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Abstract

While well chosen sampling schemes may substantially increase effi-
ciency of observational studies, some sampling schemes may instead
decrease efficiency. Rules of thumb how to choose sampling schemes
are only available for some special cases. In this paper we provide tools
to compare efficiencies, and cost adjusted efficiencies, of different sam-
pling schemes, in order to facilitate this choice. The method can be
used for both categorical and continuous outcome variables. Some ex-
amples are presented, focusing on data from ascertainment sampling
schemes. A Monte Carlo method is used to overcome computational
issues wherever needed. The results are illustrated in graphs.
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1 Introduction

A well chosen sampling scheme can substantially increase the efficiency of
a study. However, it is not always obvious how to sample well. Neyman
(1938) presents the possibility of two-stage sampling to increase efficiency in
field sampling, and concludes that two-stage sampling sometimes, but not
always, reduces the variance of estimates of means. Since then various au-
thors have investigated the effects of two-stage and multistage sampling in
different settings, most of which focus on binary outcome variables. In some
special cases, such as case-control studies, there are rules of thumb to follow
with regards to efficiency, see for example Maydrech & Kupper (1978), but in
most other settings more elaborate calculations are necessary to discriminate
between different options. Multistage sampling is described in the context
of genetic epidemiology by, among others, Whittemore & Halpern (1997):
Case-control status of prostate cancer is first ascertained and then more ex-
pensive measures such as family history of disease and DNA samples are
collected. Asymptotic variances of Horvitz-Thompson estimates are derived.
Reilly (1996) investigates optimal allocation of available resources for two-
stage data with binary outcomes. Complete information is there available
from variables sampled in Stage 1, while Stage 2 variables are sampled more
sparsely with probabilities determined by Stage 1 data. Cost is allowed to
differ between sampling in Stage 1 and sampling in Stage 2. The author em-
phasizes the usefulness of pilot studies to obtain information needed to find
the optimal allocation. Zhou et al. (2007) investigate outcome dependent
sampling where the outcome variable is continuous. Power of tests based on
a semi-parametric estimator are compared with the power of an inverse prob-
ability weighted estimator and the power of a maximum likelihood estimator
based on a simple random sample.

The aim of this paper is to provide tools for comparing sampling schemes
with respect to efficiency of maximum likelihood estimates, in order to fa-
cilitate study design in observational studies. A general theory of the ef-
ficiency calculations for multistage designs is presented in Grünewald &
Hössjer (2008), while in this paper we will focus on what is often referred to
as ”the ascertainment problem”. Selection is made on one or more variables,
both categorical and continuous distributions are accommodated. The case-
control design, where sampling probabilities are determined by the outcome
of a binary outcome variable, is a special case of this design. The data can
be thought of as originating from a two stage design, where initially, all in-
dividuals in the study are sampled for some variables (Stage 1) and then a
subset of individuals are sampled for remaining variables (Stage 2). In par-
ticular, in an observational study response variables are collected at Stage
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1 and explanatory variables (or covariates) at Stage 2. Selection in reverse
order, starting with explanatory variables, yields a setting which is similar
to experimental design, an area that has been thoroughly investigated, see
for example Melas (2006) for an overview.

The ascertained sample arises when there is failure to record data on
individuals sampled only in Stage 1, so that only those with data from both
Stage 1 and Stage 2 remain in the sample. The ascertainment probability

π(z) = P (J = 2|Z = z, θ)

is the probability of being sampled at Stage 2, where J denotes sampling
stage, Z data, and θ are the model parameters. Data resulting from this
scenario would be similar to that which may emerge for example when the
study is hospital-based, and the study base is ill defined. External sources
may then have to be used to uncover the population distribution of the
disease.

