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Abstract
We study a special case of power derivative, a real option consisting of a strip of

hourly power options, with spot prices St and the same strike price K. The payo� is
a sum of payo�s, all of the type max(STi −K, 0). As there is no forward market for
speci�c hours, the fundamental question is to �nd a reasonable hedge using traded
forward contracts, eg, on monthly deliveries. If we con�ne ourselves with stopping
the dynamic hedging before delivery, the main result is a simple dynamic hedging
strategy that reduces a signi�cant part of the variance. The idea is to replace the
payo� function with two parts that are analytically tractable and only depend on the
traded asset. A bene�t of the method is that the hedging strategy easily extends to
more complex power derivatives and that only a few parameters need to be estimated.
The simpli�ed hedging strategy is compared with dynamic delta hedging strategies of
Black76 type, using a correlated traded asset and local minimum variance hedging.
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1. Introduction

Energy companies are often faced with optionalities in their generation facilities as
well as in retail contracts. Many of the energy companies now act on deregulated mar-
kets with a competitive pricing environment. Thus, hedging the inherent optionalities
e�ciently and practically is of great importance. The main purpose of the hedging is
to reduce a great deal of the variance in the revenues of the company, but often some
variance is allowed. Sometimes it is even the case that investors, rating institutes etc
expect a certain �uctuation of the results when power prices move up and down. This
leads to a situation where a company that is very e�cient in the hedging might even
be considered as odd in comparison with the rest of the market. Reasoning like above
it is natural to look for hedging strategies that reduce a great part of the variance
recognizing that it is not a sti� requirement to reduce all �uctuations. What we can
hope for is that, when allowing some slack in the minimization of �uctuations, we can
�nd simple strategies that are practically tractable. In this work we propose such a
simpli�ed hedging strategy for the case of a real power option, a swing option of a
special type. The considered option is a strip of options on spot deliveries. The idea is
to replace the original payo� with a new payo� which is much easier to work with. We
should note here that hedging strategies have been derived for general swing options,
see eg, Keppo [15] or Chapter 7 in Clewlow and Strickland [8]. The general case of a
swing option is fairly complex, allowing the holder of the contract to specify the amount
of energy that is bought each hour, at a �x price, in a certain period and within a set
of restrictions. The set of restrictions is typically a minimum and a maximum amount
of energy on each day and on the total. In our case the restrictions break down to
the special case where the maximum of the total equals the sum of the maximum of
the individual days and where the minimum constraint is dropped. The solution of
the general case depends on complex decisions of stochastic nature, similar to pricing
of American options. The path-dependency makes trees popular in the pricing and
hedging as in Clewlow and Strickland [8]. Analytical tools typically relax some of the
conditions and make assumptions on complete markets as in Keppo [15]. Analytical
formulas for the simpler case of a strip of options, as we have, can be expressed in
terms of a sum of individual Black-Scholes formulas. This is possible when the path-
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dependent structures are avoided or neglected. In Chapter 9 in the book by Eydeland
and Wolyniec [11], there is an excellent introduction to these so-called spark-spread
option formulas and hedging. Our analysis is comparable to this latter type of analysis,
the important distinction being that we split the pricing formula in two analytically
tractable parts, one Black-Scholes part and one 'burn analysis' part. We then make
use of the assumption that hedging can be performed in terms of a correlated traded
forward contract. We also show how the simpli�ed hedging method can be used in more
complex applications, which is a bene�t of our work. Furthermore, we study, in some
detail, a traditional hedging strategy of spark-spread type, using a correlated asset.
We refer to Henderson and Hobson [13] that have developed such hedging strategies
in the case of an option on a non-traded asset and hedging with a correlated traded
asset. Original references for this type of hedging are Du�e and Richardson [9] and
Schweizer [18]. General references treating pricing and hedging of swing options and
power derivatives are Kluge [16] and Unger [19]. Several closely connected papers
dealing with derivative pricing in power markets have also been written by Benth and
co-authors [2], [3], [4].

