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Abstract

A stochastic epidemic model allowing for both mild and severe infec-
tives is defined, where an infective can become severe directly upon
infection or if additionally exposed to infection. It is shown that, as-
suming a large community, the initial phase of the epidemic may be
approximated by a suitable branching process and that the main part
of an epidemic that becomes established admits a law of large numbers
and a central limit theorem, leading to a normal approximation for
the final outcome of such an epidemic. Effects of vaccination prior to
an outbreak are studied and the critical vaccination coverage, above
which only small outbreaks can occur, is derived. The results are
illustrated by simulations that demonstrate that the branching pro-
cess and normal approximations work well for finite communities, and
by numerical examples showing that the final outcome may be close
to discontinuous in certain model parameters and that the fraction
mildly infected may actually increase as an effect of vaccination.
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Abstract

A stochastic epidemic model allowing for both mild and severe infectives is defined, where
an infective can become severe directly upon infection or if additionally exposed to infection.
It is shown that, assuming a large community, the initial phase of the epidemic may be
approximated by a suitable branching process and that the main part of an epidemic that
becomes established admits a law of large numbers and a central limit theorem, leading to
a normal approximation for the final outcome of such an epidemic. Effects of vaccination
prior to an outbreak are studied and the critical vaccination coverage, above which only small
outbreaks can occur, is derived. The results are illustrated by simulations that demonstrate
that the branching process and normal approximations work well for finite communities, and
by numerical examples showing that the final outcome may be close to discontinuous in certain
model parameters and that the fraction mildly infected may actually increase as an effect of
vaccination.

Keywords: stochastic epidemic, final size, basic reproduction number, severity, exposure, vac-
cination.

1 Introduction

For several infectious diseases infected people get different severity of the disease and the
degree of severity may also affect the ability to spread the disease further. Examples of such
diseases are dengue fever (Mangada and Igarashi [1]), measles (Morley and Aaby [2]) and
varicella (Parang and Archama [3]). In the present paper we analyse a stochastic epidemic
model allowing for different severities. More precisely the model has two degrees of severity,

1Corresponding author. Tel.: +44-115 951 4969; fax +44-115 951 4951.
E-mail addresses: frank.ball@nottingham.ac.uk (F. Ball), tom.britton@math.su.se (T. Britton)
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mild and severe, and the degree of severity affects both the rate of contact an infective has
with other individuals and the probabilities that the contacted individuals becomes mildly
or severely infected. Additional to an individual becoming severely infected directly upon
infection, the model also allows for mild cases to become severe if exposed further to the
disease. We also define a vaccine response model where the vaccine may reduce susceptibility,
infectivity and/or the length of the infectious period.

As the community size increases we show that the initial phase of an epidemic with few initial
infectives may be approximated by a suitable branching process (in which individuals cannot
change from mild to severe!) and the basic reproduction number R0 is derived; R0 > 1
indicates that a significant fraction of the community may become infected, i.e. that a major
epidemic may occur. Also assuming that the community size tends to infinity, a law of large
numbers and central limit theorem for the final number of mild and severely infected are
obtained for the situation where there is a major outbreak. We also sketch the corresponding
results for the case that a fraction v of the community are vaccinated prior to introduction of
the disease, and derive the critical vaccination coverage vc needed to surely prevent a major
outbreak.

The results are illustrated by numerical examples. We show by means of simulations that the
branching approximation, and the central limit theorem for the final outcome in the event
of a major outbreak, work satisfactorily as an approximation in a finite community. We also
illustrate how the limiting final proportion infected depends on certain model parameters and
how the proportion is reduced as a function of v for three specific vaccine response cases
denoted all-or-nothing, leaky and non-random.

Even though deterministic limits for the final proportion infected are obtained, they are not
very explicit in the parameters; for this reason we give some more explicit bounds. We also
show that the final proportion infected can be close to discontinuous in certain model param-
eters. Another observation is that the proportion mildly infected need not be monotonically
decreasing in v, the fraction vaccinated, implying that vaccinating more individuals can have
the effect that more people become mildly infected. Finally, we show that even though a
vaccine response reducing infectivity by a certain factor gives the same reproduction number
as if instead the length of the infectious period is reduced by the same factor, the two vaccine
responses do not give identical fractions ultimately infected.

In Section 2, the epidemic and vaccine response models are defined. In Section 3, we present
our main results together with short heuristic motivations for them. The illustrative examples
are given in Section 4 and formal proofs for most of our results appear in Section 5. The paper
ends with a short discussion in Section 6.
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2 The epidemic model and vaccination response model

2.1 The infector-exposure dependent severity epidemic model

We now define the infector-exposure dependent severity (IEDS) epidemic model. In the model
there are two types of disease severity, mild and severe, and an individual may become mild
or severe upon infection, with probabilities of the two alternatives depending on whether the
individual was infected by a mildly or severely infectious individual. Additionally, a mildly
infectious individual (denoted mild infective) may turn into a severely infectious individual
(severe infective) if he/she is subsequently exposed to the infection.

Consider a closed homogeneously mixing community having initially, i.e. at time t = 0, n

susceptibles, mM mild infectives and mS severe infectives. Mild infectives have close contact
with others, chosen uniformly at random from the n initial susceptibles, at rate λM and
severe infectives have close contact with others, chosen uniformly at random from the n initial
susceptibles, at rate λS. A close contact by a mild infective with a susceptible results in the
contacted susceptible becoming mildly infective with probability pMM and severely infected
with the complimentary probability pMS = 1 − pMM. Similarly, a close contact by a severe
infective with a susceptible results in the latter becoming mildly infected with probability pSM

and severely infected with the remaining probability pSS = 1 − pSM. Further, a mild infective
“reinfects” any given mild infective at rate λMαM/n, and a severe infective “reinfects” any
given mild infective at rate λSαS/n, where “reinfects” means that the contacted mild infective
becomes a severe infective. Finally, mild infectives recover and become immune at rate γM and
severe infectives recover and become immune at rate γS, implying that (without reinfection)
the infectious periods are assumed to be exponentially distributed. All contact processes,
removal processes and uniform ‘selections’ are assumed to be mutually independent. For
t ≥ 0, let X

(n)(t) = (X(t), YM(t), YS(t), ZM(t), ZS(t)), where X(t), YM(t), YS(t), ZM(t) and
ZS(t)) denote respectively the number of susceptibles, the number of mild infectives, the
number of severe infectives, the number of recovered from the mild state and the number of
recovered from the severe state at time t.

The present model has several other models studied earlier as special cases. If for instance
αM = αS = 0 there is no possibility to shift infectious state and we then have the infector-
dependent severity (IDS) model investigated by Ball and Britton [4]. Two special cases
(assuming αM = αS = 0) are where pMM = pSM = 1, when all infected individuals become
mildly infected, or the opposite, pMM = pSM = 0, when all become severely infected. We then
have the general stochastic epidemic (see, for example, Bailey [5], Chapter 6) with (individual
to individual) infection rate nλM and removal rate γM (or nλS and γS, respectively), except
possibly for the initial infectives. Another special case here is when pMM = pSS = 1, so the
type of an infected individual is always the same as that of his/her infector. The model
then becomes the so-called competing epidemic model studied by Kendall and Saunders [6],
Scalia-Tomba and Svensson [7] and Scalia-Tomba [8].
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If instead pMS = pSS = 0, all infected individuals first become mildly infected but may later
become severely infected if additionally exposed to infection. We then have a model that is very
similar to the exposure dependent severity (EDS) model studied by Ball and Britton [9]. The
present model differs from the EDS model in that if a mildly infectious individual is reinfected
then he/she immediately stops being a mild infective and becomes a severe infective. In the
EDS model, the mild and severe infectious periods can overlap, or be completely disjoint, and
the severe state has more the interpretation of being an additional infection pressure.

Another special case is when λM = λS (= λ) and γM = γS (= γ). Then there is no difference
in how how much infectivity the two severities generate, so the total number of infected
behaves like the general stochastic epidemic model with infection and removal rates nλ and
γ, respectively.

2.2 A vaccination response model

Suppose that, prior to the outbreak, a fraction v of the susceptible population is vaccinated.
We now describe the vaccine response model. Each individual that is vaccinated has an inde-
pendent random vaccine response described by a three dimensional random vector (A,B, Θ),
where A ≥ 0 is associated with the susceptibility and B ≥ 0 and Θ ≥ 0 are associated with
the infectivity and infectious period in the event that the individual does become infected.
In general, the random variables A,B and Θ may be correlated, and typically they are all
bounded above by 1 (unless the vaccine increases susceptibility/infectivity). More specifically,
an individual who has vaccine response (a, b, θ) has relative risk a of becoming infected (either
mildly or severely) from a contact, when compared to an unvaccinated individual. If the vac-
cinated person becomes infected, the close contact rate is reduced by the factor bθ, compared
to an unvaccinated infectious individual of the same type. Further, the recovery rate of the
individual is changed, compared to an unvaccinated infective of the same type, by the factor
bθ−1 (so when b < 1 and θ < 1 the recovery rate is increased implying a shorter infectious
period, due to the vaccine). Finally, the vaccination has no effect on the rate at which an
individual switches from being mildly infected to severely infected.

The meaning of a is hence the relative susceptibility of the vaccinee, b is the relative expected
infectious force exerted by the vaccinee if infected (compared to an unvaccinated individual)
and θ quantifies if the reduction in infectious force is due to a lower infectivity while infectious
and/or a shorter infectious period. The case θ = 1 corresponds to only lower infectivity but
unchanged infectious period, and θ = 0 is the other extreme where the infectivity is unchanged
but the infectious period is reduced. If P (Θ = 1) = 1, so the infectious period of an infected
individual is unchanged by vaccination, then the vaccine response model reduces to the one
introduced by Becker and Starczak [10].

There are various measures of vaccine efficacy that can be defined for this vaccine action model,
according to whether reduction in susceptibility, infectivity or susceptibility-infectivity is of
interest, cf. Becker et al. [11]. The one used in this paper is V ESI = 1 − E[AB]. Note
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that for a single-type epidemic among a homogeneously mixing population, if a proportion v
of the population are vaccinated in advance of an outbreak then, under the present vaccine
response model, the basic reproduction number R0 is reduced to (1 − vV ESI)R0 (cf. Becker
and Starczak [10]).

In what follows we study two specific forms of vaccine response. The first one is where
(A,B, Θ) = (0, ·, ·) with probability e, and (A,B, Θ) = (1, 1, 1) with the remaining probability
1−e. (Note that whenever A = 0 a vaccinated individual cannot be infected, so the reduction
in infectivity and/or duration of infectious period, if infected, becomes irrelevant). This
vaccine response, defined in Smith et al. [12], is commonly known as the all-or-nothing vaccine
response (Halloran et al. [13]) and has V ESI = e. The other vaccination response treated in
the present paper is (A,B, Θ) = (a, b, θ) with probability 1, for some constants a, b and θ,
so V ESI = 1 − ab. Following Ball and Lyne [14], we call this vaccine response the non-
random vaccine response. It is worth noting that, for the non-random vaccine response, when
θ = 1 the infectivity is reduced to b, relative to an unvaccinated individual, and the infectious
period is unchanged; and θ = 0 implies that the infectivity is unchanged but the average
infectious period is reduced to b, relative to an unvaccinated individual. In fact, the reduction
in infectivity multiplied by the reduction in infectious period equals bθ/bθ−1 = b which is
hence independent of θ. Nevertheless, θ does have an effect on the outcome of the epidemic,
as is illustrated in Section 4. If b = 1 in the non-random case, then the vaccine response
is the so-called leaky response (Halloran et al. [13]). Note that in this case the value of θ is
irrelevant and V ESI = 1 − a, so the efficacy of an all-or-nothing vaccine can be matched by
setting a = 1 − e.