The failure to record individuals with incomplete data means that the
likelihood will be different from that of the usual two-stage design. A pos-
sible way to handle ascertainment, pursued in this paper, is to condition on
the ascertainment event. With experimental design, or when selecting on
an explanatory variable, the ascertainment event is ancillary when the main
goal is to estimate or test hypothesis for response variable parameters, such
as the effect of the explanatory variable. Therefore, the ascertained data can
be analyzed without correcting for the selection scheme. However, this is an
exception in contrast to, for instance, response variable selection, where as-
certainment has to be corrected for. Fisher (1934) provides an early example
in the context of segregation analysis of ascertainment correction by means of
conditioning. The resulting likelihood is expressed in terms of weighted dis-
tributions, using weights proportional to ascertainment probabilities. Patil
(2002) gives an overview of weighted distributions. They are useful for meta
analysis, truncation, missing data, damaged observations, analysis of fam-
ily data, and when no proper sampling frame is available (Patil & Taillie
1989). In Patil et al. (1973), the efficiency of weighted distributions are com-
pared with that of un-weighted distributions by studying the difference of
information matrices.

Another possibility (not pursued here) is to consider the joint likelihood of
Stage 2 data and ascertainment, using missing data methodology. Grünewald
& Humphreys (2008) use the Stochastic EM-algorithm to evaluate the re-
sulting likelihood. Missing data techniques may also be used for multistage
designs without ascertainment. A major distinction from the classical miss-
ing data setting is that data is missing by design. Little & Rubin (2002) give
a thorough description of how to handle missing data.
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We investigate asymptotic efficiencies of parameter estimates of ascer-
tained data sets compared to the corresponding full data sets, where all
individuals sampled at Stage 1 are also sampled at Stage 2. For comparison,
the efficiencies of prospective and retrospective versions of the ascertained
likelihood are also considered, as well as the efficiency of two-stage sam-
ple designs. A smaller efficiency may be acceptable if the sampling cost is
considerably reduced compared to the full sample. For this reason, a cost-
adjusted efficiency is introduced, which gives the efficiency per unit cost of
sampling. To quantify the cost-efficiency tradeoff, we plot the efficiency and
cost-adjusted efficiency as functions of the ascertainment probability.

This paper is organized as follows: In Section 2 notation to describe
data under ascertainment is introduced. Likelihoods under ascertainment,
two-stage data and full data are presented in Section 3. Fisher information
matrices resulting from these are presented in Section 4, and a Monte Carlo
method to overcome computational issues in the calculations is described in
Section 5. In Section 6 efficiency, and cost adjusted efficiency, is expressed
in terms of the Fisher information. To illustrate the tools presented in the
paper some examples are provided in Section 7. Usefulness of the methods,
and possible extensions, are discussed in Section 8.

2 Model

Let Z = (X,Y ) be a set of random variables, where X are explanatory
variables, and Y response variables. Let Z1 be an incomplete version of Z,
representing data collected in Stage 1, and A = {J = 2} be the event that
data is ascertained, i.e. that all of Z is collected. Then

π(z1) = P (A|Z1 = z1; θ) = P (A|Z1 = z1)

is the selection probability, assumed to depend only on the Stage 1 variable
z1 and not the model parameters θ. We will focus on retrospective designs,
where Z1 = Y , so that π(y) = P (A|Y = y) is the selection probability. The
model is described in Figure 1, where θ = (θX , θY ) consists of regression
parameters θY and remaining parameters θX , that affect the distribution of
X. Typically θY are the structural parameters of main interest, whereas θX

are nuisance parameters. The figure corresponds to a two stage design with
Y collected at Stage 1 and X at Stage 2. We also assume that no information
is available about subjects that were not ascertained at Stage 2.

In the examples below X will be a binomially distributed variable while Y
will be either a binomially distributed variable, a normally distributed vari-
able or two interdependent normally distributed variables. The framework
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is however flexible to other choices of distributions and data structures. We
will use P (.) to denote both probability density functions and probability
mass functions.

We will assume π(y) to be known. To calculate the efficiency of the
sampling scheme the parameter values, θ, must also be specified. Sometimes
knowledge from previous studies can be used, but if no such data is available
a pilot study is highly recommended.