We consider a power derivative market where forward contracts are traded contin-
uously, each contract having a �nite trading period. We adopt standard notation as
in Audet et al [1] or Bjerksund et al [6]. Both references give a nice introduction
to power derivatives. The smallest considered time period is hours, as we typically
have in a power spot market. We work with continuous time when we set up the
random processes but, whenever convenient, we refer to speci�c hours. Hopefully this
is clear in each application. All cash�ows related to the respective forward contracts
are assumed to be paid/received when a maturity is reached, ie, there is no delay
in payments. The forward prices F (t, T ) are de�ned as random variables on the
probability space (Ω,Ft,P) where the �ltration Ft ⊂ F is the �ltration generated
by the random variables and P : F → [0, 1] is a probability measure. F (t, T ) is the
forward price, at time t, of the contract with a single delivery at time T, t ≤ T . For
the special case of the spot price we write St = F (t, t). The forward price of contracts
on multiple deliveries are denoted F (t, Ṫ1, Ṫ2), t ≤ Ṫ1 ≤ Ṫ2, and de�ned by

F (t, Ṫ1, Ṫ2) =
∑

Ti∈IṪ1,Ṫ2

wi
tF (t, Ti), wi

t =
e−r(Ti−t)

∑
Tj∈IṪ1,Ṫ2

e−r(Tj−t)
, (1)
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where IṪ1,Ṫ2
=

{
Ti : Ṫ1 ≤ Ti ≤ Ṫ2

}
, and r is a constant continuously compounded

interest rate for a risk-free bank account. With the risk of being ambiguous, when
we refer to a speci�c monthly delivery we write Ft = F (t, Ṫ1, Ṫ2), thus dropping the
indexation for the underlying time period. When speaking of hedging, we assume that
dynamic hedging stops at time Ṫ , Ṫ ≤ Ṫ1 ≤ Ṫ2. Note that we have used a special
dotted notation to single out the special �x times Ṫ ≤ Ṫ1 ≤ Ṫ2. At all times, we assume
that there is a price for all hours, T , in the forward curve speci�ed by F (t, T ) for a �nite
horizon τ , t ≤ T ≤ τ . This is certainly the case if we make sure that a forward curve,
based on market data, is constructed each trading day, see, eg Fleten and Lemming
[12]. A common way to construct prices for speci�c hours is to construct a forward
curve with daily prices and then use weekly pro�le patterns to get hourly prices. The
pro�le patterns are estimated based on historical observations of spot prices.

To draw relevant conclusions from the results in subsequent sections we need to
give some basics on the price behavior. Later on we specify the stochastic behavior of
the random variables explicitly but below we speak generally of price behavior. It is
well known that spot prices have a spike behavior and seasonal components on daily,
weekly as well as monthly basis, see Lucia and Schwartz [17]. Thus forward contracts
with delivery during times of high consumption are, ceteris paribus, priced at higher
levels than the corresponding yearly forward contracts introducing a seasonality e�ect
between prices of forward contracts. The spike behavior, as well as the shape of the
supply and demand curves of the spot market in general, possibly leads to a risk
premium in the prices of the forward contracts. For a discussion on risk premia, see
Benth et al [2]. We expect the risk premium to be positive, ie, the forward contracts
are priced higher than their discounted expected payo�s. In this report we assume
that the risk premium is small and therefore we set the premium to zero. We also
expect that the volatility of a forward contract is increasing when the time to maturity
decreases. The volatility of a forward contract is expected to be lower for a forward
contract on a long period of delivery than for a contract on a short period of delivery.
The correlation between two forward contracts is close to 1 when the time to maturity
is long and decreasing when the time to maturity decreases, still expected to remain
nonnegative. The correlation is also depending on the length of the delivery periods and
on how close in time the underlying delivery periods are. The correlation is expected to
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be high if delivery periods are close in time. At least for forward contracts with a long
time to maturity and with long underlying delivery periods, we expect that a lognormal
distribution with zero drift, which can be assumed if the risk premium is small, give a
good �t to observed market data. Our own analyses support the expectations on the
price behavior as we describe above. Indeed many of the price models suggested in
literature, eg, Eydeland and Wolyniec [11], Audet et al [1], Bjerksund et al [6], assume
the characteristics above.

