ē (n) be denoted by W̄ ′(n)(c1).

Lemma 6.8. For every ε > 0, there exist constants η > 0 and c1 > 0, such that

11
(
Pω(W̄ ′(n)(c1) > ηn)− (ρ(A, B, I)− ε) > 0

) pν−−−→
n→∞

1.

Proof. We explore Ē (n,γ) vertex by vertex (and clique by clique) and couple this with an
exploration process of the tree of the branching process

Z(n,γ) := Zf (Â(n), B̂(n), I(c1), γ).

With some abuse of notation we use Ē (n,γ) and Z(n,γ) for the exploration processes as well.
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We choose one vertex uniformly at random from V̂ (n). We assume that this vertex is
not in K1(tn) or K2(tn) and that its type/infectious period exceeds c1. The probability
that this assumption is met can be made arbitrarily close to 1 by choosing n large enough
and c1 small enough. Denote this vertex by v̄0. Define the “forbidden sets” of vertices by

Γ0 := K1(tn) ∪K2(tn) ∪ I(c1) ∪ (V (n) \ V̂ (n)) ∪ {v̄0} and

Γ′0 := K ′1(tn) ∪K ′2(tn) ∪ {v′i ∈ V ′(n); i ≥ R′(n)(γ/3)}.

For the vertices in V (n) \ Γ0, we re-randomize the infectious period in such a way that, for
every vertex in V (n) \ Γ0, we let it be an independent random variable with distribution
I(c1). This will not affect the distribution of the processes.

Let σ
(n)
0 (i) be a relabeling of the vertices in V (n) such that if vj ∈ Γ0 and vi ∈ V (n) \Γ0,

then σ
(n)
0 (i) < σ

(n)
0 (j), while if vi, vj ∈ V (n) \Γ0, then σ

(n)
0 (i) < σ

(n)
0 (j) if i < j. The precise

order of the labels of the vertices in the forbidden set is not important. Define σ
′(n)
0 (i)

similarly.
The A-weight and type of v̄0 are also assigned to the ancestor of Z(n,γ), say that the A-

weight is a0. Then we use a P(a0L
′(n)/(µn)) random variable, d0, to denote the “maximal”

number of cliques vertex v̄0 is part of and, coupled to this, the “maximal” number of child
cliques the vertex has in Z(n,γ). The meaning of maximal is clarified below.

We now identify the first child clique. Choose a real number, x′ say, uniformly at
random from the unit interval. In Ē (n,γ) we try to connect vertex v̄0 to the clique with label
i, which satisfies ∑

j∈N:σ
′(n)
0 (j)<σ

′(n)
0 (i)

Bj < x′L′(n) ≤
∑

j∈N:σ
′(n)
0 (j)≤σ

′(n)
0 (i)

Bj.

Let this vertex be v̄′1. The B-weight of the possible child clique in Z(n,γ) is Bi, where i is
such that

∑i−1
j=1 Bk < x′L′(n) ≤

∑i
j=1 Bj. If v̄′1 ∈ Γ′0, then the clique is ignored in Ē (n,γ). If

x > 1 − γ̄, then the child clique in Z(n,γ) is ignored. We note that as long as the weight
of Γ′0 is less than γ̄L′(n), a clique can be ignored in Ē (n,γ) only if the child clique in Z(n,γ)

is also ignored. Furthermore, the B-weight of the clique in Z(n,γ) is not larger than the
B-weight of the clique in Ē (n,γ).

Let the label of v̄′1 be k. We now define

σ
′(n)
1 (i) =


σ
′(n)
0 (i), for i such that σ

′(n)
0 (i) < σ

′(n)
0 (k),

σ
′(n)
0 (i)− 1, for i such that σ

′(n)
0 (i) > σ

′(n)
0 (k),

bαnc, for i = k.