3 Choice of likelihood

To correct for ascertainment we condition the likelihood on the fact that the
data is ascertained. This likelihood can be constructed in different ways,
depending on wether we also impose conditioning on response variables (ret-
rospective likelihood) or explanatory variables (prospective likelihood). It is
well known that conditioning the likelihood on non-ancillary statistics affects
the efficiency of estimates, see for example Liang (1983), and it may also in-
fluence how the ascertainment scheme affects the efficiency. A comparison of
the efficiency of different ascertainment corrected likelihoods in family based
case-control studies is provided by Kraft & Thomas (2000). Of the four likeli-
hoods investigated the joint likelihood was confirmed to be the most effective
and the conditional likelihood for stratum-matched case-control data was the
least efficient. The relative efficiency of the prospective and the retrospective
likelihoods varied depending on data structure and genetic model.

We will here investigate likelihoods for three types of data: a likelihood
for full data (3.1), a likelihood for data from a two stage design (3.2), and
a likelihood for data under ascertainment (3.3). In likelihoods (3.1)-(3.3)
variables X and Y will be modeled jointly. For data under ascertainment
we will also investigate a prospective likelihood (3.5), and a retrospective
likelihood (3.4). The retrospective likelihood has the attractive feature that
the ascertainment cancels out of the formula. However, due to the loss of
information in conditioning on the non-ancillary statistic Y , this likelihood
turns out to be ill conditioned, so that the parameters describing Y as depen-
dent on X usually are not identifiable unless some of the parameter values
are assumed known. An exception to this is the effect parameter in logistic
regression model, for which the prospective and retrospective likelihood give
the same profile likelihood, see for example Kagan (2001) or Chen (2003).
Calculations for the retrospective likelihood were performed for some, but
not all, of the examples in Section 7. Calculations for the two-stage design
will be presented in one of the examples.
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The likelihoods are written as

Lfull(θ) =
n∏

i=1

P (zi|θ) (3.1)

Ltwo(θ, π) =
∏

i;Ji=1

P (yi|θ)(1− π(yi))
∏

i;Ji=2

P (zi|θ)π(yi)

∝ ∏

i;Ji=1

P (yi|θ) ∏

i;Ji=2

P (zi|θ) =
n∏

i=1

P (yi|θ) ∏

i;Ji=2

P (xi|yi, θ)−−(3.2)

Lasc(θ, π) =
∏

i;Ji=2

P (zi|Ai, θ) (3.3)

Lretr(θ) =
∏

i;Ji=2

P (xi|yi, Ai, θ) =
∏

i;Ji=2

P (xi|yi, θ) (3.4)

Lpr(θ, π) =
∏

i;Ji=2

P (yi|xi, Ai, θ) (3.5)

where n is the number of individuals and zi = (xi, yi), Ai and J i represent full
data, ascertainment, and number of stages of data collection for individual i.

4 Information matrices

Assuming θ = (θ1, . . . , θp), we define the score function as the 1× p vector

ψ(z; θ) =
∂ log P (z|θ)

∂θ

for fully observed data, z. Let us further introduce the five information
matrices

IZ(θ) = Cov(ψ(Z; θ)),

IY (θ) = Cov(E(ψ(Z; θ)|Y )),

IX|Y,A(θ, π) = E[Cov(ψ(Z; θ)|Y )|A],

IY |X,A(θ, π) = E[Cov(ψ(Z; θ)|X, A)|A],

IZ|A(θ, π) = Cov(ψ(Z; θ)|A).

With overall ascertainment probability P (A|θ, π) = P (J = 2) =
∫

π(y)P (y; θ)dy,
the Fisher information matrices resulting from likelihoods (3.1)-(3.5) can be
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expressed as

Ifull(θ) = nIZ(θ),

Itwo(θ, π) = nIY (θ) + Iretr(θ, π),

Iasc(θ, π) = nP (A|θ, π)IZ|A(θ, π),

Iretr(θ, π) = nP (A|θ, π)IX|Y,A(θ),

Ipr(θ, π) = nP (A|θ, π)IY |X,A(θ, π).