3 Main results and heuristic arguments

In this section we present large population properties of the IEDS model, first without and
then with vaccination. The results are asymptotic assuming the population size tends to
infinity. Alongside the results we also give heuristic arguments supporting the results. Proofs
to most results are given in Section 5.

3.1 Initial stages of the epidemic

Assume that n, the initial number of susceptibles, is large but that the initial number of mild
and severe infectives mM and mS are small (in the asymptotic setting n tend to infinity whereas
mM and mS are kept fixed). Then the initial stages of the epidemic can be approximated by
a two-type branching process. This follows because it is very unlikely that infective individ-
uals happen to have contact with individuals who have already been contacted, so infectives
infect new individuals (more or less) independently of each other; such independence is the
fundamental assumption in a branching process. For the same reason, during the early stages
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it is very unlikely that an infective will “reinfect” a mild infective, since the rate at which
this happens is proportional to the proportion of the population that are mildly infected, and
hence is small during the early stages when n is large. Thus these reinfections do not occur
in the approximating branching process, so it is identical to the approximating branching
process of the IDS-model (Ball and Britton [4]) in which mildly infected individuals cannot
be reinfected to become severely infected.

It follows that the process of infectives in the early stages of the IEDS epidemic model in a
large community may be approximated by a two-type branching process. The two types, M
and S (corresponding to mild and severe infectives, respectively), have exponential lifetimes
with parameters γM and γS (i.e. means γ−1

M and γ−1
S ), respectively. While alive, M-individuals

give birth to M-individuals at rate λMpMM and S-individuals at rate λMpMS, and S-individuals
give birth to M-individuals at rate λSpSM and S-individuals at rate λSpSS. The approximating
branching process is initiated with mM M-individuals and mS S-individuals.

The mean offspring matrix of this branching process is

M =

[

µMM µMS

µSM µSS

]

:=

[

λMpMM/γM λMpMS/γM

λSpSMγS λSpSS/γS

]

, (3.1)

each component being the close-contact rate multiplied by the average length of the infectious
period (1/γM and 1/γM for mild and severe infectives, respectively). The basic reproduction
number R0 (e.g. Heesterbeek and Dietz [15]) equals the largest positive eigenvalue of M , which
can be shown to equal

R0 =
1

2

(

µMM + µSS +

√

(µMM + µSS)2 + 4
λMλS

γMγS

(1 − pMM − pSS)

)

. (3.2)

It is well-known (e.g. Haccou et al. [16], page 123) that, provided all the elements of M are
strictly positive, the branching process has non-zero probability of taking off if and only if
R0 > 1.

It is also possible to derive the probability that the epidemic takes off using branching process
theory. A mild infective infects new mild cases at the rate λMpMM and new severe cases at
the rate λMpMS, during its infectious period which is exponentially distributed having mean
1/γM. Conditional upon the length of the infectious period, the number of infected of the two
types are independent and Poisson distributed. Removing the conditioning makes the two
random variables dependent. One way to describe their joint distribution is that their sum is
geometrically distributed with probability parameter γM/(γM + λM) (and mean λM/γM) and,
given the sum, the number of mildly infected is binomially distributed with number of trials
given by this sum and success probability pMM. Let (XMM, XMS) be a bivariate random variable
giving the numbers of mild and severe cases created by a typical mild infective and define
(XSM, XSS) similarly for a typical severe infective. Then, exploiting the above conditioning
yields that the probability generating functions ρM and ρS of (XMM, XMS) and (XSM, XSS),
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respectively, are

ρM(s1, s2) = E
(

sXMM
1 sXMS

2

)

=
γ

γ + λM (pMM(1 − s1) + pMS(1 − s2))
, (3.3)

ρS(s1, s2) = E
(

sXSM
1 sXSS

2

)

=
γ

γ + λS (pSM(1 − s1) + pSS(1 − s2))
. (3.4)

If the epidemic is initiated by one mild infective, then the epidemic will not take off if and only
if every individual that the initial person infects (if any) avoids creating a major outbreak.
Let πM denote the probability that the epidemic does not take off given that it is started
by one mild infective, and let πS denote the corresponding probability when the epidemic is
started by one severe infective. Then the above reasoning (well-known from branching process
theory) motivates that πM and πS must solve the equations

xM =
∑

i,j

xi
Mxj

SP (XMM = i,XMS = j) = ρM(xM, xS) =
γ

γ + λM (pMM(1 − xM) + pMS(1 − xS))
,

xS =
∑

i,j

xi
Mxj

SP (XSM = i,XSS = j) = ρS(xM, xS) =
γ

γ + λS (pSM(1 − xM) + pSS(1 − xS))
.

It can be shown that, when R0 > 1 and every element of M is strictly positive, then these
equations have a unique solution (πM, πS) in [0, 1)2, and these are the probabilities of avoiding
a major outbreak when starting with one mild infective, or one severe infective, respectively.
If the epidemic is initiated by mM mild and mS severe infectives, then the probability that
the epidemic takes off equals

P (major outbreak|mM,mS) = 1 − πmM
M πmS

S . (3.5)

If M has one or more zero elements the branching process is decomposable (see e.g. Haccou
et al. [16], page 26) and (πM, πS) can be determined by considering an appropriate embedded
single-type branching process.

Let (ZM, ZS) denote the ultimate number of individuals ever born in the branching process.

Similarly, let (Z
(n)
M , Z

(n)
S ) be the final number of removed of the two types in the epidemic start-

ing with n susceptible individuals. Then it can be shown that the distribution of (Z
(n)
M , Z

(n)
S )

converges to that of (ZM, ZS) as n → ∞; see Corollary 5.2 in Section 5.1, where the stronger,
almost sure convergence is proved. The latter is the distribution of the total progeny of a
two-type branching process. If R0 > 1 the branching process can grow beyond all limits, thus
implying that the distribution of (ZM, ZS) is defective, with strictly positive probability that
both random variables are infinite. For the epidemic this corresponds to the case that there
is a major outbreak meaning that the number of ultimately infected is of order n rather than
of order 1. The size of such an outbreak is described in the next subsection. In Section 4.1
we illustrate how the distinction of minor and major outbreaks in a finite community can be
determined using the branching process approximation.
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3.2 Limiting epidemic process

Suppose that n is large and assume that the limits µM := limn→∞ mM/n and µS := limn→∞ mS/n
exist. As described further in Section 5.2, provided that µM + µS > 0, the stochastic IEDS

model can be approximated by a deterministic model. More precisely, if we let X̄
(n)

=

{X̄(n)
(t) : t ≥ 0}, where, for t ≥ 0,

X̄
(n)

(t) = (X̄(n)(t), Ȳ
(n)
M (t), Ȳ

(n)
S (t), Z̄

(n)
M (t), Z̄

(n)
S (t)) =

1

n
(X(t), YM(t), YS(t), ZM(t), ZS(t)) ,

then it can be shown that, as n tends to infinity, this normalised process converges to the
solution x = {x(t) : t ≥ 0} of the following set of differential equations

dx

dt
= −(λMyM + λSyS)x,

dyM

dt
= (λMpMMyM + λSpSMyS)x − (λMαMyM + λSαSyS)yM − γMyM,

dyS

dt
= (λMpMSyM + λSpSSyS)x + (λMαMyM + λSαSyS)yM − γSyS,

dzM

dt
= γMyM,

dzS

dt
= γSyS,































































(3.6)

with initial condition

x(0) = (x(0), yM(0), yS(0), zM(0), zS(0)) = (1, µM, µS, 0, 0). (3.7)

Further, as described in Section 5.2, a weak convergence result can also be derived using
theory for density dependent Markov processes (Ethier and Kurtz [17]) showing that the
process V

(n) = {V (n)(t) : t ≥ 0}, where

V
(n)(t) :=

√
n
(

X̄
(n)

(t) − x(t)
)

(t ≥ 0),

converges to a Gaussian process, whose covariance function can, in principle, be determined.
These results can be extended heuristically to hold also for the end of the epidemic, the time
of which tends to infinity as n → ∞, by making a suitable random time transformation.
This suggests that the final number of mildly and severely removed cases (Z

(n)
M , Z

(n)
S ) satisfy

a central limit theorem:

√
n

(

Z
(n)
M

n
− zM(∞)

Z
(n)
S

n
− zS(∞)

)

D−→ N

((

0
0

)

, ΣZ(∞)

)

, as n → ∞, (3.8)

where
D−→ denotes convergence in distribution and ΣZ(∞) is the lower right 2× 2 sub-matrix

of the matrix BΣ̃(τ̃)B⊤ in (5.22) and ⊤ denotes transpose. An outline for the heuristic proof
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of this result is given in Section 5.2. The central limit theorem is illustrated in Section 4.2,
where simulations of the IEDS model show that the normal approximation works well.

Unfortunately, it is not possible to express the deterministic limit (zM(∞), zS(∞)), nor the
variance matrix ΣZ(∞) in a very explicit form in order to study their dependence on the model
parameters (λM, λS, pMM, pMS, pSM, pSS, γM, γS, αM, αS). In Section 4.2 we give some numerical
illustrations and also show that the final proportion infected zM(∞) + zS(∞) may be close to
discontinuous in some parameters. Even though the deterministic limits are not very explicit
it is possible to get bounds on the final proportion infected, bounds that are more explicit.
This is done in the next two subsections.

3.3 Final outcome of deterministic model

The first, fourth and fifth equation in (3.6) imply that

dx

dt
= −x

(

RM
dzM

dt
+ RS

dzS

dt

)

,

where RM = λM/γM and RS = λS/γS, which, when integrated, together with the initial
condition (3.7), yields

x(t) = exp[−(RMzM(t) + RSzS(t))] (t ≥ 0). (3.9)

Let ẑM = zM(∞) and ẑS = zS(∞) be the final proportion of mild and severe removed cases,
respectively. Let µ = µM + µS. Then, letting t → ∞ in (3.9) and noting that x(∞) =
1 + µ − ẑM − ẑS, shows that (ẑM, ẑS) satisfies

1 + µ − ẑM − ẑS = exp[−(RMẑM + RSẑS)]. (3.10)

If RM = RS then it follows from (3.10) that ẑM + ẑS satisfies the the usual equation giving the
final size of the standard deterministic SIR epidemic, yielding a linear equation satisfied by
(ẑM, ẑS). Suppose that RM 6= RS, and assume without loss of generality that RM < RS. We
describe now some properties of (ẑM, ẑS), formal proofs of which may be found in Appendix
A.