That is, we give v̄′1 the maximal label and keep the order of the labels of the other vertices.
Furthermore, we add v̄′1 to the forbidden set, i.e. set Γ′1 = Γ′0 ∪ {v̄′1}. We choose the next

clique in Ē (n,γ) and Z(n,γ), say v̄′2, in the same way as we choose v̄′1, with σ
′(n)
0 replaced by

σ
′(n)
1 and Γ′0 replaced by Γ′1, and we continue this process until we have identified all cliques

that v̄0 is part of.
We then pick one of the cliques added to Ē (n,γ) which was not ignored in Z(n,γ). We

realise a local epidemic in this group as follows. Assume that the B-weight of the clique
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is b̄1. Then let d′1 be P(b̄1L
(n)/(µn)). Consider a population with d′1 initial susceptible

individuals and 1 initial infectious individual, all with infectious period distributed as I(c1),
and couple two continuous time epidemics in this population as follows. Consider the first
newly infected individual in this population. We associate this individual with vertices in
Ē (n,γ) and in Z(n,γ) as follows. Choose a real number, say x, uniformly at random from the
unit interval. In Ē (n,γ), we try to connect clique v̄′1 to the vertex with label i, which satisfies∑

j∈N:σ
(n)
0 (j)<σ

(n)
0 (i)

Bj < xL(n) ≤
∑

j∈N:σ
(n)
0 (j)≤σ

(n)
0 (i)

Bj.

Suppose that this vertex is v̄2. The A-weight of the possible child in Z(n,γ) is Ai, where i
is such that

∑i−1
j=1 Aj < xL(n) ≤

∑i
j=1 Aj. The vertex we choose is denoted by v̄1.

If v̄1 ∈ Γ0, then the vertex is ignored in Ē (n,γ) and immediately killed. If x > 1− γ̄, then
the child in Z(n,γ) is ignored. We note that as long as the weight of Γ0 is less than γ̄L(n), a
vertex can be ignored in Ē (n,γ) only if the child in Z(n,γ) is also ignored. Furthermore, the
A-weight of the vertex in Z(n,γ) is not larger than the A-weight of the vertex in Ē (n,γ). We
identify the other vertices infected by local epidemics started by v0 and the corresponding
children in Z(n,γ) as we have identified the cliques v0 is part of, where at each step the
forbidden set of vertices might grow and the chosen vertex gets the highest label for the next
vertex pick. The infectious period/type assigned to every vertex (which is not immediately
killed) is distributed as I(c1) and coupled vertices get the same infectious period/type. We
continue in this way until we have identified all vertices infected by local epidemics started
by v0 and we then explore the cliques those individuals are part of one by one, as before.

The exploration process Ē (n,γ) dominates the exploration process Z(n,γ) until the total
weight of the forbidden set in V (n) in Ē (n,γ) is at least γ̄L(n) or the total weight of the
forbidden set in V ′(n) in Ē (n,γ) is at least γ̄L′(n).

Note that we may choose c1 > 0 small enough such that P(I < c1) < γ/2. By the
law of large numbers this implies that c1 > 0 might be chosen such that the total weight
of vertices in I(c1) is less than (γ/2)L(n) with probability tending to 1 as n → ∞. By
Lemma 6.3, we know that the weights of K1, K2, K ′1 and K ′2 are each a.s. o(n) and we
know that the set of vertices with label ≥ R′(n)(γ/3) has total weight at least (γ/3)L(n)

and the probability that this total weight is is less than (γ/2)L(n) can be made arbitrary
close to 1 by choosing n sufficiently large.

If the ordering of the exploration processes Ē (n,γ) and Z(n,γ) stops because the total
weight of the forbidden set in V ′(n) exceeds γL′(n), then, using Lemma 6.7, the lemma is
immediate with η = γ/3. If this ordering stops because the total weight of the forbidden set
in V (n) exceeds γL(n), then the total weight of vertices in Ē (n,γ) that are not in the original
forbidden set exceeds (γ/3)L(n). We now proceed as follows. Since all of the vertices in
V̂ ′(n) have weight at most log n, the number of vertices with labels exceeding R′(n)(γ/3)
grows to infinity and, by the law of large numbers, we find that the total weight of cliques in
this set which contain vertices in Ē (n,γ) is Θ(n). This completes the proof of the lemma.