Due to discrepancy in the amount of data contributing to the information,
we may infer the inequalities

Ifull(θ) ≥ Itwo(θ, π),

Itwo(θ, π) ≥ Iasc(θ, π),

Iasc(θ, π) ≥ Ipr(θ, π),

Iasc(θ, π) ≥ Iretr(θ, π)

where I1 ≥ I2 means that I1 − I2 is non-negative definite.

5 Monte Carlo Estimation

In some situations, such as when Y is normally distributed, analytical so-
lutions to the expectations described above are not available. Monte Carlo
simulations can then be used to overcome the computational difficulties. In
the Monte Carlo calculations the ascertainment scheme only enters the calcu-
lations in the simulation of the data, so even complex ascertainment schemes
are easily accommodated. The Monte Carlo samples are obtained by simu-
lating data according to the model and applying the ascertainment scheme.
Assume that z∗k = (x∗k, y

∗
k), k = 1, . . . , K, is a random sample from P (·; θ).

Then

ÎZ(θ) = K−1
K∑

k=1

ψ(z∗k; θ)
T ψ(z∗k; θ),

ÎY (θ) = K−1
K∑

k=1

Ê(ψ(Z; θ)|y∗k)T Ê(ψ(Z; θ)|y∗k),
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where Ê(ψ(Z; θ)|y) is the sample mean of all ψ(z∗k; θ); y
∗
k = y and T denotes

vector transposition. We then get

Îfull(θ) = nÎZ(θ),

Îasc(θ, π) = nK−1
K∑

k=1

π(y∗k)(ψ(z∗k; θ)− µ̂)T (ψ(z∗k; θ)− µ̂),

Îpr(θ, π) = nK−1
K∑

k=1

π(y∗k)Ĉov(ψ(Z; θ)|x∗k, A),

Îretr(θ, π) = nK−1
K∑

k=1

π(y∗k)Ĉov(ψ(Z; θ)|y∗k),

Îtwo(θ, π) = nÎY (θ) + Îretr(θ, π),

where

µ̂ =
K∑

k=1

π(y∗k)ψ(z∗k; θ)/
K∑

k=1

π(y∗k),

Ĉov(ψ(Z; θ)|x,A) =
∑

k;x∗k=x

π(y∗k)(ψ(z∗k; θ)− µ̂(x))T (ψ(z∗k; θ)− µ̂(x))/
∑

k;x∗k=x

π(y∗k),

µ̂(x) =
∑

k;x∗
k
=x

π(y∗k)ψ(z∗k; θ)/
∑

k;x∗
k
=x

π(y∗k),

and similarly, Ĉov(ψ(Z; θ)|y) is the sample covariance of all ψ(z∗k; θ); y
∗
k = y.

6 Cost Efficiency Tradeoff

Efficiency, e, will be evaluated in terms of the Fisher information, I:

e(θ, π) = I−1
rr (θ, π)/I−1

full,rr(θ) (6.1)

where I(θ, π) is the information of the selected sample, and Ifull(θ) is the
information of a full size simple random sample (SRS). Hence the efficiency
is based on the asymptotic variance I−1

rr of the rth component of θ, r = 1, ..., p.
Other scalar functions of the Fisher information than I−1

rr are discussed in
Grünewald & Hössjer (2008). Note that I(θ, π) in (6.1) can be any of the
information matrices Itwo(θ, π), Iasc(θ, π), Iretr(θ, π) or Ipr(θ, π), resulting in
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efficiencies etwo(θ, π), easc(θ, π), eretr(θ, π) and epr(θ, π). In this paper the
main focus will be on easc(θ, π).

