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Abstract

It is well-known that curved exponential families can have multimodal
likelihoods. We investigate the relationship between flat or multimodal
likelihoods and model lack of fit, the latter measured by the score (Rao)
test statisticWU of the curved model as embedded in the corresponding
full model. We provide a formula for WU , or a lower bound for it, when
data yield a locally flat or convex likelihood (root of multiplicity > 1,
terrace point, saddle point, local minimum). The formula is related to
the statistical curvature of the model, and it depends on the amount
of Fisher information. We use three models as examples, including the
Behrens–Fisher model, to see how a flat likelihood etc. by itself can
indicate a bad fit of the model. The results are much related (dual) to
those of Efron [Ann. Statist. 6 (1978) 362–376].
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1 Introduction

In full exponential families, log-likelihood functions necessarily have a unique
maximum (or supremum), since they are concave functions in the canonical
parameterization of the model. As a consequence, the likelihood equations
have (at most) one root. Outside this class of models, likelihoods may be
multimodal for some datasets or even all possible datasets, and the non-
uniqueness can cause various types of problems.

It is well-known that curved exponential families can have multimodal
likelihoods. Two important examples of such models are the Behrens–Fisher
model (two samples from Gaussian distributions with the same mean value
parameter but different variances), and the Seemingly Unrelated Regressions
(SUR) model (bivariate or multivariate Gaussian linear regression with dif-
ferent sets of regressors for the different response variates — much used in
econometrics). Characterized as a curved exponential family the Behrens–
Fisher model is a (4, 3) model, meaning that the minimum sufficient statistic
is of dimension 4 but the effective parameter dimension is only 3. A simple
bivariate SUR model referred to below is (7, 5). In recent years, there has
been increased interest in multimodality for these models types.

For the Behrens–Fisher model, Segiura and Gupta (1987) established
that the likelihood equations can have several roots. Drton (2008) and
Buot et al. (2007) developed probability asymptotics and generalizations to
more than two populations, respectively. What happens in this situation is
essentially that if the sample means are too distant apart, they will each yield
a local maximum in their vicinity, and in between them is a saddle point more
or less near the total average and representing what would approximately
have been the unique maximum, had the sample means been less far apart.

The relatively simple (7, 5) bivariate SUR model, which has only one
regressor for each response variable and zero intercepts, but an unknown re-
sidual covariance matrix, was investigated by Drton and Richardson (2004),
who demonstrated that the log-likelihood can have several local maxima.
This was an important observation, because it contradicted claims in the
econometric literature. and it has consequences for MLE search algorithms.
They also showed that under the SUR model this is a small sample phe-
nomenon, because the probability for it to happen will go to zero with the
sample size. On the other hand, the phenomenon can occur more frequently
if the model is misspecified. Some results were extended by Drton (2005) to
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more complicated SUR models.
Simpler but more artificial examples that allow likelihood multimodality

are found in Efron (1975, 1978), and in Barndorff–Nielsen and Cox (1994,
Ch. 2). Example 2.38 in their book is a classical one, of a bivariate Gaussian
distribution with the correlation coefficient as the only unknown parameter.
This is a (2, 1) curved exponential family. Barndorff–Nielsen and Cox show
by a diagram for what datasets multiple roots occur. An even simpler (2, 1)
family is the “Normal parabola” (Example 2.35), two independent Gaussian
variates with unknown means but known variances, and a specified parabolic
relationship between the two means. These examples allow more explicit
calculations, and are therefore important for checking and illustrating the
theory.

In this paper the aim is not to obtain probabilistic statements about the
occurrence of multiple roots under some specified model, but we will take
a likelihood-based statistical view by assuming we are given data that yield
a flat likelihood or multiple roots, and by investigating to what extent this
relates to lack of fit of the curved model within a full model, in which it is
embedded. We will see that the multimodality phenomenon is closely related
to relatively large values of the score test statistic, to be denoted WU . The
results may be called dual in character to those of Efron’s (1978) basic paper,
by being likelihood-based rather than sampling-based in their interpretation.
Also, Efron’s paper is restricted to (2, 1) families, for conceptual simplicity.