Proof of Theorem 4.4. We use the notation of Lemma 6.8. Recall that Ē (n) = Ē (n,0) and
that E (n) = E (n)(ω, I) is the set of ultimately infected vertices in a population of n individ-
uals.
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We first provide bounds for

Eω[n−1|E (n)|
∣∣ W̄ ′(n)(c1) > ηn] = Eω[n−1

n∑
i=1

11(vi ∈ E (n))
∣∣ W̄ ′(n)(c1) > ηn]

= Pω(v1 ∈ E (n)
∣∣ W̄ ′(n)(c1) > ηn)

and for

Eω[n−2|E (n)|2
∣∣ W̄ ′(n)(c1) > ηn]

= Eω[n−2

n∑
i=1

n∑
j=1

11(vi, vj ∈ E (n))
∣∣ W̄ ′(n)(c1) > ηn]

= n−1Pω(v1 ∈ E (n)
∣∣ W̄ ′(n)(c1) > ηn)

+ (1− n−1)Pω(v1, v2 ∈ E (n)
∣∣ W̄ ′(n)(c1) > ηn).

Let ε′ > 0. By Lemma 6.4 and the asymptotic theory of supercritical general branching
processes [18] modified to the lattice case, we have that, if the susceptibility set of v1

in Ĝ(n) survives for tn = dlog log ne generations, then there exists c2 > 0 such that the
probability that the number and the total weight of the vertices in this generation is at
least c2 log log n is greater than 1−ε′ for all sufficiently large n. We denote the set of vertices
in generation tn of this susceptibility set by V̂

(n)
tn . The same holds for the susceptibility set

of v2. Furthermore, the events of survival up to generation tn of the two susceptibility sets
are asymptotically independent by a birthday problem type of argument and Lemma 6.3.

Conditioned on W̄ ′(n)(c1) > ηn, the law of large numbers establishes that the following

event occurs with probability exceeding 1− ε′. The number of vertices in V̂
(n)
tn that both (i)

are in the same clique as an infected vertex explored in Ē (n) and (ii) have infectious period

at least c1, grows to infinity as n →∞. Since each vertex in V̂
(n)
tn is infected independently

with probability at least 1− e−c1 > 0, we have that

11
(
Pω

(
v1 ∈ E (n)

∣∣ |Ŝ1
tn| > 0, W̄ ′(n)(c1) > ηn

)
> 1− 2ε′

)
pν−−−→

n→∞
1.

Furthermore, if the susceptibility set of v1 does not survive up to generation tn in Ĝ(n),
then Lemma 6.6 shows that the probability that the initial infective is in v1’s susceptibility
set converges to 0. More precisely, for every K ∈ N we have that

Pω

(
v1 ∈ E (n)

∣∣ |Ŝ1
tn| = 0

)
=

Pω(v1 ∈ E (n), |Ŝ1
tn| = 0)

Pω(|Ŝ1
tn| = 0)

≤
Pω(v1 ∈ E (n), |S1| ≤ K) + Pω(|S1| > K, |Ŝ1

tn| = 0)

Pω(|Ŝ1
tn| = 0)

.

The first term in the numerator of the right hand side of this inequality converges to 0 as
n →∞, while by Lemma 6.6 we have that, for every ε > 0 and δ > 0, there exists K ∈ N
such that the second term in the numerator is smaller than ε with ν-probability at least
1− δ for all sufficiently large n. The denominator is trivially strictly positive. We therefore
conclude that

Pω(v1 ∈ E (n)
∣∣ |Ŝ1

tn| = 0)
pν−−−→

n→∞
0.
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From the proof of Lemma 6.8 we deduce that

Pω(|Ŝ1
tn| > 0)− Pω(|Ŝ1

tn| > 0
∣∣ W̄ ′(n)(c1) > ηn)

pν−−−→
n→∞

0,

whence
Pω(v1 ∈ E (n)

∣∣ W̄ ′(n)(c1) > ηn)− Pω(|Ŝ1
tn| > 0)

pν−−−→
n→∞

0.