We move on to formulate the hedging problem we need to solve. Consider the
contingent claim giving the following payo� at maturity

Πstrip(Ṫ2) =
∑

Ti∈IṪ1,Ṫ2

er(Ṫ2−Ti) max (STi −K, 0) . (2)

We assume that the hourly forward contracts F (t, T ) are not traded, except for F (t, t) =

St which are traded on a liquid spot market. However, based on forward curve
calculations we observe prices F (t, T ). Forward contracts F (t, Ṫ1, Ṫ2) are assumed
to be traded on a liquid market where Ṫ2 − Ṫ1 make up underlying delivery periods
of months. At time Ṫ , Ṫ ≤ Ṫ1 ≤ Ṫ2, the forward contracts F (t, Ṫ1, Ṫ2) mature, ie,
trading stops. Dynamic hedging is also assumed to stop at time Ṫ . A static hedge,
which is de�ned later, is maintained when dynamic hedging stops. The fundamental
question is:

How can we best use the traded contracts to hedge the contingent claim on the correlated
non-traded assets?

The rest of the document is organized as follows. Section 2 deals with the spark-
spread setting and local minimum variance hedging which is very important as a
comparison to our simpli�ed hedging strategy. Section 3 gives the main results,
the simpli�ed hedging strategy. Then, for explicit stochastic processes, we perform
simulations in Section 4. Especially, we are interested in the e�ciency of the hedges.
Section 5 gives extensions to more complex contingent claims and Section 6 concludes
the results of the report.
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2. Hedging strategy based on a strip of hourly Black76 options

Since there is no hedging strategy in terms of traded assets that can reduce all
risks, we need to specify extra conditions on the optimal strategy. Here, we choose to
minimize the variance locally. We derive such a minimum-variance method of hedging
based on a couple of heuristic arguments. In Section 4 we evaluate the e�ciency of the
hedge and compare the hedge with the simpli�ed hedge. Eydeland and Wolyniec [11],
Pages 454-459, deal generally with hedging under global and local minimum variance
settings. Only basic examples are considered but the general theory is outlined and
discussed. When considering global minimum variance hedging, the problem is also
closely connected to stochastic control theory, see Du�e [10], Pages 191-218, for an
introduction. Henderson and Hobson [13], [14], develop hedging strategies for options
on a single non-traded underlying in terms of hedging with a single correlated traded
asset. The hedging strategy is derived using stochastic control theory and speci�c
utility functions.

Let C(s, T, K, F (s, T )) be the price of a European style option with underlying
hourly forward price F (s, T ), maturity T and strike price K. We are interested in the
optimal fraction to invest in the traded asset Fs = F (s, Ṫ1, Ṫ2). Below we de�ne the
meaning of optimal.

De�nition 1. Given an Fs-adapted control variable u(s, ω), we de�ne the value pro-
cess V u

s by

dV u
s = −u(s, ω)dFs +

∑

Ti∈IṪ1,Ṫ2

dC(s, Ti,K, F (s, Ti)), t ≤ s ≤ Ṫ , (3)

Vt = 0.

Note that the value process gives the development of a portfolio consisting of the
underlying contingent claim as well as a hedging position.

De�nition 2. A local minimum variance hedge is obtained as the solution to

min
u

V ar (dV u
s ) , t ≤ s ≤ Ṫ .

Note that the local minimum variance problem is de�ned in terms of �nding the optimal
hedge at all times of rebalancing of the portfolio. A global minimum variance problem is

5



de�ned as minu(s,·) V ar
(
V u

Ṫ

)
, ie, a minimization of the total variance. For a discussion

on the equivalence of these problems and further references, we refer to Eydeland and
Wolyniec [11], Pages 458�459. Other utility functions than the variance could also be
envoked and possibly lead to slightly di�erent optimal strategies. However, as our aim
is to get a comparison to the simpli�ed hedging strategy given in Section 3, we are
satis�ed with the local minimum variance strategy.

Write ∆i
s = ∂C(s,Ti,K,F (s,Ti))

∂F (s,Ti)
. Assume the existence of a traded contract Fs with

underlying delivery period IṪ1,Ṫ2
. Using only �rst order terms, Expression (1) and

Ito's formula, simplifying Equation (3) we get the approximate expression

dV u
s = −u(s, ω)

∑

Ti∈IṪ1,Ṫ2

wi
sdF (s, Ti) +

∑

Ti∈IṪ1,Ṫ2

∆i
sdF (s, Ti), t ≤ s ≤ Ṫ , (4)

Vt = 0.