2 Theory

We start with some basics about full and curved exponential families, see
also Efron (1978) or Barndorff–Nielsen and Cox (1994, in particular sections
1.3 and 2.10). We set out from a basic model being a full exponential family,
with likelihood function in canonical parameterization given as

logL(θ; t) = θT t− log(C(θ)). (1)

Here θ ∈ Θ is the canonical parameter, t is the canonical statistic (also
minimum sufficient), and C(θ) is a norming constant which has the first
and second order derivatives

Dθ logC(θ) = µt(θ) = E(t; θ), (2)

D2
θ logC(θ) = Var(t; θ). (3)

3



where µt is an alternative notation for the expectation vector of t. It follows
that the Fisher score function U(θ; t) (or shorter U(θ)) is the vector

U(θ) = Dθ logL(θ; t) = t− µt(θ), (4)

and that the observed and the expected (Fisher) information matrices for θ
are equal, being

−D2
θ logL(θ) = −DθU(θ) = I(θ) = Var(t; θ), (5)

assumed nonsingular. The last relation shows that logL(θ) is a concave
function, hence it has a unique maximum, if any.

A curved exponential family is a subfamily specified by writing θ = θ(ψ),
where the subfamily parameter ψ ∈ Ψ has a smaller dimension than the
canonical parameter θ. We assume θ(ψ) is a smooth, intrinsically nonlinear
function of ψ. The curved family has the same log-likelihood as the full
family, only regarded as a function of θ(ψ), with ψ restricted to the space
Ψ. Since θ(ψ) is nonlinear, the minimum sufficient statistic is still t, as for
the full family.

The curved family score function U(ψ) is obtained by using the chain
rule,

U(ψ; t) = Dψ logL(θ(ψ); t) =
(
∂θ

∂ψ

)T
(t− µt(θ(ψ))). (6)

Here
(
∂θ
∂ψ

)
is the Jacobian matrix for the function θ(ψ). The expected

information for ψ is

I(ψ) = Var(U(ψ; t)) =
(
∂θ

∂ψ

)T
I(θ(ψ))

(
∂θ

∂ψ

)
. (7)

The observed information differs from I(ψ), being dependent on t, see below.
We first treat the relatively simple case dimψ = 1. This is enough to

cover the last two examples mentioned in Section 1. They will reappear as
Examples 3.1 and 3.2.

2.1 The case dimψ = 1.

The curved model θ = θ(ψ) is here a one-dimensional curve in Θ ⊂ Rp.
The situation we have in mind is where the corresponding likelihood has a
minimum or a very flat local or global maximum along the curve, around
one or several roots ψ̂ to the likelihood equation. We therefore assume that
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both the first and second derivatives of logL(θ(ψ)) are effectively zero at ψ̂,
or the latter even negative.

The second derivative of logL(θ(ψ)), or the observed information Jt(ψ),
is obtained by differentiating (6), with the scalar result

Jt(ψ) = −D2
ψ logL(θ(ψ); t) = I(ψ) −

(
∂2θ

∂ψ2

)T
(t− µt(θ(ψ))). (8)

For later use, note from (8) that

Var(Jt(ψ);ψ) =

(
∂2θ

∂ψ2

)T
I(θ(ψ))

(
∂2θ

∂ψ2

)
. (9)

When Jt(ψ) ≤ 0, we have(
∂2θ

∂ψ2

)T
(t− µt(θ(ψ))) ≥ I(ψ) > 0. (10)

Furthermore, application of Cauchy–Schwarz inequality yields
(
∂2θ

∂ψ2

)T
(t− µt(θ(ψ)))


2

(11)

≤


(
∂2θ

∂ψ2

)T
I(θ(ψ))

(
∂2θ

∂ψ2

) {
(t− µt(θ(ψ)))T I(θ(ψ))−1(t− µt(θ(ψ)))

}
,

where the first factor is Var(Jt(ψ)), see (9). Combining (10) and (11) we
get the inequality

(t− µt(θ(ψ)))T I(θ(ψ))−1(t− µt(θ(ψ))) ≥ I(ψ)2

Var(Jt(ψ))
. (12)

When calculated in a MLE ψ̂, the left hand side is the score (or Rao) test
statistic WU , for testing the fit of the curved model within the full model,
see e.g. Barndorff–Nielsen and Cox (1994, ch. 3). The inequality yields a
lower bound to the score test statistic. The bounds depends on the form of
the curve and on the full model information matrix.