Now, arguing as at the start of the proof of Lemma 6.4,

Pω(|Ŝ1
tn| > 0)− Pω(|Zb

tn(A(n), B(n), I)| > 0)
pν−−−→

n→∞
0,

whilst the end of the proof of Lemma 6.4 shows that

Pω(|Zb
tn(A(n), B(n), I)| > 0)

pν−−−→
n→∞

ρb(A, B, I).

Thus, Pω(|Ŝ1
tn| > 0)

pν−−−→
n→∞

ρb(A, B, I), whence

Eω[n−1|E (n)|
∣∣ W̄ ′(n)(c1) > ηn]

pν−−−→
n→∞

ρb(A, B, I).

Since the first tn generations of the susceptibility sets of v1 and v2 in Ĝ(n) are non-
overlapping with probability tending to 1 as n →∞, we notice that

Pω(v1, v2 ∈ E (n)
∣∣ W̄ ′(n)(c1) > ηn)− (Pω(v1 ∈ E (n)

∣∣ W̄ ′(n)(c1) > ηn))2 pν−−−→
n→∞

0.

This gives that

Eω[n−2|E (n)|2
∣∣ W̄ ′(n)(c1) > ηn]

pν−−−→
n→∞

(ρb(A, B, I))2.

Therefore, var(n−1|E (n)|
∣∣ W̄ ′(n)(c1) > ηn)

pν−−−→
n→∞

0 and we conclude that, for all δ > 0,

Pω(|n−1E (n) − ρb(A, B, I)| < δ
∣∣ W̄ ′(n)(c1) > ηn)

pν−−−→
n→∞

1. (6.13)

On the other hand, we know by Lemma 6.8 that for every ε′ > 0, there exist constants
η > 0 and c1 > 0 such that

11(Pω(W̄ ′(n)(c1) > ηn) > ρ(A, B, I)− ε′)
pν−−−→

n→∞
1. (6.14)

Furthermore, by Theorem 4.3 there exists k ∈ N such that

11
( k∑

i=1

Pω(|E (n)| = k) > 1− ρ(A, B, I)− ε′
)

pν−−−→
n→∞

1. (6.15)

Now observe that

Pω(v1 ∈ E (n), W̄ ′(n)(c1) ≤ ηn) ≤ Pω(v1 ∈ E (n), |E (n)| ≤ k)

+Pω(W̄ ′(n)(c1) ≤ ηn, |E (n)| > k).
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By exchangeability, the first term on the right hand side of this inequality is bounded above
by k/n which converges to 0 as n →∞. Further, for any K ∈ N,

Pω(W̄ ′(n)(c1) > ηn, |E (n)| ≤ K)
pν−−−→

n→∞
0,

so (6.14) and (6.15) imply that for every ε > 0, there exists k ∈ N such that

11(Pω(W̄ ′(n)(c1) ≤ ηn, |E (n)| > k) < ε)
pν−−−→

n→∞
1.

It follows that
Eω[n−1|E (n)|

∣∣ W̄ ′(n)(c1) ≤ ηn]
pν−−−→

n→∞
0,

so for every δ > 0 we have

Pω(n−1|E (n)| < δ
∣∣ W̄ ′(n)(c1) ≤ ηn))

pν−−−→
n→∞

1. (6.16)

Combining (6.13) and (6.16) completes the proof of Theorem 4.4.