Note that Equation (4) is exact if all involved options are exactly replicable, ie, if the
market is complete. We have assumed that there are traded hourly forward contracts,
which is not the case and thus the market is not complete. However, we are of course
free to make this assumption heuristically. Now, consider the following local minimum
variance problem

min
u

V ar (dV u
s ) = min

u
V ar


 ∑

Ti∈IṪ1,Ṫ2

(−u(s, ω)wi
s + ∆i

s

)
dF (s, Ti)


 , t ≤ s ≤ Ṫ .

Based on the heuristic arguments above, di�erentiating and setting the expression
equal to zero, we get the following proposition.

Proposition 2.1. For the special case with a swing option of the type given by Equa-
tion (2) and hedging with the traded asset Fs, we have the locally optimal control
variable

u∗(s, ω) =

∑
i,j wi

s∆
j
sCovi,j

s∑
i,j wi

sw
j
sCovi,j

s

,

where, conditioning on the information at time s,

Covi,j
s = Cov (dF (s, Ti), dF (s, Tj)) .

We note that the proposed hedging strategy is self-�nancing and is well behaved. Exact
conditions on well behaved trading strategies are given in, eg, Du�e [10]. We want
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to exclude strategies that are of the type 'double or nothing' which could result in
in�nite losses. Furthermore, we note that we are required to calculate the covariances
for all involved quantities dF (s, Ti), at all times s, which depend on the distributional
properties that we assume for the forward curve, ie, for F (s, T ). In Section 4 we
perform these calculations for a speci�c setup.

3. Simpli�ed hedging strategy � Replacement of payo� function

The idea of the simpli�ed hedging strategy is straightforward. Recall that dynamic
hedging is assumed to stop at time Ṫ , ie, before delivery. Let NIṪ1,Ṫ2

denote # {hours
in IṪ1,Ṫ2

}. In the following, we multiply or divide with this number to get expressions
in terms of the energy (MWh) or the power (MW). We make the following de�nition.

De�nition 3. De�ne ε(FṪ ,K) by

ε(FṪ ,K) =
e−r(Ṫ2−Ṫ )Πstrip(Ṫ2)

NIṪ1,Ṫ2

−max (FṪ −K, 0) .

Then, considering discounting, we can replace the original claim e−r(Ṫ2−Ṫ )Πstrip(Ṫ2)

with the following equivalent claim:

Πsimple(Ṫ ) = NIṪ1,Ṫ2
(max (FṪ −K, 0) + ε(FṪ ,K)) . (5)

We note that, at time Ṫ , ε(FṪ ,K) is certainly a random element.

Remark 1. A key is that we are able to estimate ε(FṪ ,K) by observing historical
payo� di�erences of the type

[
e−r(Ṫ2−Ṫ )Π̃strip(Ṫ2)

NI
Ṫ1,Ṫ2

−max
(
F̃Ṫ −K, 0

)]
, where˜refers to

observed quantities. Note that, in practice, when estimating ε(FṪ ,K) we must give
special consideration to seasonality and trends. We must �nd a method to �lter out
these e�ects.

We need to specify a class of approximating functions for the random elements ε(FṪ ,K).
We look for random elements of the form

ε(FṪ ,K) ∈ L (
µ(FṪ ,K), σ2(FṪ ,K)

)
,

where L is the probability law, µ(FṪ , K) is the expected value function and σ2(FṪ ,K)

is the variance function. Our aim is to derive hedging strategies for the new claim. By
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construction, the new claim only depends on FṪ and K, which makes it possible to
derive hedging strategies directly in terms of Ft. Let E∗

t be the expected value with
respect to the risk neutral martingale measure and conditional on the information at
time t and let Et be the expected value with respect to the real probability measure.
We have the following proposition.

Proposition 3.1. The contingent claim Πsimple(Ṫ ) can be priced by the following
pricing formula

Csimple(t) = e−r(Ṫ−t)E∗t
(
Πsimple(Ṫ )

)

= NIṪ1,Ṫ2
e−r(Ṫ−t) (E∗t (max (FṪ −K, 0)) + E∗t (ε(FṪ , K)))

= NIṪ1,Ṫ2
e−r(Ṫ−t) (Et (max (FṪ −K, 0)) + Et (ε(FṪ ,K))) + λ,

where λ can be considered as the price that is paid to avoid risk.