If represented graphically with ascertainment probability, P (A|θ, π), on
the x-axis and efficiency, e(θ, π), on the y-axis, the efficiency of a SRS, i.e.
a sample with π(y) ≡ a, 0 < a ≤ 1, will give a straight line with equation
P (A) = e. A beneficial ascertainment scheme will give an efficiency above
that line. This graphical representation is useful for example when there
is a limited number of cases to select, and we want to ensure that we lose
no more than a certain percentage of the total efficiency by sampling the
controls more sparsely.

If there are no restrictions with regard to available subjects to sample,
interest may instead be in the cost efficiency tradeoff. One way to formulate
this is via the cost adjusted efficiency

CE(θ, π) = e(θ, π)/RAC(θ, π),

where RAC(θ, π) is the relative average cost of the sample compared to a
full sample. With C1 ≥ 0 the cost of sampling individuals at Stage 1, and
C2 > C1 the total cost of sampling individuals at Stages 1 and 2, we write

RAC(θ, π) = C−1
2

∫
(C1(1− π(y)) + C2π(y)) P (y; θ)dy =

C1

C2

+
C2 − C1

C2

P (A|θ, π).

The cost adjusted efficiency thus quantifies how cost efficient the present
design π is compared to a SRS design. A beneficial sampling scheme will
give CE(θ, π) > 1, and the most cost efficient sampling scheme is identified
as the highest point on the curve. Depending on what efficiency is used we
use notation CEtwo(θ, π), CEasc(θ, π) etc. For examples of how CEtwo(θ, π)
can be used to evaluate efficiency in a two-stage design see Thomas et al.
(2004), and in regression analysis with incomplete covariate data see Reilly
& Pepe (1995).

For ascertainment samples we put C1 = 0, implying that the cost of
sampling first stage data not used in the analysis is ignored, and hence
RAC(θ, π) = P (A|θ, π). For two-stage data it may be relevant to put C1 > 0,
and adjust C1/C2 to reflect the relative cost of first and second stage sam-
pling, in order to accommodate different data collection scenarios.

7 Examples

In this section three models will be investigated with respect to how the
ascertainment scheme affects the efficiency of the maximum likelihood es-
timates. The ascertainment schemes compared in the examples are chosen
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as illustrations, but other ascertainment schemes may be more relevant, or
more efficient, in a specific study.

The results are presented in graphs. The values are standardized by the
efficiency of a full sample.

All calculations are made in the software R (R Development Core Team
2005).

Model i: Logistic regression

Logistic regression is frequently used in case-controls studies in epidemiology.
A property of the logit link function is that sampling probabilities cancel out
of the effect estimates (Anderson 1972), which facilitates analysis. Often an
equal number of cases and controls are sampled, and interest is in estimating
the effect parameter. See Maydrech & Kupper (1978) for calculations of cost
and sample size is case-control studies.

For simplicity we use a binomial distribution for X as well as Y :

θ = (αX , αY , βXY ),

X ∼ Bin(1,
exp(αX)

1 + exp(αX)
),

Y |{X = x} ∼ Bin(1,
exp(αY + βXY x)

1 + exp(αY + βXY x)
).

We here sample all observations with outcome y = 1, and a proportion a of
observations where y = 0. That is

π(y) =





a; y = 0,

1; y = 1.

Since Y is discrete, Monte Carlo simulations were not necessary in this ex-
ample.

For the joint ascertainment likelihood the efficiency was calculated for all
three parameters θ = (αX , αY , βXY ), whilst for the prospective likelihood the
efficiency was only calculated for θY = (αY , βXY ), since the likelihood was
conditioned on αX . When all parameters were included in the calculations
for the retrospective likelihood the model turned out to be ill conditioned,
the information matrix was positive semidefinite and had rank 2 instead of
3. Further investigation indicated that αX and αY could not be estimated
simultaneously. To overcome this problem we assumed αX to be known in
the calculations presented for the retrospective likelihood in model i.