7 Extension

In this paper we have studied the spread of an SIR epidemic on a random intersection graph.
A variant of the random intersection graph is proposed in [20], where a configuration model
construction is used to create the graph. In our terminology and notation, independent
degrees are assigned to vertices in V and V ′, where the distributions for the degrees of
vertices in V are identical and the same holds for the distribution of the degrees of vertices
in V ′. Each vertex in V ∪ V ′ is assigned a number of half-edges given by its degree. In
the auxiliary graph A(n) the half-edges of the first n vertices in V are paired uniformly at
random with the first L(n) half-edges in V ′, where L(n) is the number of half-edges assigned
to the first n vertices in V . Note that the final vertex in V ′ used in this construction might
not retain its full degree in A(n).

We expect that similar results to those presented in this paper hold for epidemics on
such graphs. Some additional dependencies arise since connecting to a vertex takes away
one of its available half-edges, however we anticipate that the impact of those dependencies
is very small.

Assume that the degrees of vertices in V are distributed as D and degrees of vertices in
V ′ are distributed as H, where µD = E[D] and µH = E[H] are both finite. For notational
convenience we assume that the empirical distributions used to construct A(n) are the same.
We derive a formula in the spirit of (4.1) (see also (3.6)). Let D̃ and H̃ denote the size-
biased variants of D and H, respectively. Thus, for example, the distribution of D̃ is given
by

P(D̃ = d) = µ−1
D dP(D = d) (d ∈ N).

As in (3.6), let U = U(h) = (uk; k ∈ Z+), where uk = E[e−kI(1− h(I))]. Conditioning on
clique size, the number of individuals in a clique directly infected by the initial infective
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and then the final size, we find that

1− F (h)(x) = E[
∏

i∈Γ(v)

(1− h(Ii))
∣∣ I0 = x]

=
∞∑

m=0

P(H̃ − 1 = m)
m∑

a=0

(
m

a

)
(1− e−x)ae−x(m−a)

×
m−a∑
k=0

(m− a)!

(m− a− k)!
(uk)

m−kGk(1|U)

=
∞∑

m=0

m∑
k=0

m−k∑
a=0

P(H̃ − 1 = m)

(
m− k

a

)
(1− e−x)ae−x(m−a)

× m!

(m− k)!
(uk)

m−kGk(1|U)

and then

1− F (h)(x) =
∞∑

m=0

m∑
k=0

P(H̃ − 1 = m)e−kx m!

(m− k)!
(uk)

m−kGk(1|U)

=
∞∑

k=0

e−kxGk(1|U)
∞∑

m=k

P(H̃ − 1 = m)
m!

(m− k)!
(uk)

m−k

=
∞∑

k=0

e−kxGk(1|U)f
(k)

H̃−1
(uk),

where fH̃−1 is the PGF of H̃ − 1 and f
(k)

H̃−1
is its kth derivative.

Let Φ(h)(x) := 1−fD(1−F (h)(x)) and Φ̃(h)(x) := 1−fD̃−1(1−F (h)(x)). It is straight-
forward to show that those functionals have the same interpretation as (4.2) and (4.3), and
hence that they determine the survival probability, ρ(D, H, I) say, of a forward branching
process approximating the early stages of an epidemic in this model.

Similar modifications can also be made to the backward branching process. It is readily
shown that the PGF of a typical clique size (recall (4.13)) is now given by

g(s) =
∞∑

k=0

skGk(1|V )f
(k)

H̃−1
(vk),

where V and vk are as in (3.5). It then follows that the PGF of the number of children of an
individual, who is not the ancestor, is given by f̃(s) = fD̃−1(g(s)) and the corresponding
PGF for the ancestor is fD(g(s)). The survival probability of the backward branching
process, ρb(D, H, I) say, is then determined exactly as at the end of Section 4.2.

We expect that, under mild conditions on the distributions of D and H, Theorems 4.3–
4.5 hold for the model described in this section, with the forward and backward branching
processes being modified as indicated above.
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