In (12), we have not yet utilized that ψ should be a root ψ̂ of the like-
lihood equations. This means that we can sharpen (12). Because

(
∂θ
∂ψ

)
is

orthogonal to (t− µt(θ(ψ))) in a root ψ̂, the left hand side of (10) does not
change if the vector

(
∂2θ
∂ψ2

)
is replaced by its residual after projection on
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(
∂θ
∂ψ

)
. As in (11) we use I(θ(ψ))-norm, and then the projection is b

(
∂θ
∂ψ

)
with

b =

(
∂2θ
∂ψ2

)T
I(θ(ψ))

(
∂θ
∂ψ

)
(
∂θ
∂ψ

)T
I(θ(ψ))

(
∂θ
∂ψ

) . (13)

Thus, we obtain the sharper inequality

WU (ψ̂) ≥ I(ψ̂)2{(
∂2θ
∂ψ2

)
− b

(
∂θ
∂ψ

)}T
I(θ(ψ̂))

{(
∂2θ
∂ψ2

)
− b

(
∂θ
∂ψ

)} . (14)

The right hand side is the squared radius of statistical curvature, as intro-
duced by Efron (1975). Thus, we can equivalently write

WU (ψ̂) ≥ 1/γ2
ψ̂
, (15)

where γψ is Efron’s statistical curvature (the inverse of the radius). An
alternative expression for the right hand side, based on the fact that both
J(ψ) and U(ψ) are linear forms in t, is

WU (ψ̂) ≥ I(ψ̂)2

ResVar(J |U ; ψ̂)
, (16)

where the denominator should be interpreted as the residual variance in a
linear regression of J on U .

Remark 1. Note that if the information I(θ(ψ)) is increased by a scalar
factor, for example by increasing sample size, the lower bound in (14) will
increase by the same factor. This means that as information accumulates,
the occurrence of a multiple root or several roots along a flat likelihood will
be a successively stronger indication that the model does not fit.

Remark 2. All t-vectors having a root ψ̂ in common are situated in a (dim θ−
1)-dimensional hyperplane orthogonal to

(
∂θ
∂ψ

)
. So is also the residual vector(

∂2θ
∂ψ2

)
− b

(
∂θ
∂ψ

)
, with b from (13). When dim θ = 2, there is only one such

direction, and inequalities (14–16) become equalities. In this case, the result
is equivalent with Theorem 2 of Efron (1978). The differences are in the
proof and in the interpretations. For dim θ > 2, equality is only attained for
t in some particular direction from the point µt(θ(ψ̂)), so in this case, there
is only exceptional equality in (14–16).
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2.2 The case dimψ > 1.

This case is somewhat more difficult to describe than the case dimψ = 1,
but of interest to include not only for completeness, but because most curved
families of applied importance have dimψ > 1. The Behrens–Fisher model
will be investigated in Example 3.3 further below.

The observed information matrix Jt(ψ) is positive definite precisely when
the scalar aTJt(ψ)a > 0 for all vectors a 6= 0 (all directions). We can write

aTJt(ψ)a = aT I(ψ)a−
{
aT
(
∂2θ

∂ψ2

)
a

}T
{t− µ(θ(ψ))} ,

where aT
(
∂2θ
∂ψ2

)
a should be interpreted as a vector with elements aT

(
∂2θi
∂ψ2

)
a.

Continuing as in the case dimψ = 1, we see that the likelihood L(ψ) has a
minimum or a root of multiplicity > 1 in the a direction through ψ̂ when{

aT
(
∂2θ

∂ψ2

)
a

}T {
t− µ(θ(ψ̂))

}
≥ aT I(ψ̂)a.

Applying Cauchy–Schwarz inequality and noting that the bound should hold
whatever be a, we obtain the inequality

WU (ψ̂) ≥ min
a 6=0

{aT I(ψ̂)a}2{
aT
(
∂2θ
∂ψ2

)
a
}T

I(θ(ψ̂))
{
aT
(
∂2θ
∂ψ2

)
a
} . (17)

Thus, this lower bound holds for WU whenever logL(ψ) is locally flat or
locally convex in any direction a in Ψ through ψ̂, e.g. if ψ̂ is a local minimum,
saddle point, or root of multiplicity > 1. This is exemplified and illustrated
in Section 3.3.

As in Section 2.1, Remark 1, if the information matrix I(θ) is increased
by a scalar factor, e.g. by an increased sample size, the lower bound is
increased by the same factor.