Figure 2 illustrates the efficiency, e(θ, π), for the estimates of a set of
parameters θ: (αX = −1, αY = −2, βXY = 2). With this set of parameters
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P (Y = 1) ≈ 0.22 in the SRS. In the other ascertainment schemes individ-
uals with y = 1 are over-sampled. The efficiency of a SRS of the same size
is included for comparison and a vertical line is drawn at the ascertainment
probability that gives equally many cases, (y = 1), and controls, (y = 0). The
efficiencies from the three likelihoods are standardized by the full sample effi-
ciency of the most efficient likelihood. The efficiencies using the ascertained
likelihood and the prospective likelihood were so similar that they could
not be distinguished. The retrospective likelihood gave a lower efficiency in
the estimation of αY but can not be distinguished from the ascertained and
prospective likelihoods in the estimation of βXY . The prospective and ret-
rospective likelihoods generate the same profile likelihood for the estimation
of βXY (Chen 2003), so it is not surprising that those estimates have the
same efficiency. Focusing on the joint ascertainment likelihood, the gain in
efficiency, compared to a SRS, is mainly present in the estimation of αY and
βXY , while αX is relatively unaffected.

The benefit of a specific ascertainment scheme will depend on the pa-
rameter values in the model. Figure 3 exemplifies how changing one pa-
rameter affects easc(θ, π) in Model i. The parameter values are as above
but with αY taking the values 0,−2 and −4. In the full SRS this gives
P (Y = 1) ≈ 0.60, 0.22 and 0.045 respectively. Figure 4 illustrates the same
example as Figure 3, but with cost adjusted efficiencies. Our calculations
confirm that an equal number of cases and controls is an efficient choice
when interest is in estimating βXY .

Model ii: Linear regression

Even though response variables in epidemiological studies often are dichotomized
to fit into the logistic regression model, the true nature of many variables,
such as body mass index (BMI), blood pressure and plasma glucose, are con-
tinuous. Categorizing continuous variables often lead to a loss in efficiency,
see for example Vargha et al. (1996). While preserving the continuous nature
of the response variable it is still possible to use non-random ascertainment
to increase efficiency. In this example a normal distribution is assumed for
the response variable, and a linear regression model is used,

θ = (αX , αY , βXY , σY ),

X ∼ Bin(2,
exp(αX)

1 + exp(αX)
),

Y |{X = x} ∼ N(αY + βXY × x, σ2
Y ).

Ascertainment probabilities depend on the value of Y . We here choose to
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specify a cut-off value t, to let

π(y) =





a; y < t,

1; y ≥ t,

and vary the value of a. Monte Carlo simulations were used for the compu-
tation.

In this example the efficiency of a two stage likelihood was calculated as
a comparison to the efficiency in the ascertainment sample. For the ascer-
tained likelihood and the two-stage likelihood the efficiency was calculated
for all parameters θ, while for the prospective likelihood the efficiency was
calculated for all parameters but αX . The efficiency in calculating αY , βXY

and σY was the same for the prospective likelihood as for the joint ascertain-
ment likelihood. The retrospective likelihood suffered from problems similar
to those in model i, the information matrix here had rank 3 instead of 4, and
was positive semidefinite. As in model i the parameters αX and αY could
not be estimated simultaneously. We will not present any results for the
prospective and retrospective likelihood for model ii.

In Figure 5 the cost adjusted efficiency is presented for parameter values
(αX = −4, αY = 0, βXY = 2, σY = 1) and cut-of t = 2. For this set of para-
meters P (Y < t) = 0.96 in the SRS. A vertical line in the graph indicates the
ascertainment scheme where P (Y < t|A) = 0.5. In the figure three different
costs are investigated for the two stage sample: (C1, C2) = (0, 1) illustrates
a situation where Y can be observed free of cost, (C1, C2) = (1/3, 1) means
that, per individual, sampling Y is associated with half of the cost of sampling
X, and (C1, C2) = (1/2, 1) implies that Y is as expensive to observe as X. It
would also be possible to choose C1 > 1/2 if Y is more expensive to sample
than X, even though this is not the typical situation where outcome depen-
dent sampling is considered. The two stage sample where (C1, C2) = (0, 1)
is more cost efficient than the ascertainment sample, meaning that the free
of cost first stage data does contribute with information. The discrepancy is
most pronounced in the estimation of αY and σY . When (C1, C2) = (1/3, 1)
the two stage sample is more cost efficient than the ascertainment sample
for the estimation of αY and σY , but not for the other parameters. When
(C1, C2) = (1/2, 1) the two stage sample is more efficient estimating αY , and
also more efficient estimating σY for some ascertainment schemes.