Suppose first that µ > 0 and let z∗S be the unique positive root of 1 + µ − z = exp(−RSz).
For ẑS ∈ [0, z∗S], there is a unique ẑM ∈ [0, 1 + µ) such that (ẑM, ẑS) satisfies (3.10), and there
is no solution of (3.10) in the first quadrant with ẑS > z∗S. Thus, the equation (3.10) defines
implicitly a function h : [0, z∗S] → [0, 1 + µ), where, for ẑS ∈ [0, z∗S], h(ẑS) gives the value of
ẑM so that (ẑM, ẑS) satisfies (3.10). The function h is concave and satisfies h(0) = z∗M, where
z∗M is the unique positive root of 1 + µ − z = exp(−RMz), and h(z∗S) = 0. The solutions of
(3.10) lie on the curve (ẑM, ẑS) = (h(ẑS), ẑS) (0 ≤ ẑS ≤ z∗S) that joins (z∗M, 0) to (0, z∗S) in the
first quadrant. Further, if RS ≥ (1 + µ)−1 then h is injective if and only if RM ≥ R∗

M, where
R∗

M = max(RS log RS/[RS(1+µ)−1], 0), while, if RS < (1+µ)−1 then h is not injective for any

9



RM < RS. (The function h being injective means that whenever z
(1)
S , z

(2)
S ∈ [0, z∗S] are distinct

then h(z
(1)
S ) 6= h(z

(2)
S ).) Moreover, h(ẑS) + ẑS is strictly increasing in ẑS for ẑS ∈ (0, z∗S). This

means that the “proportion” of the population who are ultimately infected by the deterministic
IEDS epidemic satisfies z∗M ≤ ẑM + ẑS ≤ z∗S. (Recall that it is assumed that RM < RS. If
RM > RS then of course the bounds z∗M and z∗S are switched.)

Similar results hold when µ = 0. Still assuming that RM < RS, if RS ≤ 1 then (0, 0) is
the only solution of (3.10) in the first quadrant. If RS > 1 then (0, 0) is still a solution
of (3.10), corresponding to a minor outbreak in the stochastic model, but major outbreaks
are now possible and, for large populations, their asymptotic final size satisfies (3.10) with
(ẑM, ẑS) 6= (0, 0). As in the case µ > 0, the equation (3.10) defines implicitly a function
h : [0, z∗S] → [0, 1), where z∗S is now the non-zero solution of 1− z = exp(−RSz). All the above
results concerning the function h and the behaviour of h(ẑS) + ẑS continue to hold, except
now z∗M is given by the largest real solution of 1 − z = exp(−RMz). Hence, z∗M = 0 if RM ≤ 1
and z∗M > 0 if RM > 1. Thus, if RM ≤ 1, the solutions of (3.10) lie on a curve that joins (0, 0)
to (0, z∗S), whilst, if RM > 1, they lie on a curve that joins (z∗M, 0) to (0, z∗S), where z∗M > 0.

Note that in general (3.10) does not determine the final outcome of the deterministic IEDS
epidemic. Except for a few very special cases, discussed in Ball and Britton [4], Section 2.2.2,
it is not possible to derive a second, independent equation satisfied by (ẑM, ẑS).

3.4 Bounds on the final size

Let R0 = min(RM, RS) and R0 = max(RM, RS). Then the theory in Section 3.3 shows
that, for µM ≥ 0 and µS ≥ 0, the final fraction infected in the deterministic IEDS model,
zM(∞) + zS(∞), satisfies

zmin ≤ zM(∞) + zS(∞) ≤ zmax, (3.11)

where zmin and zmax are the largest roots of

1 + µM + µS − z = e−R0z and 1 + µM + µS − z = e−R0z,

respectively. Thus the limiting proportion ever infected in the deterministic IEDS model is
bounded between those of the general deterministic epidemic with basic reproduction numbers
R0 and R0. The smaller the difference between R0 and R0, the narrower the bounds (3.11)
become. If R0 = R0, then zmin = zmax and the model is closely related to the general epidemic
model, except that some infectives are labelled mild and others severe.

Suppose that µM = µS = 0. If pMM + pSM → 0 and/or αM + αS → ∞ (implying that nearly
all infectives are severe cases), then zM(∞) → 0 and zS(∞) converges to zmax if R0 = RS (the
typical case) and to zmin otherwise. Similarly, if pMS + pSS → 0 and αM + αS → 0 (so nearly
all infectives are mild), then zS(∞) → 0 and zM(∞) converges to zmin if R0 = RM (the typical
case) and to zmax otherwise. Essentially the same results hold if µM + µS > 0.
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Similar bounds to (3.11) hold for the stochastic IEDS model. Specifically,

Zmin

st

≤ ZM(∞) + ZS(∞)
st

≤ Zmax, (3.12)

where Zmin and Zmax are the total sizes of the general stochastic epidemics, with initially
mM +mS infectives and n susceptibles, having basic reproduction numbers R0 and R0, respec-

tively, and
st

≤ denotes stochastically less than. The stochastic inequalities (3.12) are proved in
Appendix B by extending the construction of Sellke [18] to the IEDS model.

3.5 Effects of vaccination

We now analyse the effect of vaccinating a proportion v of susceptibles prior to an outbreak.

3.5.1 The all-or-nothing vaccine response

We start with the all-or-nothing response, where a vaccinated individual is completely im-
mune with probability e (for efficacy) and the vaccination has no effect with the remaining
probability 1 − e. It is easy to model the effects of this vaccine response. In a large commu-
nity, a fraction 1 − v + v(1 − e) = 1 − ve are (fully) susceptible and the remaining fraction
ve are completely immune, and that is all that is changed compared to the situation without
vaccination.

This implies that we can approximate the initial stages with a two-type branching process
having the same death rates as before but with all birth rates reduced by a factor ve, so the
former birth rates should all be multiplied by the factor 1− ve. The matrix of mean offspring
is hence the former (equation 3.1) multiplied by 1 − ve, and the new reproduction number
equals the former (R0 defined in (3.2)) multiplied by 1 − ve:

R(AoN)
v = (1 − ve) R0. (3.13)

The critical vaccination coverage v
(AoN)
c is the fraction v necessary to reduce R

(AoN)
v down to

1. From the form of R
(AoN)
v , it is immediately seen that, when 1 < R0 ≤ (1− e)−1, the critical

vaccination coverage is given by

v(AoN)
c =

1

e

(

1 − 1

R0

)

. (3.14)

If R0 > (1 − e)−1, vaccination alone cannot be sure of preventing a major outbreak.

Starting with few initial infectives, R
(AoN)
v ≤ 1 implies that there can be no major outbreak

whereas if R
(AoN)
v > 1 there is a possibility for a major outbreak. The probability for a major

outbreak may also be derived using branching process theory, similar to the case without
vaccination. If the epidemic does take off the epidemic process may be approximated by
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the same set of differential equations as without vaccination, equation (3.6), but with initial
condition (x(0), yM(0), yS(0), zM(0), zS(0)) = (1 − ve, µM, µS, 0, 0). In Section 4.3 we illustrate
how the limiting final size of the two types change with v for fixed vaccine efficacy e and IEDS
model parameters.

3.5.2 The non-random vaccine response

For the non-random vaccine response things are a bit more complicated. As before it is possi-
ble to approximate the initial stages by a branching process to derive a reproduction number
R

(NR)
v and to approximate the epidemic process by a deterministic system in the event that

the epidemic takes off. The difference is that we now have four types of infectious individual:
mild unvaccinated, severe unvaccinated, mild vaccinated and severe vaccinated. The mean
offspring matrix for the approximating branching process is hence a 4×4 matrix. However, its
form is quite similar to the offspring matrix without vaccination. For instance, the expected
number of mild unvaccinated that a mild unvaccinated infects during its infectious period
equals µMU,MU = (λM/γM)pMM(1 − v) = (1 − v)µMM and the average number of mild vacci-
nated individuals this person infects equals µMU,MV = (λM/γM)pMMva = vaµMM. This is true
because the fraction v are vaccinated, and each vaccinated individual has relative risk a of be-
coming infected, compared to an unvaccinated individual. Similarly, a mild vaccinated infects,
on average, µMV,MU = bθ(λM/bθ−1γM)pMM(1 − v) = b(λM/γM)pMM(1 − v) = (1− v)bµMM mild
unvaccinated and µMV,MV = b(λM/γM)pMMva = vabµMM mild vaccinated. The other terms in
the mean offspring distributions are obtained similarly. It is worth noting that the parame-
ter θ, quantifying if the reduced infection pressure of vaccinees comes from lower infectivity
and/or shorter infectious period, does not enter the mean offspring matrix. Consequently,
this parameter does not have an effect on determining whether or not an outbreak may occur
– however, in Section 4.3 we see that it does have an effect on how many are infected if an
outbreak actually occurs.

Let M
(NR)
v denote the mean offspring matrix of the above branching process, with the types

ordered MU, SU, MV, SV. Then,

M (NR)
v









(1 − v)µMM (1 − v)µMS vaµMM vaµMS

(1 − v)µSM (1 − v)µSS vaµSM vaµSS

(1 − v)bµMM (1 − v)bµMS vabµMM vabµMS

(1 − v)bµSM (1 − v)bµSS vabµSM vabµSS









= V v
ab ⊗ M, (3.15)

where ⊗ denotes Kronecker product and

V v
ab =

[

1 − v va
(1 − v)b vab

]

. (3.16)

The reproduction number R
(NR)
v is given by the largest eigenvalue M

(NR)
v , which, in view of

(3.15) is the product of the largest eigenvalues of V v
ab and M . Recall that the largest eigenvalue
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of M is R0. The matrix V v
ab has rank one, so its largest eigenvalue equals its trace, 1−v(1−ab),

whence
R(NR)

v = (1 − v(1 − ab)) R0. (3.17)

We see that this is very similar to the reproduction number R
(AoN)
v in (3.13), the only difference

being that e is replaced by 1−ab. The factor 1−ab may be interpreted as the vaccine efficacy
for the non-random vaccine response, as noted in Section 2.2. The critical vaccination coverage
v

(NR)
c hence has the following form, assuming 1 < R0 ≤ (ab)−1:

v(NR)
c =

1

1 − ab

(

1 − 1

R0

)

. (3.18)

When R0 > 1/(ab), then vaccination alone cannot surely prevent a major outbreak occurring.

If R
(NR)
v > 1 the epidemic may take off even if the epidemic is initiated by few infectives. If

the community size n is large the epidemic may then be approximated by the following set of
differential equations:

dxU

dt
= −

(

λM(yMU + bθyMV) + λS(ySU + bθySV)
)

xU,

dxV

dt
= −a

(

λM(yMU + bθyMV) + λS(ySU + bθySV)
)

xV,

dyMU

dt
=
(

λMpMM(yMU + bθyMV) + λSpSM(ySU + bθySV)
)

xU − (λMαMyM + λSαSyS)yMU − γMyMU,

dyMV

dt
= a

(

λMpMM(yMU + bθyMV) + λSpSM(ySU + bθySV)
)

xV − (λMαMyM + λSαSyS)yMV − bθ−1γMyMV,

dySU

dt
=
(

λMpMS(yMU + bθyMV) + λSpSS(ySU + bθySV)
)

xU + (λMαMyM + λSαSyS)yMU − γSySU,

dySV

dt
= a

(

λMpMS(yMU + bθyMV) + λSpSS(ySU + bθySV)
)

xV + (λMαMyM + λSαSyS)yMV − bθ−1γSySV,

dzMU

dt
= γMyMU,

dzMV

dt
= bθ−1γMyMV,

dzSU

dt
= γSySU,

dzSV

dt
= bθ−1γSySV,

with initial condition xU(0) = 1−v, xV(0) = v, yMU(0) = µM, ySU(0) = µS, and the remaining
coordinates equal to 0.

By analysing this system of differential equations it is possible to see what fraction of the dif-
ferent types are removed at the end of the epidemic, i.e. to study zMU(∞), zMV(∞), zMV(∞)
and zMV(∞). In Section 4.3 we give some numerical illustrations which show how the pro-
portion ultimately infected varies with the vaccine coverage v. It is also seen there that these
proportions depend on the vaccine response parameter θ.
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4 Numerical examples

Below we give some examples supporting our limiting results and illustrating some interesting
features of the model.