In Section 2.1 the lower bound (12) could be sharpened by replacing ∂2θ
∂ψ2

by a residual after projection on ∂θ
∂ψ . The corresponding replacement is not

possible in the present case, even though the vector character of aT ∂2θ
∂ψ2a

might make us believe in full analogy. The reason is found by reconsidering
Remark 2 of Sec. 2.1. If we think in terms of a one-dimensional submodel
of Ψ, the residual vector is situated in a (dim θ − 1)-dimensional space, but
not necessarily in the original (dim θ−dimψ)-dimensional space. Thus, the
analogy fails.
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3 Examples

3.1 Normal parabola, (2, 1).

Our first, simple model has been used as example also by Efron (1975)
and Barndorff–Nielsen and Cox (1994, Example 2.35). Let y1 and y2 be
two independent, unit variance Gaussian variates, with means unknown but
following a simple parabolic relationship, N2(ψ,ψ2, 1, 1, 0). This is a curved
subfamily of the full model N2(θ1, θ2, 1, 1, 0), with canonical statistic t =
(y1, y2)T and canonical parameter θ = (θ1, θ2)T . The full model score vector
is t−θ, the MLE is θ̂ = t, and I(θ) is the identity matrix, making calculations
simple. The curved model likelihood equation is

(y1 − ψ) + 2ψ (y2 − ψ2) = 0, (18)

which is a cubic equation in ψ that can have three real roots. However, only
one root is of the same sign as y1 (when y1 6= 0).

When y1 = 0, there are three different roots as soon as y2 > 0.5. The
boundary case y2 = 0.5 has a triple root (flat maximum) ψ̂ = 0, and the
likelihood contours are shown in Figure 1a. The score test value is WU =
0.25, and 1/γ2

ψ̂
has the same value (see (15) and Remark 2). The value

WU = 0.25 is quite small, so there is nothing remarkable with a triple root
or three roots along a relatively flat likelihood in this case.

For y2
1 ≥ 2, there are three real roots even when data fit the model

perfectly. In that case, the global maximum of course corresponds to WU =
0, and the lower bound (15) represents a more or less flat region around
the local minimum. This is illustrated in Figure 1b, which represents the
boundary case y2

1 = 2, when the other two roots form a terrace point, so
there is equality in (15). In the terrace point ψ̂ = −1/

√
2, WU = 6.75,

which is a high value. The conclusion is of course not that the whole model
is wrong, only that the root ψ̂ = −1/

√
2 is an artefact of the curved model.

As stressed in Remark 1 above, the situation would be the same if we
had a sample of n such pairs of data, only that we use t = (

∑
y1i,

∑
y2i)T .

Provided the value of t/n remained the same as for n = 1, the score test
statistic WU and its lower bound would both be increased by the factor n.
Thus, with a sample of size n = 20, say, a triple root ψ̂ = 0 would indicate
a bad model fit.
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3.2 Correlation example, (2, 1).

The setting here is a sample of size n from a marginally standardized
bivariate Gaussian distribution, thus with only the correlation coefficient
unknown, N2(0, 0, 1, 1, ρ). This is a curved subfamily of the full family
N(0, 0, σ2, σ2, ρ). If the latter is characterized by the canonical statistic

t =

(
t1
t2

)
=

( ∑
(x2
i + y2

i )/2∑
xiyi

)

and the canonical parameter vector

θ =

(
θ1
θ2

)
=

(
−1/(1− ρ2)σ2

ρ/(1− ρ2)σ2

)
,

the restricted model σ = 1 corresponds to the curve θ1 = −0.5(1+
√

1 + 4θ2
2

in the cone Θ (|θ2| ≤ θ1). The expected value of t is given by E(t1/n) = σ2

and E(t2/n) = ρσ2. The fact that the former is free of ρ does not mean that
t1 is ancillary for ρ, because the variance of t1 depends on ρ. More precisely,

I(θ) = nσ4

(
1 + ρ2 2ρ

2ρ 1 + ρ2

)

When t2 = 0 is observed, both models have a root ρ̂ = 0 of the likelihood
equation(s), whatever the value of t1 > 0. In the full model it is of course the
unique root and it represents a global maximum, but in the curved model
this is not always true. If t1/n ≥ 0.5, the root is unique, but if t1/n < 0.5 the
root ρ̂ = 0 represents a local minimum, in between two identical maximum
points. This is illustrated by Figures 2 and 3, which represent t1/n = 0.5
and t1/n = 0.25 < 0.5, respectively, and show the log-likelihood contours.
In the limiting case t1/n = 0.5, the root ρ̂ = 0 is a triple root, and the curve
and the likelihood contour are seen to follow each other well around this
point (Figure 2).