Model iii: Selection on more than one variable

Ascertainment probabilities can be based on the outcome of more than one
variable. In this example we have included two normally distributed vari-
ables Y1 and Y2, that both affect the ascertainment probability, and let the
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explanatory variable be binomially distributed. The ascertainment scheme
is

π(y1, y2) =





a; y1 < t1 ∩ y2 < t2,

1; otherwise,

where 0 < a ≤ 1 is varied. A dependence between Y1 and Y2 is also included
in the model.

θ = (αX , αY1 , βXY1 , σY1 , αY2 , βXY2 , βY1Y2 , σY2),

X ∼ Bin(1,
exp(αX)

1 + exp(αX)
),

Y1|{X = x} ∼ N(αY1 + βXY1 × x, σ2
Y1

),

Y2|{X = x, Y1 = y1} ∼ N(αY2 + βXY2 × x + βY1Y2 × y1, σ
2
Y2

).

The model can be illustrated by the graph

Y1

↗ ↘
X ↓ A.

↘ ↗
Y2

For model iii only the results for the joint ascertained likelihood will be
presented. The efficiencies for the prospective likelihood gave results that
could not be distinguished from the joint ascertainment likelihood. The effi-
ciencies for the retrospective likelihood were not calculated, the information
matrix was positive semidefinite and had rank 3 instead of 8, and no more
than three parameters could be estimated simultaneously. We could not see
any obvious pattern of which variables could be estimated together for the
retrospective likelihood.

The parameter values used were (αX = −3, αY1 = 0, βXY1 = 2, σY1 =
1, αY2 = 0, βXY2 = 1, βY1Y2 = 1, σY2 = 1). The model was run for three
different sets of cut-offs, (t1, t2) = (1, 1), (2, 2) and (3, 3). For these values
P (Y1 < t1 ∩ Y2 < t1) was 0.68, 0.88 and 0.96 respectively in the SRS. The
results are presented in Figure 6. Vertical lines mark the ascertainment
schemes where P (Y1 < t1∩Y2 < t1|A) = 0.5. Most of the parameter estimates
benefit from ascertainment schemes with a < 1, while α̂Y1 and α̂Y2 do not.
In this example the largest benefits from small values of a are for high values
of (t1, t2), that is, when a large proportion of data in the SRS is in the range
Y1 < t1 ∩ Y2 < t1. The setting in this example was chosen to illustrate that
the effect of ascertainment on efficiency can be large even in complex models.
For other values the benefit may be less obvious.

Monte Carlo simulations were used for computation in model iii.
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8 Discussion

In this paper we have presented tools for comparing ascertainment schemes
with respect to efficiencies and cost adjusted efficiencies. The efficiencies
are expressed in terms of Fisher information matrices. Three examples were
examined, and the results were presented in graphs. Monte Carlo simulations
were used for computation in two of the examples.

From the examples investigated it is apparent that non-random ascertain-
ment schemes sometimes increase efficiency compared to a SRS, but also that
they sometimes perform worse. Note that the slope of the efficiency curve is
often steep, so that the value of P (A|θ, π) that results in the highest efficiency
is close to values with low efficiency, see for example the efficiency of β̂XY1 in
Figure 6. It is therefore important to investigate the efficiency in the specific
study setting before collecting data. Similarly to power analysis and local
experimental designs, the calculations require specifying parameter values,
which in reality are unknown. Pilot studies are therefore a valuable tool to
acquire more knowledge about the data. It is also advisable to calculate the
efficiency for some different sets of parameter values.