4.1 Illustration of branching process approximation

In Section 3.1 it is explained that the distribution of the final number infected of the two
types, (Z

(n)
M , Z

(n)
S ), converges to the distribution of (ZM, ZS), the total numbers ever born in

a certain two-type branching process. In particular, the final numbers of infected tend to
infinity (with n) with the same probability as the branching process grows beyond all limits.

This means that for finite but fairly large n, the distribution of (Z
(n)
M , Z

(n)
S ) is concentrated

on two parts: small numbers (minor outbreak) or close to some large deterministic value
(obtained from the deterministic model) of order n. This is illustrated in Figure 1 where
we show histograms of the final number infected (of either type) from 10 000 simulations for
a specific set of parameter values, namely γM = γS = 1, λM = 1 λS = 2.5, αM = αS = 1,
pMM = 0.8, pMS = 0.2, pSM = 0.2, and pSS = 0.8 and different community sizes. Thus both mild
and severe infectives are assumed to infect new individuals to the same type as themselves
with probability 0.8 and, using (3.2), R0 = 2.0782. Each epidemic was initiated with one
mild and one severe infective, so mM = mS = 1. It is seen that the distribution is bimodal
already for n = 100 and when n ≥ 500 there is a large region between the two modes having
no empirical support. Consequently, the notion of minor and major outbreak makes sense
once the population size is moderate (e.g. 500) or larger. For smaller community sizes the
distinction between minor and major outbreaks is not as clear.

Our next illustration concerns the determination of the probability of a major outbreak ap-
proximated from branching process theory (Section 3.1). To illustrate this we performed
simulations of the epidemic in communities of various sizes. In the simulations all the param-
eter values except αM and αS were the same as above. Since the approximating branching
process has no switching from mild to severe one would expect the approximation to be better
the less frequent such switches are in the epidemic, i.e. the smaller αM and αS are. For this
reason simulations were performed for three situations, all having αM = αS =: α. The three
situations were α = 0, 1 and 10. Starting with one mild and one severe infected, 10 000
simulations were performed, for a range of different community sizes. In Table 1 we list the
fraction of simulations that resulted in a major outbreak. A “major outbreak” was defined
as an outbreak resulting in more than 30% infected (of either type) – as seen in Figure 1 the
results are not very sensitive to the particular choice of boundary between minor and major
outbreaks.

Using the results of Section 3.1, we computed the theoretical probability for the branch-
ing process growing beyond all limits, which approximates the probability of a major out-
break for the IEDS model. Starting with one mild and one severe infective we obtained that
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Figure 1: Histograms of final number removed (of either type) from 10 000 simulations of
the IEDS model for a few different community sizes. See text for more details.

P (major outbreak|mM = 1,mS = 1) = 0.6479. The approximating branching process has no
switches between mild and severe, so this outbreak probability approximates all epidemics,
irrespective of α (and n). From the table it is seen that the theoretical outbreak probability
agrees well with the empirical fractions once the population size is 500 or larger, and this holds
for all choices of α. Of course, there is some randomness from using 10 000 simulations. The
standard deviation for the empirical fractions is approximately 0.0048, so a 95% confidence
interval for the theoretical outbreak probability would approximately be the observed fraction
plus or minus 0.01. Hence a hypothesis test would not reject, at the 5% level, 0.6479 as the
theoretical outbreak probability for any set of simulations with n = 500 or larger.

Observe from Table 1 that, for small n, the empirical probability of a major outbreak generally
increases with α. This is because RS > RM (see Section 3.3), so reinfection of a mild infective
increases the chance that an outbreak becomes established. This effect becomes less marked
as n increases, since the chance of reinfection in the early stages of an outbreak decreases, and
is absent in the limit n → ∞.
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Table 1: Fraction of major outbreaks in 10 000 simulations of the IEDS model for different
community sizes n and different α. See text for further details.

n α = 0 α = 1 α = 10
100 0.6137 0.6316 0.6729
200 0.6320 0.6316 0.6703
500 0.6399 0.6501 0.6565
1000 0.6489 0.6436 0.6539
5000 0.6450 0.6430 0.6455
10000 0.6495 0.6505 0.6489
100000 0.6511 0.6490 0.6511

4.2 Illustration of central limit theorem and final size

Having investigated the branching process approximation we now focus on major outbreaks by
having R0 > 1 and starting with a fair number of infectives. For this situation we performed
simulations to assess how well the central limit approximation works for finite populations.
Figure 2 is based on 10 000 simulations of the IEDS model for a population consisting of
n = 100 000 individuals, with the epidemic parameters being the same as those used in
Figure 1. Recall that R0 = 2.0782, so the epidemic is above threshold. To avoid minor
outbreaks, each simulation was initiated by 100 mild and 100 severely infectious individuals.
The figure contains histograms of the final number of mild (left) and severe (right) cases
from the simulations. The average scaled (i.e. divided by the initial number of susceptibles,
n) numbers of mildly and severely infected in the simulations, including initial infectives,
were 0.1776 and 0.6659, respectively. The corresponding theoretical values, obtained using
methods described in Section 3.3, were zM(∞) = 0.1776 and zS(∞) = 0.6660, i.e. essentially
the same as the empirical means. The limiting covariance matrix ΣZ(∞) (see equation (3.8))
was computed numerically. The limiting scaled variances and covariance (now multiplied
by n) for the proportions infected (elements (1,1), (2,2) and (1,2) of ΣZ(∞) in equation
(3.8)) were σ11(∞) = 0.3184, σ22(∞) = 1.2297 and σ12(∞) = −0.4248. The corresponding
empirical variances from the simulations were 0.3161, 1.2076 and −0.4135, respectively, again
close to their asymptotic counterparts. In Figure 2, the probability density functions of the
approximating normal distributions, with means nzM(∞) and nzS(∞), and variances nσ11(∞)
and nσ22(∞), are superimposed. (The probability density functions are scaled so that the
areas under them match those of the histograms.) As can be seen, there is excellent agreement
between the empirical distributions and the theoretical asymptotic normal distributions.

We now illustrate that the final size of the limiting deterministic model can be close to
discontinuous in certain model parameters. In Figure 3 we consider epidemics with parameters
γM = 1, γS = 1, λM = 0.8, λS = 5, pMM = 1, pMS = 0, pSM = 1, pSS = 0, and initial proportions
infected µM = 0.01 and µS = 0. The reinfection parameters are varied by setting αM = αS = α
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Figure 2: Histograms of final outcome from 10 000 simulations of the IEDS model in a
community of 100 000 individuals, with theoretical normal approximation superimposed. To
the left are the number of mildly infected and to the right the number of severely infected.

and letting α vary from 0 to 10. The figure shows the total fraction ultimately infected,
zM(∞) + zS(∞) as a function of α. We see that zM(∞) + zS(∞) is close to discontinuous in
α when α ≈ 7.43. A similar phenomenon (but with an actual discontinuity) was observed in
the EDS model (Ball and Britton [9]) and in some deterministic models for endemic diseases
(e.g. Greenhalgh et al. [19] and van den Driessche and Watmough [20]). A possible explanation
for this phenomenon in the present model is as follows. Note that the model is below threshold,
as R0 (= RM) = 0.8 < 1. However, the initial proportion mildly infected µM > 0 makes it less
subcritical, since mild infectives can be reinfected to become severe infectives, whose infection
parameters are well above threshold (RS = 5). As α increases, there is more reinfection
and hence more severe infectives, which leads to even more reinfection since severe infectives
reinfect at an appreciably higher rate than mild infectives. Thus there is positive feedback,
leading to a steep rise in the fraction ultimately infected as α passes a certain value.

4.3 Final size as function of v

We now illustrate what effect the vaccine response models have on the fractions of ultimately
mild and severely infected in the limiting deterministic epidemic processes.

First we compare the final outcome using an all-or-nothing vaccine and a leaky vaccine, both
having vaccine efficacy e = 0.75, as a function of the fraction vaccinated v. The model
parameters are chosen to be λM = 1, λS = 4, γM = 1, γS = 1, pMM = 0.8, pMS = 0.2, pSM =
0.2, pSS = 0.8, αM = 1, αS = 1, with initial fractions of mild and severe infectives given by
µM = 10−6 and µS = 0, respectively. Thus the epidemic parameters are the same as those
used in Figure 1, except that λS is increased to 4 to highlight better the effect of vaccination.
Figure 4 shows the final fractions infected of the two types for these parameter values and
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Figure 3: Total fraction ultimately infected (of either type) as a function of α. See text for
further details.

varying the vaccination coverage v.

It is seen that, for these particular parameter values, vaccination has greatest impact on the
number of severely infected. It is also observed that the all-or-nothing vaccine outperforms
the leaky vaccine having the same efficacy. This observation is true in general and has been
explained by the fact that the first contact with a vaccinee under either type of vaccine
response has the same risk of resulting in infection, whereas additional contacts (with not
yet infected!) never result in infection under the all-or-nothing vaccine response but may
result infection under the leaky vaccine response (Ball and Becker [21]). Finally, even though
the all-or-nothing vaccine response is better in this sense, both responses have the same
critical vaccination coverage vc = 0.9250 (R0 = 3.2649 from (3.2)), as is seen by setting
(a, b) = (1 − e, 1) in (3.18) and comparing with (3.14).

Note from Figure 4 that, under the leaky vaccine, the fraction mildly infected initially increases
slightly with the vaccination coverage. This effect is more marked for other parameter values.
Figure 5 plots the final fractions infected for the all-or-nothing and leaky vaccines, both
having efficacy e = 0.75, and model parameters set to λM = 2, λS = 5, γM = 1, γS = 1, pMM =
1, pMS = 0, pSM = 1, pSS = 0, αM = 10, αS = 10, µM = 10−6, µS = 0. As before, the all-or-
nothing vaccine response outperforms the leaky vaccine response having the same efficacy. We
note also that the fraction mildly infected initially increases appreciably with the vaccination
coverage for both vaccine responses. The explanation to this is that even though the overall
fraction infected decreases, the proportion severely infected decreases much faster since fewer
and fewer switch from mild to severe, thus making the proportion of mildly infected increase.

Our final comparison concerns the non-random vaccine response model, and in particular
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Figure 4: Final fractions infected (of the two types) as a function of the vaccination coverage
v, under the all-or-nothing and leaky vaccine models.

compares the effect of reducing infectivity (θ = 1) with the effect of reducing the length of the
infectious period (θ = 0). In Figure 6 we plot the fractions ultimately infected of the two types
for both vaccine responses, as a function of the vaccination coverage. The epidemic model
parameters are the same as in Figure 5, and the vaccine parameters are set to a = b = 0.5 in
the non-random vaccine response model, resulting in efficacy 1−ab = 0.75 as before. It is seen
that the two vaccines perform differently although the difference is only moderate. There are
fewer severely infected and more mildly infected when the infectious period is reduced and not
the infectivity (θ = 0) compared to the opposite (θ = 1). A possible explanation for this is
that reducing the infectious period mainly implies fewer switches from mild to severe, whereas
as reducing infectivity brings down the infectious pressure in general. In an equivalent figure
(not shown), where the epidemic parameters are the same as in Figure 4, the curves for the
two vaccine responses (θ = 0 and θ = 1) are virtually identical. Note that with these latter
epidemic parameters, individuals may become severe cases when first infected and there is
less reinfection.