When t1/n = 0.25, t2 = 0 (Figure 3), the maximum is attained at
ρ ≈ ±0.7. A heuristic interpretation goes as follows. Consider (t1 ± t2)/n,
which are uncorrelated with expected values 1±ρ. When they have the same,
relatively low, observed value 0.25, a conflict is created. The likelihood has a
slight preference to go for a high positive or high negative ρ-value, fitting one
of the expected values (at the expense of the other), rather than selecting
the average position that would have been the maximum, had t1 been 0.5
instead of 0.25.
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When t2 6= 0, no triple root is possible. Figure 4 represents t1/n = 0.25,
t2/n = 0.118. so the empirical correlation is positive, r = 0.47. The curved
model has its likelihood maximum for ρ = 0.86 and a terrace point for
ρ = −0.37. In the terrace point, WU equals the lower bound, and the value
is WU = 0.49n.

3.3 Behrens–Fisher model, (4, 3).

The final example hsd dimψ > 1. For simplicity we let the two samples
be of the same size, n, so in the full model we regard data as coming from
xi ∼ N(µx, σ2

x), yi ∼ N(µy, σ2
y), i = 1, ..., n, with full mutual independence.

The Behrens–Fisher model is obtained by specifying µx = µy(= µ). The
problem is location and scale invariant, but we will additionally assume that
we have observed the same sample variances. Then we can take x̄ + ȳ = 0
and s2x = s2y = 1 (sample variances with denominator n, not n − 1), and
only one statistic remains to be specified, the mean value difference x̄ − ȳ.
From the symmetry of the setting we are led to think that µ̂ = 0, σ̂x =
σ̂y = 1 is the MLE, and, yes, there is such a root to the likelihood equation.
However, it corresponds to a likelihood maximum only if x̄ and ȳ are not
too wide apart, more precisely if |x̄− ȳ| ≤

√
2 . Otherwise it will be a local

minimum symmetrically located between two maxima. The boundary case
|x̄ − ȳ| =

√
2 is illustrated in Figure 5, which shows the two-dimensional

profile log-likelihood for (µx, µy) and its restriction to the line µx = µy.
The local flatness of the log-likelihood, for the common µ along that line, is
striking.

The full model has t1 = nx̄, t2 = nȳ, t3 = nx̄2, t4 = nȳ2, and θ1 = µx/σ
2
x,

θ2 = µy/σ
2
y , θ3 = −0.5/σ2

x θ4 = −0.5/σ2
y . The restricted model has ψ1 = µ

(the common value of µx and µy), ψ2 = θ3, and ψ3 = θ4. Trivial calculations
under ψ̂1 = 0 yield σ̂2

x = x̄2 and σ̂2
y = ȳ2, with information matrices

I(θ(ψ̂)) = n


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 , I(ψ̂) = 2n

 1 0 0
0 1 0
0 0 1

 .
Hence, with |a| = 1, the numerator of (17) is (2naTa)2 = 4n2. The denom-
inator is found from{

aT
(
∂2θ

∂ψ2

)
a

}T
= −4a1 (a2 a3 0 0)
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to be 16na2
1 (a2

2 + a2
3) = 16na2

1 (1− a2
1) with maximum 4n. Thus, the lower

bound (17) is simply n.
Furthermore,

WU (ψ̂) = (nx̄ nȳ 0 0) I(θ(ψ̂))−1 (nx̄ nȳ 0 0)T = n (x̄2 + ȳ2) = 2nx̄2.

Now, as remarked above, we have a root of multiplicity 3 precisely when
x̄ = 1/

√
2, for which WU = n, so WU actually equals its lower bound (17).

4 Discussion

We have here provided a lower bound for the score test statistic WU (ψ̂) for
model lack of fit test. The bound was derived for locally flat likelihoods, or
for ψ̂ being a minimum or saddle point. In three examples, the bound was
calculated explicitely and related with the form of the likelihood surface.