In this paper e = h(I) = I−1
rr was used and we have investigated efficiency

of parameter estimates individually. Alternatively h(I) could include all
components of θ, such as h(I) = tr(I−1), so that the choice of selection
scheme can be based on a single criterion.

In the efficiency calculations in this paper it is assumed that the cost of
sampling is the same for all subjects within the same sampling design. In
reality the cost of sampling can differ depending on the outcome of one or
more of the sampled variables. For example the cost of sampling cases can
differ from the cost of sampling controls in a case-control study. To obtain a
sampling scheme that is cost-efficient differential costs can be incorporated
in the calculations. An example of this can be found in Maydrech & Kupper
(1978) where cost functions are presented for cohort and case-control studies.

Here maximum likelihood estimation has been used, based on likelihoods
conditioned on ascertainment. In reality, due to computational issues, these
parameter estimates are not always straightforward to obtain. Other esti-
mation procedures might then be preferable. Reilly & Pepe (1995) use a
mean score method for regression analysis with incomplete or auxiliary co-
variate data. Other methods to correct for ascertainment are also available.
Neuhaus (2000) describes how adjusting link functions can correct for ascer-
tainment in binary regression models. Simulation based methods to estimate
parameters in data with ascertainment have been described for example by
Clayton (2003) and by Grünewald & Humphreys (2008). When the estima-
tion procedure differs from what was used in this paper, comparison of the
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efficiency of the ascertainment schemes can still be carried out analogously,
using asymptotic variances appropriate to the estimation procedure rather
than the inverse Fisher information matrix.

While case-control designs are frequently used in for example epidemi-
ology, selection on continuous outcomes, or on multiple outcomes, is not as
common. This may be due to the added complexity in the analysis of data,
but also because it is not transparent which designs are efficient. Plotting
efficiencies, or cost adjusted efficiencies, as suggested in this paper, may aid
in the choice of design.
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Figure 1: A retrospective sampling design. Sampling probabilities π depend
on the outcome of explanatory variables Y but not on explanatory variables
X, nor on model parameters θ = (θX , θY ).
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Figure 3: Model i. Efficiency, easc(θ, π), for estimation of parameters for
different ascertainment schemes in logistic regression. αX = −1, αY =
(0,−2,−4), βXY = 2, 0 < a ≤ 1. Vertical lines at P (Y = 1|A) = 0.5, ex-
cept for set of parameters with αY = 0 where P (Y = 1|A) > 0.5 for the
range of values plotted.
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Figure 4: Model i. Cost adjusted efficiency, CEasc(θ, π), for estimation of
parameters for different ascertainment schemes in logistic regression. αX =
−1, αY = (0,−2,−4), βXY = 2, 0 < a ≤ 1. Vertical lines are drawn for
designs such that P (Y = 1|A) = 0.5, except for set of parameters with
αY = 0 where P (Y = 1|A) > 0.5 for the range of values plotted.
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Figure 5: Model ii. Cost adjusted efficiency, for estimation of parameters for
different ascertainment schemes in linear regression, using an ascertainment
likelihood and a two stage likelihood. For the two stage likelihood different
costs C1 = (0, 1/3, 1/2), C2 = 1 are applied. A vertical line indicates the
ascertainment scheme where P (Y < t|A) = 0.5. αX = −4, αY = 0, βXY =
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Figure 6: Model iii. Cost-adjusted efficiency, CEasc(θ, π), where π(y1, y2) = a
is varied for y ∈ (y1 < t1 ∩ y2 < t2). Three different sets of (t1, t2) are used.
Vertical lines indicate the ascertainment schemes where P (Y1 < t1 ∩ Y2 <
t1|A) = 0.5. αX = −3, αY1 = 0, βXY1 = 2, σY1 = 1, αY2 = 0, βXY2 = 1, βY1Y2 =
1, σY2 = 1, 0 < a ≤ 1, K = 500000.
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