5 Proofs

5.1 Branching process approximation

The branching process approximation of the initial stages of the IEDS epidemic may be made
fully rigorous by extending the coupling argument of Ball and Donnelly [22]. We consider
a sequence of IEDS epidemics, {E(n) : n ≥ 1} say, with the epidemic E(n) having initially
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Figure 5: Final fractions infected as a function of the vaccination coverage under the all-or-
nothing and leaky vaccine models.

(i.e. at time t = 0) n susceptibles, mM mild infectives, mS severe infectives and no removed
(recovered) individuals. Let (Ω,F, P ) be a probability space on which are defined the following
independent sets of random quantities:

(i) mild infectious careers H
M
i = (IM

i , ηMM
i , ηMS

i , ηMR
i , ξMR

i ) (i = −(mM−1),−(mM−2), . . . ),
independent and identically distributed according to H

M = (IM, ηMM, ηMS, ηMR, ξMR),
where the components of H

M are independent, IM is exponentially distributed with
mean γ−1

M , and ηMM, ηMS, ηMR and ξMR are homogeneous Poisson processes on [0,∞)
having rates λMpMM, λMpMS, λMαM and λMαM, respectively;

(ii) severe infectious careers H
S
i = (IS

i , ηSM
i , ηSS

i , ηSR
i , ξSR

i ) (i = −(mS − 1),−(mS − 2), . . . ),
independent and identically distributed according to H

S = (IS, ηSM, ηSS, ηSR, ξSR), where
the components of H

S are independent, IS is exponentially distributed with mean γ−1
S ,

and ηSM, ηSS, ηSR and ξSR are are homogeneous Poisson processes on [0,∞) having rates
λSpSM, λSpSS, λSαS and λSαS, respectively;

(iii) χ
(n)
i (n = 1, 2, . . . ; i = 1, 2, . . . ), where for each n = 1, 2, . . . , χ

(n)
1 , χ

(n)
2 , . . . are indepen-

dent and uniformly distributed on {1, 2, . . . , n};

(iv) χ̃i (i = 1, 2, . . . ), independent and uniformly distributed on {−(mM − 1),−(mM −
2), . . . , 0}.

The random quantities (iv) are required only if mM > 0.

For n = 1, 2, . . . , a realisation of the epidemic E(n) is constructed as follows. Label the n

suscpetibles 1, 2, . . . , n, the mM initial mild infectives −(mM − 1),−(mM − 2), . . . , 0 and the
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Figure 6: Final fractions infected as a function of the vaccination coverage for two choices
of the non-random vaccine model.

mS initial severe infectives −(mM + mS − 1),−(mM + mS − 2), . . . ,−mM. For i = −(mS −
1),−(mS−2), . . . , 0, the initial severe infective i−mM has infectious period IS

i , during which it
makes mild, severe and reinfection contacts with initial susceptibles at the points of ηSM

i , ηSS
i

and ηSR
i , respectively, and reinfection contacts with initial mild infectives at the points of

nm−1
M ξSR. (If ξ is a simple point process on [0,∞) with points at t1 < t2 < . . . and α > 0 then

αξ denotes the point process with points at αt1 < αt2 < . . .; thus nm−1
M ξSR

i is a homogeneous
Poisson process with rate n−1mMλSαS). Similarly, for i = −(mM−1),−(mM−2), . . . , 0, unless
it is reinfected (see below), the initial mild infective i has infectious period IM

i , during which it
makes mild, severe and reinfection contacts with initial susceptibles at the points of ηMM

i , ηMS
i

and ηMR
i , respectively, and reinfection contacts with initial mild infectives at the points of

nm−1
M ξMR

i .

For k = 1, 2, . . . , the kth contact made with the initial susceptibles is with individual χ
(n)
k .

If it is a mild or severe contact then the contacted individual becomes infected with the
corresponding type if it is still susceptible, otherwise the the contact is ignored. If it is a
reinfection contact then the contacted individual becomes a severe infective if it is a mild
infective and the contacted individual is distinct from the individual making the contact,
otherwise the contact is ignored. For l = 1, 2, . . . , the lth reinfection contact made with
the initial mild infectives is with individual χ̃l. If the contacted individual is still mildly
infected and distinct from the individual making the contact then it becomes severely infected,
otherwise the contact is ignored. The kth susceptible to be mildly infected in E(n) adopts the
mild infectious career H

M
k . Suppose that this individual is infected at time t1. Then, unless

it is reinfected, it makes contacts during [t1, t1 + IM
k ] at times given by {t1 + ηMM

k } ∪ {t1 +
ηMS

k } ∪ {t1 + ηMR
k } ∪ {t1 + nm−1

M ξMR
k }. The lth individual to become severely infected after
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time t = 0 in E(n), either directly or by reinfection, adopts the severe infectious career H
S
l .

Suppose that this individual becomes severely infected at time t2. Then it makes contacts
during [t2, t2 + IS

l ] at times given by {t2 + ηSM
l } ∪ {t2 + ηSS

l } ∪ {t2 + ηSR
l } ∪ {t2 + nm−1

M ξSR
l }.

When a mild infected is reinfected, its mild infectious period terminates immediately and it
adopts a severe infectious career as described above. An individual becomes recovered and
immune to further infection when it is no longer infectious. The epidemic stops when there is
no infective, mild or severe, left in the population. It is easily verified that the epidemic E(n)

is probabilistically equivalent to the IEDS model defined in Section 2.1.

The above random quantities can also be used to construct a realisation of a two-type (mild and
severe) branching process, having initially mM mild indivdiuals, labelled −(mM − 1),−(mM −
2), . . . , 0, and mS severe individuals, labelled −(mM + mS − 1),−(mM + mS − 2), . . . ,−mM.
For i = −(mM − 1),−(mM − 2), . . . , 0, the initial mild individual i lives until time IM

i , has
one mild child at each of the times given by ηMM

i ∩ [0, IM
i ] and one severe child at each of

the times given by ηMS
i ∩ [0, IM

i ]. Similarly, for i = −(mS − 1),−(mS − 2), . . . , 0, the initial
severe individual i − mM lives until time IS

i , has one mild child at each of the times given by
ηSM

i ∩ [0, IS
i ] and one severe child at each of the times given by ηSS

i ∩ [0, IS
i ]. For k = 1, 2, . . . ,

the kth mild individual born in (0,∞) in the branching process lives until age IM
k , has one

mild child at each of the times given by {tMk + ηMM
k } ∩ [0, IM

k ] and one severe child at each of

the times given by {tMk + η
MS}
k ∩ [0, IM

k ], where tMk is the time when the kth mild birth occurs.
Similarly, for l = 1, 2, . . . , if the lth severe individual is born at time tSl > 0, then she has one
mild child at each of the times given by {tSl + ηSM

l } ∩ [0, IS
k ] and one severe child at each of

the times given by {tSl + {ηSS
l } ∩ [0, IS

k ]. Of course, the branching process stops if there is no
live individual.

For n = 1, 2, . . . , let

Mn = min
{

k ≥ 2: χ
(n)
1 , χ

(n)
2 , . . . , χ

(n)
k are not distinct

}

.

Then, noting the connection with the ‘birthday problem’, as in the proof of Ball and Don-
nelly [22], Theorem 2.1, we may assume that

n−1/2Mn
a.s.−→ M as n → ∞, (5.1)

where
a.s.−→ denotes almost sure convergence and M is a strictly positive random variable

defined on (Ω,F, P ) having probability density function f(x) = x exp(−1
2
x2) (x > 0).

For t ≥ 0, let Y (t) = (YM(t), YS(t)), where YM(t) and YS(t) denote respectively the numbers
of mild and severe individuals alive in the branching process at time t, and let Y

(n)(t) =

(Y
(n)
M (t), Y

(n)
S (t)), where Y

(n)
M (t) and Y

(n)
S (t) denote respectively the numbers of mild and

severe infectives at time t in the epidemic E(n) (n = 1, 2, . . . ). Further, for t ≥ 0, let ZM(t)
and ZS(t) denote respectively the total numbers of mild and severe births during (0, t] in the
branching process. Suppose that pMSpSM > 0. Then the branching process is indecomposable
(see e.g. Haccou et al. [16], page 27) and its Malthusian parameter, α say, is given by the
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maximal eigenvalue of the matrix

G =

[

λMpMM − γM λMpMS

λSpSM λSpSS − γS

]

. (5.2)

Further, let v = (vM, vS) be the left eigenvector of G corresponding to α, normalized so
that vM + vS = 1. Then Theorem 2 on page 206 of Athreya and Ney [23], together with
the theory of asymptotic growth and stabilisation of general multitype branching processes
(e.g. Jagers [24]), implies that there exists a nonnegative random variable W , defined on
(Ω,F, P ), so that almost surely

lim
t→∞

e−αtZM(t) = α−1λMvMW and lim
t→∞

e−αtZS(t) = α−1λSvSW. (5.3)

Moreover, W (ω) = 0 if and only if ω ∈ AEXT, where AEXT ∈ F is the set on which the
branching process becomes extinct.

Theorem 5.1 (a) For P -almost all ω ∈ AEXT,

lim
n→∞

sup
0≤t<∞

|Y (n)(t, ω) − Y (t, ω)| = 0. (5.4)

(b) For P -almost all ω ∈ Ω \ AEXT,

lim
n→∞

sup
0≤t≤β log n

|Y (n)(t, ω) − Y (t, ω)| = 0, (5.5)

for any β ∈ [0, (2α)−1).

Proof: Let CM
i = |(ηMM

i ∪ ηMS
i ∪ ηMR

i ) ∩ [0, IM
i ]| (i = −(mM − 1),−(mM − 2), . . . ) and

CS
i = |(ηSM

i ∪ ηSS
i ∪ ηSR

i ) ∩ [0, IS
i ]| (i = −(mS − 1),−(mS − 2), . . . ), so, for example, CM

0 is the
total number of contacts with the initial suscepibles made by the initial mild infective labelled
0. In view of (5.1), there exists B1 ∈ F with P (B1) = 1 such that limn→∞ n−1/2Mn(ω) = M(ω)
for all ω ∈ B1. Fix ω ∈ AEXT ∩ B1, so ZM(∞, ω) and ZS(∞, ω) are both finite. Hence
∑ZM(∞,ω)

i=−(mM−1) CM
i (ω) and

∑Z(∞,ω)
i=−(m−1) CS

i (ω) are also both finite. Now Mn(ω) → ∞ as n → ∞, so
there exists an integer N1(ω) such that, for all n ≥ N1(ω), all the contacts with initial suscepti-
bles in E(n) are with distinct individuals. For i = −(mM−1),−(mM−2), . . . , let τMR

i (ω) be the
time of the first point of ξMR

i (ω) in (0,∞) and, for i = −(mS−1),−(mS−2), . . . , define τMS
i (ω)

similarly. Note that, for example, the ith mild infective does not make any reinfection contact
with the initial mild infectives if n > mMIM

i (ω)/τMR
i (ω). Thus, if N2(ω) is the smallest integer

greater than both max{mMIM
i (ω)/τMR

i (ω) : i = −(mM − 1),−(mM − 2), . . . , ZM(∞, ω)} and
max{mSI

S
i (ω)/τSR

i (ω) : i = −(mS − 1),−(mS − 2), . . . , ZS(∞, ω)}, then for all n ≥ N2(ω),
there is no reinfection contact with the initial mild infectives in E(n). Hence, for all n >
max(N1(ω), N2(ω)), (i) every birth in the branching process yields a new infective in E(n) and
(ii) there is no reinfection in E(n), and (5.4) follows since P (AEXT ∩ B1) = P (AEXT).
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To prove part (b), first note that by the strong law of large numbers there exists B2 ∈ F,
with P (B2) = 1, such that limn→∞ n−1CM

i (ω) = λM(1 + αM)γ−1
M and limn→∞ n−1CS

i (ω) =
λS(1 + αS)γ

−1
S for all ω ∈ B2. Also, (5.3) implies that there exists B3 ∈ F, with P (B3) = 1,

such that for all ω ∈ B3, limt→∞ e−αtZM(t, ω) = α−1λMvMW (ω) and limt→∞ e−αtZS(t, ω) =
α−1λSvSW (ω), with W (ω) > 0 if ω ∈ B3 ∩ \AEXT. Fix ω ∈ (B1 ∩ B2 ∩ B3) \ AEXT and
β ∈ (0, (2α)−1). Since ω ∈ B3, there exists an integer N3(ω) such that ZM(β log n, ω) <