The specific value of the bound is not of much practical interest, however,
even though it is best possible, because when faced with data we can com-
pute WU for any ψ̂. The most important features of the bound are theoret-
ical: that it exists and that it increases proportionally to Fisher information
(e.g. sample size). This is more explicitly expressed in the case dimψ = 1,
when the lower bound is the squared radius of statistical curvature. This
means that when sample size is large, a flat likelihood necessarily implies
that the model does not fit data, whereas this need not be true for small
data sets.

It is important to note the direction of the conclusions. That a model
does not fit the data is not by itself a reason to expect multimodal or flat
likelihoods. Typically deviations from the model lead to multimodality when
t is on one side of the curved model, but not on the other, for example in
the correlation example, Example 3.2. Formula (8) shows that the observed
information will be greater than the expected on one side, but smaller on
the opposite side.

We may think of a flat likelihood, as illustrated in Figures 2a, 2 and 5,
as a boundary case between a unique maximum and three roots of which
the middle is a local minimum or saddle point. In all three examples we saw
that by gradually modifying data, we can make the same ψ̂ change from a
unique maximum to a minimum or saddle point (Figures 2 and 3). In Figure
3 the “natural” correlation estimate ρ̂ = 0 has been taken over as MLE by
parameter values on each side of it, which are slightly less implausible under
the model stated.
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One conclusion is that a local minimum or saddle point might often be
the “right” estimate under a wider, more reasonable model for data. So if
data yield three roots of similar log-likelihood values, question the model.

Cox (2006, sec. 7.1) says about multimodal likelihoods that it may hap-
pen that there are two or more local maxima of similar size, but that “the
more common situation is that the global maximum is dominant”. The lat-
ter situation corresponds to the first of the following three scenarios. The
others are perhaps less common, but they are common enough to be of
concern, in particular in connection with misspecified models.

Here are three typical scenarios to be distinguished:

• The global maximum is pronounced, but the likelihood is flat in an-
other part of the parameter space, and for that reason may exhibit
multiple roots. Parameter values in the flat region are likely to yield
relatively large WU -values, cf. Example 3.1.

• The likelihood is flat in some direction around its global maximum,
and may exhibit multiple roots of the likelihood equation in or near
that point. We have here provided a formula (or lower bound) for WU ,
showing that this need not be a remarkable feature for small samples,
but for larger samples it will indicate that the model does not fit the
data. This was illustrated in all three examples.

• The likelihood has two widely separated maxima of similar magnitude,
and a saddle point or minimum in between. Examples 3.2 (Fig. 3) and
3.2 (Fig. 5) illustrated that a likelihood can be essentially flat over
a quite wide region, when the model is bad. When the likelihood is
not that flat, the present results are not immediately applicable in the
maximum points. However, it is still recommended to check the fit of
the model.
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Figure 1: Normal parabola example.
a) Log-likelihood contours when y1 = 0, y2 = 0.5. Curved parameter rela-
tionship marked, and the triple root.
b) Log-likelihood contours when y2 = y2

1 = 2. Curved parameter relation-
ship marked, and the two extremal points.
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Figure 2: Correlation example with flat likelihood.
Log-likelihood contours around unconstrained maximum when t1/n = 0.5,
t2/n = 0. Curved relationship and triple root ρ̂ = 0 marked.
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Figure 3: Correlation example with almost flat likelihood.
Log-likelihood contours around unconstrained maximum when t1/n = 0.25,
t2/n = 0. Curved relationship and the three different roots marked (ρ̂ = 0
and ρ̂ ≈ ±0.7).
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"Correlation" ex.: Log-L contours around (-5.2,2.4) and curved subfamily with a local max and a terrace point.
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Figure 4: Correlation example with unsymmetrical roots.
Log-likelihood contours around unconstrained maximum when t1/n = 0.25,
t2/n = 0.118. Curved relationship, root ρ̂ = 0.86 and double root ρ̂ = −0.37
marked.
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Figure 5: Behrens–Fisher model with flat likelihood maximum (triple root).
The figure shows two-dimensional profile log-likelihood contours for (µx,
µy) and for common µ (along line µx = µy), when sample sizes are equal,
sample variances happen to be equal, and sample means differ precisely
much enough to yield multiple roots. The circle indicates the observed
mean values, and the fitted MLE is marked by an asterisk
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