The pricing formula splits into two parts.

• Black-Scholes part: The �rst expected value above is easy. Assuming lognormal-
ity for FṪ we have the ordinary Black76 formula.

• Burn analysis part: The second expected value corresponds to actual outcomes.
Like the direct analysis of outcomes which is sometimes used in pricing of weather
derivatives we may call this part 'burn analysis'.

Regarding the second expected value above, we are primarily interested in expected
value functions µ(FṪ ,K) which gives the possibility to calculate the expected value
analytically. One way to get analytically tractable expressions for the expected value
function is to estimate a suitable set of linear functions. This leads to closed-form
solutions of Black-Scholes type, see Proposition 3.2.

It is straightforward to derive the hedging strategy. We calculate the hedging delta
by

∆s =
∂Csimple(s)

∂Fs
, t ≤ s ≤ Ṫ .

In Section 4 we perform explicit calculations. We estimate the expected value function
and calculate the deltas.
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3.1. Burn analysis part � Estimation of expected value function and pricing

Our aim is to estimate the expected value function of ε(FṪ ,K), ie, µ(FṪ , K). From
Remark 1, we recall that the estimation can be performed by observing di�erences of
the type

ε̃(FṪ ,K) =

[
e−r(Ṫ2−Ṫ )Π̃strip(Ṫ2)

NIṪ1,Ṫ2

−max
(
F̃Ṫ −K, 0

)]
.

It turns out that the variance of the expression is considerably reduced, without any
impact on the expected value, if we add the martingale increment

∆BS
Ṫ

(e−r(Ṫ2−Ṫ )FṪ2
− FṪ ),

where FṪ2
is de�ned as the settlement price

FṪ2
=

∑
Ti∈IṪ1,Ṫ2

STie
r(Ṫ2−Ti)

NIṪ1,Ṫ2

of the forward and

∆BS
Ṫ

=





0, FṪ < K

−1, FṪ ≥ K
. (6)

The variance-reduction term is a natural candidate for a static hedge in delivery and
thus it is not merely a theoretical construction. We have

ε̃′(FṪ ,K) =

[
e−r(Ṫ2−Ṫ )Π̃strip(Ṫ2)

NIṪ1,Ṫ2

−max
(
F̃Ṫ −K, 0

)]
+ ∆BS

Ṫ
(e−r(Ṫ2−Ṫ )F̃Ṫ2

− F̃Ṫ ).

We can easily prove that ε̃′(FṪ ,K) ≥ 0, which is nice when we estimate the expected
value function. We make the observation that the expected value function µ(FṪ ,K)

declines to zero when |FṪ −K| is large since all options then are 'in the money' or 'out
of the money' respectively.

Let xj = FṪ (ωj) and yj = ε′(FṪ ,K, ωj), where we introduce ωj to describe di�erent
observations. Denote the observed di�erences by (xj , yj), 1 ≤ j ≤ N , where N =# ob-
servations. We estimate the simplest possible function, still being su�ciently rich. A
set of n linear functions

yest(x) = bi +
(

bi+1 − bi

ai+1 − ai

)
(x− ai) = bi + ki(x− ai), ai ≤ x ≤ ai+1, 0 ≤ i ≤ n− 1,

(7)
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tied together in the n + 1 points (ai, bi) are estimated. Let {ai : 0 ≤ i ≤ n}, a0 = 0 <

a1 < . . . < an−1 < an = ∞, be given. A natural estimate of an ordinate bi is simply
the average of the values in a suitable interval covering ai. One way to describe such
a method is to solve the following minimization problem for each ordinate bi:

min
bi

N∑

j=1

I{xj∈(ai−1,ai+1)} (bi − yj)
2
.

I is the indicator function. We assume b0 = 0, bn = 0, in order to make the expected
value function meet the observed criteria when the options are deep 'in the money'
or far 'out of the money'. We must also make sure that the shape of the resulting
functions is 'monotone towards the ends'. As the variances around the expected values
are dependent on the level of the respective expected value (higher expected value gives
higher variance), we have a problem with heteroscedasticity. The observations should
then be weighted accordingly in the estimation. However, it is not easy to do this since
we do not have any good guess about the involved distributions in this context. Indeed,
the estimates of the expected values are rough in all practical circumstances which lead
to problems if we want to make statements about the variances around the expected
values. To come around the problem, we should keep the heteroscedasticity in mind
when we decide the number of linear functions to estimate. We have to compromise
between the degree of heteroscedasticity and the degree of variance of the estimate.