2α−1λMvMW (ω)nαβ and ZS(β log n, ω) < 2α−1λSvSW (ω)nαβ for all n ≥ N3(ω). Further, since
ω ∈ B2, there exists an integer N4(ω) ≥ N3(ω) such that, for all n ≥ N4(ω),

ZM(β log n,ω)
∑

i=−(mM−1)

CM
i (ω) <

2α−1λMvMW (ω)nαβ

∑

i=−(mM−1)

CM
i (ω) < 4α−1λ2

MvM(1 + αM)γ−1
M W (ω)nαβ (5.6)

and
ZS(β log n,ω)
∑

i=−(mS−1)

CS
i (ω) < 4α−1λ2

SvS(1 + αS)γ
−1
S W (ω)nαβ. (5.7)

Also, as ω ∈ B1, there exists an integer N5(ω) such that, for all n ≥ N5(ω),

Mn(ω) >
1

2
n

1
2 M(ω). (5.8)

It follows from (5.6), (5.7) and (5.8) that there exists an integer N6(ω) such that, for all
n ≥ N6(ω),

ZM(β log n,ω)
∑

i=−(mM−1)

CM
i (ω) +

ZS(β log n,ω)
∑

i=−(mS−1)

CS
i (ω) < Mn(ω), (5.9)

so, for such n, all contacts with the initial susceptibles during [0, β log n] in E(n) are with
distinct individuals.

Let I∗(ω) = max(IM
∗ (ω), IS

∗ (ω)), where

IM
∗ (ω) = max

−(mM−1)≤i≤0
IM
i (ω) and IS

∗ (ω) = max
−(mS−1)≤i≤0

IS
i (ω),

be the time of the last death of an initial individual in the branching process. Then, noting
that ZM(I∗(ω), ω) and ZS(I∗(ω), ω) are both finite, arguing as in the proof of part (a) shows
that there exists an integer N7(ω) such that, for all n ≥ N7(ω), there is no reinfection contact
with the initial mild infectives in E(n). Thus, recalling (5.9), Y

(n)(t, ω) (0 ≤ t ≤ β log n)
and Y (t, ω) (0 ≤ t ≤ β log n) coincide for all n ≥ max(N6(ω), N6(ω)) and (5.5) follows since
P ((B1 ∩ B2 ∩ B3) \ AEXT) = P (Ω \ AEXT). 2

When pMSpSM = 0 the branching process is decomposable. It is readily seen that part (a) of
Theorem 5.1 still holds in this case and that part (b) holds with α replaced by max(λMpMM −
γM, λSpSS − γS). The following corollary to Theorem 5.1 is immediate and holds without
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requiring pMSpSM > 0. Recall that ZM(∞) and ZS(∞) are respectively the total numbers of

mild and severe births that ever occur in the branching process. For n = 1, 2, . . . , let Z
(n)
M (∞)

and Z
(n)
S (∞) be respectively the total number of mild and severe removals in the epidemic

E(n). Note that ZM(∞) and ZS(∞) may be infinite but Z
(n)
M (∞) and Z

(n)
S (∞) are necessarily

finite.

Corollary 5.2 (a) For P -almost all ω ∈ AEXT,

lim
n→∞

(

Z
(n)
M (∞, ω), Z

(n)
S (∞, ω)

)

=
(

ZM(∞, ω) + mM, Z
(n)
S (∞, ω) + mS

)

.

(b) For P -almost all ω ∈ Ω \ AEXT,

lim
n→∞

Z
(n)
M (∞, ω) + Z

(n)
S (∞, ω) = ∞.

5.2 LLN and CLT for final size distribution

As in Section 5.1, consider a sequence of IEDS epidemics, {E(n) : n ≥ 1} say, indexed by

the initial number of susceptibles n. For t ≥ 0, let X(n)(t), Y
(n)
M (t), Y

(n)
S (t), Z

(n)
M (t) and

Z
(n)
S (t) denote respectively the numbers of susceptible, mild infective, severe infective, mild

removed and severe removed individuals at time t. Suppose that Y
(n)
M (0) = m

(n)
M , Y

(n)
S (0) =

m
(n)
S , Z

(n)
M (0) = 0 and Z

(n)
S (0) = 0 (n = 1, 2, . . .), so initially there are m

(n)
M mild infectives

and m
(n)
S severe infectives in E(n). The epidemics E(n) (n = 1, 2, . . .) each have the same

infection, reinfection and removal parameters. The process X
(n) = {X(n)(t) : t ≥ 0}, where

X
(n)(t) = (X(n)(t), Y

(n)
M (t), Y

(n)
S (t), Z

(n)
M (t), Z

(n)
S (t))⊤ (t ≥ 0) is a continuous-time Markov

chain with transition rates

q
(n)
(s,iM,iS,rM,rS),(s−1,iM+1,iS,rM,rS)n

−1[λMpMMiM + λSpSMiS]

for a new mild infection,

q
(n)
(s,iM,iS,rM,rS),(s−1,iM,iS+1,rM,rS)n

−1[λMpMSiM + λSpSSiS]

for a new severe infection,

q
(n)
(s,iM,iS,rM,rS),(s,iM−1,iS+1,rM,rS)n

−1iM[λMαM(iM − 1) + λSαSiS] (5.10)

for a reinfection,
q
(n)
(s,iM,iS,rM,rS),(s,iM−1,iS,rM+1,rS)γMiM,

for a mild removal, and
q
(n)
(s,iM,iS,rM,rS),(s,iM,iS−1,rM,rS+1)γSiS,
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for a severe removal, where (s, iM, iS, rM, rS)
⊤ is the state of X

(n) at a given time. The factor
(iM − 1) in (5.10) arises because a mild infective cannot reinfect itself.

Let i = (s, iM, iS, rM, rS)
⊤ and note that each of the above transition rates admits the form

n[f(n−1
i)+O(n−1)] as n → ∞, where f depends on the type of transition. Thus {X(n) : n ≥

1} satisfies the more general form of a density dependent population process defined by Ethier
and Kurtz [17], Chapter 11, Equation (1.13). (Apart from those for reinfection, the transition
rates satisfy the usual density dependent form in which the O(n−1) term is identically zero.)

Suppose further that n−1m
(n)
M → µM and n−1m

(n)
S → µS as n → ∞, where µM + µS >

0. Then, Ethier and Kurtz [17], Theorem 11.2.1, implies that as n → ∞, n−
X

(n) con-
verges almost surely over any finite time interval to x = {x(t) : t ≥ 0}, where x(t) =
(x(t), yM(t), yS(t), zM(t), zS(t))

⊤ and (x(t), yM(t), yS(t), zM(t), zS(t)) is given by the solution of
(3.6) with initial condition (3.7). Moreover, a central limit theorem for fluctuations of X

(n)

about x is given by Ethier and Kurtz [17], Theorem 11.2.3. (In this subsection is more
convenient for x(t) to be a column vector, rather than a row vector as it is in Section 3.2.)

We are primarily interested in the final outcome of the epidemic E(n), which is not covered
by the above asymptotic results. For n ≥ 1, the final outcome of E(n) is given by X

(n)(τ (n)),

where τ (n) = inf{t > 0 : Y
(n)
M (t) + Y

(n)
S (t) = 0} is the duration of the epidemic E(n). A

central limit theorem for X
(n)(τ (n)) cannot be obtained directly from the theory in Ethier

and Kurtz [17] because inf{t > 0 : yM(t) + yS(t) ≤ 0} = ∞. Thus, as in Ball and Britton [4],
we consider the following random time scale transformation of X

(n), cf. Ethier and Kurtz [17],
page 467.

For t ∈ [0, τ (n)], let A(n)(t) =
∫ t

0
n−1(λMY

(n)
M (u) + λSY

(n)
S (u))du be the total force of infection

exerted on a given susceptible in E(n) during [0, t], and let A(n) = A(n)(τ (n)). For 0 ≤
t ≤ A(n), let U (n)(t) = inf{u ≥ 0 : A(n)(u) = t}, let X̃

(n)
(t) = X

(n)
(

U (n)(t)
)

and write

X̃
(n)

(t) =
(

X̃(n)(t), Ỹ
(n)
M (t), Ỹ

(n)
S (t), Z̃

(n)
M (t), Z̃

(n)
S (t)

)

⊤

. The process X̃
(n)

= {X̃(n)
(t) : 0 ≤

t ≤ A(n)} is obtained from X
(n) by running the clock at rate n(λMY

(n)
M (u) + λSY

(n)
S (u))−1.

Thus the transition rates of X̃
(n)

are obtained from those given above for X
(n) by dividing

by λMiM + λSiS.

The possible jumps of X̃
(n)

from a typical state i = (s, iM, iS, rM, rS)
⊤ are ∆ = {(−1, 1, 0, 0, 0)⊤,

(−1, 0, 1, 0, 0)⊤, (0,−1, 1, 0, 0), (0,−1, 0, 1, 0)⊤, (0, 0,−1, 0, 1)⊤}. The rates of these jumps ad-
mit the form n[β̃l(n

−1
i) + O(n−1)] (l ∈ ∆), as n → ∞, where the functions β̃l (l ∈ ∆) are
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given by

β̃(−1,1,0,0,0)(x̃, ỹM, ỹS, z̃M, z̃S) = x̃(λMpMMỹM+λSpSMỹS)
λMỹM+λSỹS

,

β̃(−1,0,1,0,0)(x̃, ỹM, ỹS, z̃M, z̃S) = x̃(λMpMSỹM+λSpSSỹS)
λMỹM+λSỹS

,

β̃(0,−1,1,0,0)(x̃, ỹM, ỹS, z̃M, z̃S) = ỹM(λMαMỹM+λSαSỹS)
λMỹM+λSỹS

,

β̃(0,−1,0,1,0)(x̃, ỹM, ỹS, z̃M, z̃S) = γMỹM

λMỹM+λSỹS
,

β̃(0,0,−1,0,1)(x̃, ỹM, ỹS, z̃M, z̃S) = γSỹS

λMỹM+λSỹS
.











































(5.11)

Let
F̃ (x̃, ỹM, ỹS, z̃M, z̃S) =

∑

l∈∆

β̃l(x̃, ỹM, ỹS, z̃M, z̃S)l

and, for t ≥ 0, let x̃(t) = (x̃(t), ỹM(t), ỹS(t), z̃M(t), z̃S(t))
⊤ be defined by

x̃(t) = x̃(0) +

∫ t

0

F̃ (x̃(u))du, (5.12)

where x̃(0) = (1, µM, µS, 0, 0)⊤. Thus x̃(t) satisfies the differential equation

dx̃

dt
= −x̃,

dỹM

dt
=

x̃(λMpMMỹM + λSpSMỹS) − (λMαMỹM + λSαSỹS + γM)ỹM

λMỹM + λSỹS

,

dỹS

dt
=

x̃(λMpMSỹM + λSpSSỹS) + (λMαMỹM + λSαSỹS)ỹM − γSỹS

λMỹM + λSỹS

,

dz̃M

dt
=

γMỹM

λMỹM + λSỹS

,

dz̃S

dt
=

γSỹS

λMỹM + λSỹS

.







































































(5.13)

Let τ̃ = inf{t ≥ 0 : ỹM(t) + ỹS(t) ≤ 0}. It is easily verified that τ̃ < ∞. Let τ̃ (n) = inf{t >

0 : Ỹ
(n)
M (t) + Ỹ

(n)
S (t) = 0} (= A(n)), so X̃

(n)
(τ̃ (n)) yields the final outcome of E(n). We seek a

central limit theorem for X̃
(n)

(τ̃ (n)) but first some more notation is required.