Assuming that we have estimated the expected value function by the set of linear
functions above, we are able to prove the following proposition.

Proposition 3.2. Having estimated the linear functions given by Equation (7), and
assuming λ = 0, we can calculate the expectations in Proposition 3.1. We have

Csimple(t) = e−r(Ṫ−t)E∗t
(
Πsimple(Ṫ )

)

= NIṪ1,Ṫ2
e−r(Ṫ−t) (Et (max (FṪ −K, 0)) + Et (ε(FṪ ,K))) ,

where the �rst part is given by the Black76 formula, see Equation (9) below and the
second part is given by

Et (ε(FṪ ,K)) = Ft

n−1∑

i=0

ki

[
Φ

(
ln Ft

ai
+ σ2(Ṫ − t)/2

σ
√

Ṫ − t

)
− Φ

(
ln Ft

ai+1
+ σ2(Ṫ − t)/2

σ
√

Ṫ − t

)]

+
n−1∑

i=0

(bi − kiai)

[
Φ

(
ln ai+1

Ft
+ σ2(Ṫ − t)/2

σ
√

Ṫ − t

)
− Φ

(
ln ai

Ft
+ σ2(Ṫ − t)/2

σ
√

Ṫ − t

)]
.
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Φ is the standard normal cumulative distribution function.

Proof. See appendix.

Remark 2. In the appendix, we derive the formula by a straightforward calculation.
It is possible to derive the formula in another way. We can set up a replicating portfolio
consisting of long and short positions in European style options with di�erent strikes.
The number of units to buy and the strikes are easily realized by inspection of a plot
of the payouts.

The practical implication of this remark is that we are able, in absence of transaction
costs, to exactly replicate the expected payo� that we have at time Ṫ of the original
contingent claim. This means that we are able to reduce all variance except the variance
in delivery. However, using the static hedge in Equation (6) we are also able to reduce
a great deal of the remaining variance in delivery.

4. Simulations

4.1. Description of the simulation model

In this section, we set up a speci�c stochastic model for the forward curve and
then derive the necessary quantities in this setting. The forward price model should
be su�ciently realistic for us being able to draw relevant conclusions, but it is not
necessary to have a perfect model. We are interested in a setup in which we can
analyse the two di�erent hedging strategies, and particularly we are interested in the
hedge e�ciency. We recall that the locally optimal strategy is given by u∗(s, ·) and that
the simpli�ed strategy is given by ∆s. An analytically tractable and suitable three-
factor model for the forward curve is given in Bjerksund et al [6] . Indeed, a principal
components analysis reveals that 3 factors explain about 90 % of the variance. Parallel
shift, twist and curvature are the dominant factors. Furthermore, in practice the
magnitude of the risk premium is small. See the arguments in Eydeland and Wolyniec
[11], Page 154. Hence we can, without loss of generality, use the present model to
evaluate our results. The following price behavior of the forward curve is assumed
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under the risk neutral martingale measure:

dF (s, T )
F (s, T )

=
a

T − s + b
dW ∗

1 (s) +
(

2ac

T − s + b

) 1
2

dW ∗
2 (s) + cdW ∗

3 (s), t ≤ s ≤ Ṫ2. (8)

We restrict a, b, and c to be positive constants and dW ∗
1 (t), dW ∗

2 (t), and dW ∗
3 (t) are

increments of three uncorrelated standard Brownian motions.

Recall that the forward contracts F (t, T ) are not traded but that we are able to
observe the prices through forward curve calculations. Therefore we assume, heuris-
tically, that we can calculate the option prices of the hourly options by Black76, see
Black [7]:

C(t, Ti,K, F (t, Ti)) = e−r(Ti−t) [F (t, Ti)Φ(d1)−KΦ(d2)] , (9)

where the interpretion of the time-dependent volatility is given below and

d1 =
ln

(
F (t,Ti)

K

)
+ σ2(Ti−t)

2

σ
√

Ti − t
, d2 = d1 − σ

√
Ti − t.