Let ∂F̃ (x̃) = [∂jF̃i(x̃)] denote the matrix of first partial derivatives of F̃ (x̃) and, for 0 ≤ s ≤
t ≤ τ̃ , let Φ̃(t, s) be the solution of the matrix differential equation

∂

∂t
Φ̃(t, s) = ∂F̃ (x̃(t))Φ̃(t, s), Φ̃(s, s) = I, (5.14)

where I denotes the 5 × 5 identity matrix. Let G̃(x̃) =
∑

l∈∆ β̃l(x̃)ll⊤. For t ∈ [0, τ̃ ], let

Ṽ
(n)

(t) =
√

n(n−1
X̃

(n)
(t) − x̃(t)),
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where, X̃
(n)

(t) = X̃
(n)

(τ̃ (n)) if t > τ̃ (n), and suppose that limn→∞

√
n(n−1m

(n)
M − µM) = 0

and limn→∞

√
n(n−1m

(n)
S − µS) = 0. For t0 ∈ (0, τ̃), F̃ is Lipschitz-continuous and ∂F̃ is

differentiable in a small neighbourhood of {x̃(u) : 0 ≤ u ≤ t0}. Further, for l ∈ ∆, β̃l is
bounded on any compact subset of [0, 1]× (0,∞)4. Thus the conditions of Theorem 11.2.3 of
Ethier and Kurtz [17], are satisfied, so, for any t0 ∈ (0, τ̃),

{Ṽ (n)
(t) : 0 ≤ t ≤ t0} ⇒ {Ṽ (t) : 0 ≤ t ≤ t0}, (5.15)

where ⇒ denotes weak convergence in the space of right-continuous functions from [0, t0] → R
5

with left limits, endowed with the Skorohod topology, and {Ṽ (t) : 0 ≤ t ≤ t0} is a zero-mean
Gaussian process with Ṽ (0) = 0 and covariance function given by

cov(Ṽ (t), Ṽ (s)) =

∫ min(t,s)

0

Φ̃(t, u)G̃(x̃(u))[Φ̃(s, u)]⊤du. (5.16)

Let φ(x̃, ỹM, ỹS, z̃M, z̃S) = ỹM + ỹS, so τ̃ (n) = inf{t > 0 : φ(X̃
(n)

(t)) ≤ 0} and τ̃ = inf{t > 0 :
φ(x̃(t)) ≤ 0}. Provided its conditions are satisfied, Theorem 11.4.1 of Ethier and Kurtz [17]
implies that

√
n
(

n−1
X̃

(n)
(τ̃ (n)) − x̃(τ̃)

)

D−→ Ṽ (τ̃) − ∇φ(x̃(τ̃))Ṽ (τ̃)

∇φ(x̃(τ̃))F̃ (x̃(τ̃))
F̃ (x̃(τ̃)) as n → ∞, (5.17)

where
D−→ denotes convergence in distribution. Now, ∇φ(x̃) = (0, 1, 1, 0, 0), so, using (5.11),

∇φ(x̃(t))x̃(t) − γMỹM(t) − γSỹS(t)

λMỹM(t) + λSỹS(t)
(t ∈ [0, τ)) . (5.18)

Assuming that the limit exists, let θ = limt→τ̃−[ỹM(t)/ỹS(t)]. Then, using L’Hôpital’s rule,

θ = lim
t→τ̃−

ỹ′
M(t)

ỹ′
S(t)

= lim
t→τ̃−

[

x̃(t)(λMpMMỹM(t) + λSpSMỹS(t)) − γMỹM(t) − (λMαMỹM(t) + λSαSỹM(t))ỹM(t)

x̃(t)(λMpMSỹM(t) + λSpSSỹS(t)) − γSỹS(t) + (λMαMỹM(t) + λSαSỹM(t))ỹM(t)

]

=
x̃(τ̃)(λMpMMθ + λSpSM) − γMθ

x̃(τ̃)(λMpMSθ + λSpSS) − γS

. (5.19)

Thus, provided x̃(τ̃)(λMpMSθ + λSpSS) − γS 6= 0, θ satisfies the quadratic equation

x̃(τ̃)λMpMSθ
2 + [x(τ̃)(λSpSS − λMpMM) + γM − γS]θ − x̃(τ̃)λSpSM = 0. (5.20)

Suppose that pMS > 0 and pSM > 0. Then the roots of (5.20) have opposite signs and, since
ỹM(t) and ỹS(t) are each nonnegative for t ∈ [0, τ̃), θ is given by the positive root. Letting
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t → τ̃− in (5.18) now yields

∇φ(x̃(τ̃))x̃(τ̃) − γMθ − γS

λMθ + λS

=
(1 + θ)[x̃(τ̃)(λMpMSθ + λSpSS) − γS]

λMθ + λS

, (5.21)

using (5.19). Now ∇φ(x̃(τ̃)) ≤ 0 by the definition of τ̃ , so (5.21) implies that ∇φ(x̃(τ̃)) < 0,
since θ > 0 and x̃(τ̃)(λMpMSθ + λSpSS) − γS 6= 0.

In addition to ∇φ(x̃(τ̃)) < 0, Theorem 11.4.1 of Ethier and Kurtz [17] requires that (5.15)
holds for some t0 > τ̃ . This requires extending the transition rate functions β̃l (l ∈ ∆),
defined at (5.11), so that x̃(t) is defined on [0, t0) for some t0 > τ̃ , with the conditions
of Theorem 11.2.3 of Ethier and Kurtz [17] still being satisfied, in particular so that F̃ is
Lipschitz-continuous in a neighbourhood of {x̃(t) : 0 ≤ t ≤ t0}, and this does not seem
possible. However, assuming that (5.17) still holds, it follows that

√
n
(

n−1
X̃

(n)
(τ̃ (n)) − x̃(τ̃)

)

D−→ N(0, BΣ̃(τ̃)B⊤) as n → ∞, (5.22)

where Σ̃(τ̃) = cov(Ṽ (τ̃), Ṽ (τ̃)) and

B = I − F̃ (x̃(τ̃))(0, 1, 1, 0, 0)

(0, 1, 1, 0, 0)F̃ (x̃(τ̃))
.

Note that (5.14) and (5.16) imply that Σ̃(t) = cov(Ṽ (t), Ṽ (t)) (0 ≤ t ≤ τ̃) satisfies

dΣ̃

dt
= G̃(x̃) + ∂F̃ (x̃)Σ̃ + Σ̃[∂F̃ (x̃)]⊤, Σ̃(0) = 0. (5.23)

Thus, in principle, Σ̃(τ̃) can be computed by solving numerically the differential equations
(5.13) and (5.23) simultaneously. However, in practice we have found that this procedure is
not very accurate in some examples and much better results are obtained by first transforming
5.13) and (5.23) back into the original time domain. Thus,

dΣ

dt
= (λMyM + λSyS)

(

G̃(x) + ∂F̃ (x)Σ + Σ∂F̃ (x)]⊤
)

, Σ(0) = 0,

is solved numerically simultaneously with (3.6), where x(0) = (1, µM, µS, 0, 0)⊤, whence (x(τ̃), Σ̃(τ̃)) =
(x(∞), Σ(∞)).

Clearly the above argument is heuristic in places. However, the assertions concerning the
limit θ are supported by all of our numerical studies, as is the central limit theorem (5.22) for
the final outcome of the epidemic.
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6 Discussion

The IEDS model combines the possibility that the severity depends on who one is infected by,
as in the IDS model (Ball and Britton [4]), and that it is possible to become severely infected
if additionally exposed to the disease, as considered in the EDS model (Ball and Britton [9]).
In that sense the model is now quite flexible and realistic. Of course, there are several aspects
in which the model can be made more realistic. The assumption of homogeneous mixing
could be relaxed, for example by introducing households (cf. Ball and Becker [21]). Another
generalisation of interest would be to allow for different types of individuals, e.g. age cohorts,
having different transmission rates between different types of individuals. The model can also
be generalised by having more than two degrees of severity, and by allowing for an arbitrary
distribution of the infectious period.

From a statistical point of view it would of course be interesting to derive parameter estimators
and estimate model parameters for specific diseases. In particular it would be interesting to
study if severe cases typically appear directly upon infection or when additionally exposed.
For such estimation to be possibly it will be necessary to have some type of temporal data
rather than only final size data.

A specific example of the mild severity is for diseases having asymptomatic cases. Usually such
cases shed less infectious matter per time unit, but on the other hand they may be infectious
for longer, since severe cases typically stay home once symptoms appear, thus effectively
ending their infectious period. This can be reflected in the present model by having λM < λS

and γM < γS. It could very well be that the total expected infectivity shed by a mild case may
exceed that of a severe case (λM/γM > λS/γS), but this is allowed for in the present model.

The vaccine response model treated in the present paper is quite general in that it allows
infectivity reduction in two ways: lower infectivity and/or shorter infectious period. It would
be interesting to study this general form of response model also for other epidemic models.
In work not presented here owing to space considerations, the authors consider this response
model for a simple SIS (susceptible → infective → susceptible) epidemic in a partially vac-
cinated community; for the parameter values considered, the overall endemic level increases
with θ.

Appendix A Properties of deterministic final outcome

Suppose first that µ > 0 and recall that RS > RM. For fixed zS ∈ [0, µ], define functions
fzS

: [0,∞) → [0,∞) and gzS
: [0,∞) → [0,∞) by fzS

(zM) = exp (−(RMzM + RSzS)) and
gzS

(zM) = 1 + µ − zS − zM. For zz ∈ [0, µ], the solutions of fzS
(zM) = gzS

(zM) give the values
of ẑM so that (ẑM, ẑS) satisfies (3.10) with ẑS = zS. It is easily seen that fzS

(0) < gzS
(0) if

zS < z∗S, fzS
(0) = gzS

(0) if zS = z∗S and fzS
(0) > gzS

(0) if zS > z∗S, where z∗S is the positive
solution of 1 + µ − z = exp(−RSz). The function fzS

is convex and strictly decreasing, and
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it is easily seen that, if zS < z∗S, then fzS
− gzS

has a unique root in [0, 1 + µ]. Thus, h(zS)
is well defined for zS ∈ [0, z∗S). Now, 0 is clearly a root of fz∗S

− gz∗S
and considering the first

derivatives of fz∗S
and gz∗S

at the origin shows that it is the only positive root if and only if
RM exp(−RSz

∗
S) ≤ 1. Recall that 1 + µ− z∗S = exp(−RSz

∗
S). Hence, 0 is the only positive root

of fz∗S
− gz∗S

if and only if

z∗S ≥ 1 + µ − 1

RM

. (A.1)

The inequality (A.1) is clearly satisfied if RM ≤ (1+µ)−1, so assume that RM > (1+µ)−1. Since
RS > RM, (A.1) is satisfied if z∗S ≥ 1+µ− 1

RS
. Let f : [0,∞) → [0,∞) and g : [0,∞) → [0,∞)

be defined by f(z) = exp(−RSz) and g(z) = 1 + µ − z. Then z∗S is the positive root of f − g
and z∗S ≥ 1 + µ − 1

RS
if and only if f(1 + µ − 1

RS
) ≤ g(1 + µ − 1

RS
). Elementary algebra

shows that this last condition is equivalent to exp (RS(1 + µ) − 1) ≥ RS, which clearly holds
as RS > RM > (1+µ)−1. Thus, 0 is the only positive root of fz∗S

−gz∗S
and h(zS) is well defined

for zS ∈ [0, z∗S]. Let f ′
zS

denote the first derivative of fzS
. Then f ′

zS
(0) increases with zS and it

is easily shown that fzS
− gzS

has no positive root when zS > z∗S. Thus, (3.10) has no solution
in the first quadrant with ẑS > z∗S.

The following lemma is useful in proving the stated properties of the function h.

Lemma A.1 Suppose that (zM, zS) is a solution of (3.10) in the first quadrant and RM < RS.
Then,

RM(1 + µ − zM − zS) < 1. (A.2)

Proof: The result is immediate if RM ≤ (1 + µ)−1, since (0, 0) is not a solution of (3.10). A
similar argument to the above shows that (A.1) holds with strict inequality, whence (A.2) holds
if zS = z∗S. Thus, suppose that RM > (1 + µ)−1 and zS ∈ [0, z∗S). Condition (A.2) is equivalent
to zM > 1 + µ− zS −R−1

M , which holds if fzS
(1 + µ− zS −R−1

M ) < gzS
(1 + µ− zS −R−1

M ). After
rearranging, the latter condition is equivalent to exp ((RS − RM)zS) exp (RM(1 + µ) − 1) >
RM. Now exp ((RS − RM)zS) ≥ 1, as RS > RM, and exp (RM(1 + µ) − 1) > RM, as RM >

(1 + µ)−1, and (A.2) follows. 2

Differentiating the equation

1 + µ − zS − zM = exp (−(RMzM + RSzS)) (A.3)

implicitly with respect to zS and rearranging yields

dzM

dzS

= − 1 − RS(1 + µ − zS − zM)

1 − RM(1 + µ − zS − zM)
, (A.4)

whence
d(zM + zS)

dzS

=
(RS − RM)(1 + µ − zS − zM)

1 − RM(1 + µ − zS − zM)
.
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Now 1 − RM(1 + µ − zS − zM) > 0 by Lemma A.1, zS + zM < 1 + µ and RM < RS, so
d(zM + zS)

dzS

> 0, i.e. h(zS) + zS strictly increases with zS for zS ∈ (0, z∗S).

Differentiating (A.4) with respect to zS and rearranging yields

d2zM

dz2
S

= − RS − RM

(1 − RM(1 + µ − zS − zM))2

d(zM + zS)

dzS

< 0,

for zS ∈ (0, z∗S), since RM < RS and
d(zM + zS)

dzS

> 0. Thus h is concave on (0, z∗S).

Note that h : [0, z∗S] → [0, 1 + µ) is injective if and only if h′(0) ≤ 0. Recall that h(0) = z∗M,
where z∗M is the positive root of 1 + µ − z = exp(−RMz). Then, from (A.4) and using
Lemma A.1, h′(0) ≤ 0 if and only if z∗M ≥ 1 + µ − R−1

S . Note that z∗M is given by the
positive root of f0 − g0, so a necessary and sufficient condition for z∗M ≥ 1 + µ − R−1

S is that
f0(1 + µ − R−1

S ) < g0(1 + µ − R−1
S ), which is equivalent to

RM(RS(1 + µ) − 1) ≥ RS log RS. (A.5)

Let R∗
M = max(RS log RS/[RS(1 + µ) − 1], 0). Then it is easily seen that, if RS ≥ (1 + µ)−1

then R∗
M < RS and (A.5) is satisfied if and only if RM ≥ R∗

M. If RS < (1 + µ)−1 then
exp (−(1 − RS(1 + µ))) > RS(1 + µ) > RS, so log RS

RS(1+µ)−1
> 1 and (A.5) is not satisfied for any

RM ∈ [0, RS). Thus, if RS ≥ (1 + µ)−1, then h : [0, z∗S] → [0, 1 + µ) is injective if and only if
RM ≥ R∗

M, while, if RS < (1 + µ)−1, then h is not injective for any RM ∈ [0, RS).

Suppose now that µ = 0 and note that in this case (0, 0) is always a solution of (3.10). Now,
since RM < RS, for zM, zS ≥ 0,

exp((−(RMzM + RSzS)) ≥ exp (−RS(zM + zS)) ≥ 1 − RS(zM + zS),

with strict inequality unless (zM, zS) = (0, 0). Hence, (0, 0) is the only solution of (3.10) in
the first quadrant if RS ≤ 1. If RS > 1, similar arguments to the above yield the properties
of the solutions of (3.10) stated in Section 3.3. The main difference is that now zero is always
a root of f0 − g0 and there is a strictly positive root if and only RM > 1. Thus z∗M > 0 if and
only if RM > 1.

Appendix B Proof of stochastic comparison (3.12)

We describe first how a realisation of the stochastic IEDS model E(n) can be obtained
by adapting the construction of Sellke [18]. Label the individuals as in Section 5.1. Let
L1, L2, . . . , Ln be Exp(1) (i.e. unit-mean exponential) random variables (the “resistances
to infection” for the initial susceptibles), L′

−mM+1, L
′
−mM+2, . . . , L

′
n be Exp(1) random vari-

ables (the “resistances to switching to severe” for the initial mild infectives and susceptibles),
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X−(mM+mS)+1, X−(mM+mS)+2, . . . , Xn be Exp(1) (Xi is used to determinine the length of the
infectious period(s) for individual i if it becomes infected) and, finally, let U1, U2, . . . , Un be
random variables that are uniformly distributed on the interval (0, 1) (Ui is used to determine
whether individual i becomes a mild or severe infective if it becomes infected). All the above
random variables are mutually independent.

We now construct a realisation of E(n) using these random variables. We use the same notation
as in Section 5.1 but suppress the explicit dependence on n. Start at time t = 0 and set X(0) =
n, YM(0) = mM and YS(0) = mS. For i = −(mM+mS)+1,−(mM+mS)+2, . . . ,−m

M
, the initial

severe infective i recovers and becomes immune at time γ−1
S Xi. For j = −mM + 1,−mM +

2, . . . , 0, the initial mild infective j recovers and becomes immune at time γ−1
M Xj, unless it

has switched to severe prior to this time. For any t ≥ 0, we define the accumulated infection
pressure A(t) by A(t) = n−1

∫ t

0
λMYM(s) + λSYS(s)ds and the accumulated switching pressure

W (t) by W (t) = n−1
∫ t

0
λMαM max(YM(s)− 1, 0)+λSYS(s)αSds. (The term max(YM(s)− 1, 0)

arises because a mild infective cannot reinfect itself, cf. the factor (iM − 1) in (5.10).) Move
forward in time (from t = 0) until either (i) the accumulated infection pressure A(t) reaches
the resistance of any susceptible, or (ii) the accumulated switching pressure W (t) reaches the
switching resistance of a mild infective, or (iii) the infectious period of any mild or severe
infective terminates. If (i) occurs, say A(t) reaches Li, then the number of susceptibles X(t)
is reduced by one; individual i becomes a mild infective and YM(t) is increased by one if

Ui ≤
λMYM(t−)pMM + λSYS(t−)pSM

λMYM(t−) + λSYS(t−)
,

otherwise i becomes a severe infective and YS(t) is increased by one. If (ii) occurs, say W (t)
reaches L′

j, then individual j switches from being mildly to severely infected, YM(t) is decreased
by one and YS(t) is increased by one. Suppose that this switch occurs τj units of time after j
was first infected. Then j’s severe infectious period has length given by γ−1

S (Xj−γMτj). (Note
that the lack-of-memory property of the exponential distribution ensures that the length of
j’s severe infectious period is exponentially distributed with mean γ−1

S .) If (iii) occurs, then
either YM(t) or YS(t) is reduced by one, as appropriate, and the relevant individual is removed.
Continue moving forward in time, updating the variables as above, until there is no infective
of either type in the population, at which point the epidemic terminates. It is easily verified,
using the lack-of-memory property of the exponential distribution, that this construction
yields a process that is probabilistically indistinguishable from the IEDS model described in
Section 2.1.

Consider an individual, i say, in the above epidemic and suppose that i becomes mildly infected
and switches to being severely infected τi units of time later, so τi < γ−1

M Xi. Let T P
i denote

the total infectious pressure i exerts on any given individual during its entire infectious career.
Then, T P

i = n−1TP (Xi, τi), where

TP (x, τ) = λMτ + λS(x − γMτ)γ−1
S

= RSx + γMτ(RM − RS) (0 ≤ τ < γ−1
M x). (B.1)
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Note that if i becomes a severe case when first infected then T P
i = n−1TP (Xi, 0), and if

i becomes a mild case when first infected and never switches to being severe then T P
i =

n−1TP (Xi, γ
−1
M Xi).

The random variables L1, L2, . . . , Ln and X−(mM+mS)+1, X−(mM+mS)+2, . . . , Xn can also be used
to construct a realisation of a general stochastic epidemic with infection parameter λS and
removal rate γS, GSE(n)(λS, γS) say, by setting αM = αS = ∞ in the above construction.
Similarly, a realisation of a general stochastic epidemic with infection parameter λM and
removal rate γM, GSE(n)(λM, γM) say, is obtained by setting αM = αS = 0, changing the
mS initial severe infectives to mild infectives and forcing all new infections to be mild cases.
Moreover, in GSE(n)(λS, γS), the total infectious pressure exerted by i, if it becomes infected,
is given by n−1TP (Xi, 0), while in GSE(n)(λM, γM) it is given by n−1TP (Xi, γ

−1
M Xi).

Suppose that RM ≤ RS. Then it is immediate from (B.1) that TP (x, τ) is decreasing in τ for
each fixed x > 0. It follows that for any given individual, the total infectious pressure it exerts
if it becomes infected in the IEDS epidemic E(n) is bounded below by that for GSE(n)(λM, γM)
and above by that for GSE(n)(λS, γS). It then follows that, since the resistances to infection
L1, L2, . . . , Ln are the same for the three epidemics, the total size of E(n) is bounded below and
above by those of GSE(n)(λM, γM) and GSE(n)(λS, γS), respectively. Thus (3.12) holds with
Zmin and Zmax corresponding to GSE(n)(λM, γM) and GSE(n)(λS, γS), respectively. A similar
argument holds if RM ≥ RS, except now TP (x, τ) is decreasing in τ for each fixed x > 0, so
the bounding general stochastic epidemics are interchanged.
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