The Black76 deltas are

∆i
t = e−r(Ti−t)Φ(d1).

The volatilities that are plugged into the Black76 model, see Bjerksund et al [6], shall
be interpreted as the quantities

(T − t)σ(t, T )2 =
∫ T

t

σ2(s, T )ds =
[

a2

T − s + b
− 2ac ln(T − s + b) + c2s

]s=T

s=t

. (10)

The Black76 formula is valid for futures. When dealing with forward contracts we
need to adjust the formula. The type of adjustment depends on how the forward is
settled and when the cash settlements are received/paid. The volatility parameter for
the forward contract, Ft = F (t, Ṫ1, Ṫ2) must also be calculated. It turns out that a
bit of calculation is required to derive an analytical expression for this volatility. We
use an approximation derived by Bjerksund et al [6]. Here we simply recognize that
we are able to derive the volatility parameter and that we denote this parameter with
σṪ1,Ṫ2

t,Ṫ
. The approximation formula is given in appendix. In practice we never have

to estimate the volatility parameter in this way. Instead, we use the observed implied
volatilities from traded European options, which is a nice practical feature.
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By independency between the increments dW ∗
1 (t), dW ∗

2 (t), and dW ∗
3 (t), and using

Cov(dW ∗
k (t), dW ∗

k (t)) = dt, k = 1, 2, 3, we get

Cov

(
dF (t, Ti)
F (t, Ti)

,
dF (t, Tj)
F (t, Tj)

)
=

[ a2

(Ti − t + b)(Tj − t + b)

+
2ac√

Ti − t + b
√

Tj − t + b
+ c2

]
dt.

Hence, conditioning on the information at time t, we have

Covi,j
t = Cov (dF (t, Ti), dF (t, Tj)) = Cov

(
dF (t, Ti)
F (t, Ti)

,
dF (t, Tj)
F (t, Tj)

)
F (t, Ti)F (t, Tj).

(11)
We are now able to calculate all required quantities in the simulation. We have
expressions for the deltas, the covariances and for the forward curve process. We
are also able to simulate outcomes of the payo�s and thereby we are able to estimate a
proper function µ(FṪ ,K) in this setting. Both trading strategies are therefore possible
to analyse. We use the following de�nition of hedge e�ciency to evaluate di�erent
hedging strategies.

De�nition 4. Neglecting proper discounting, hedge e�ciency is de�ned as

H = 1−
√

Var (with hedge)
Var (without hedge) .

Sometimes the hedge e�ciency is de�ned in terms of reduction of variance instead of
reduction of volatility. We believe that the de�nition in terms of reduction of volatility
is easier to interpret. Note that H = 100 % is a perfect hedge with a complete reduction
of volatility. In our case however we always get a result less than 100 % since we stop
dynamic hedging at time Ṫ , Ṫ ≤ Ṫ1 ≤ Ṫ2 and since the static hedge in delivery is not
perfect. Eydeland and Wolyniec [11] experience a hedge e�ciency, in terms of reduction
of cash-�ow volatility, of 50-60 % when the dynamic hedging stops before the delivery
period. A hedge e�ciency of around 80 % is experienced if so-called Balance of the
Month contracts are utilized in the hedging. Given our theoretical model, we expect a
fairly high hedge e�ciency. A hedge e�ciency above 50 % indicates that the strategies
perform well.
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4.2. Results of simulations � Hedge e�ciency

A pre-simulation is performed to estimate the set of linear functions in the expected
value function. Then, we perform the following simulation

1. Using the model given by Equation (8), simulate a su�cient number of price
paths of the entire forward curve.

2. For each price path, calculate u∗(s, ·) and ∆s = ∂Csimple(s)
∂Fs

.

3. For each price path, apply the static hedge given by Equation (6).

4. For each price path, sum up the respective results of the dynamic hedge, the
static hedge and the strip of payo�s.

5. Calculate the respective hedge e�ciencies.

Our simulation is based on the following setup:

• 31 daily forward prices are considered (we do not dig deeper into hourly prices),
ie, a delivery period of one month. A monthly forward contract based on the
same underlying period is used in the hedging. All prices are assumed to start
at 30 EUR/MWh.

• The strike price is K = 30 EUR/MWh for all involved options.

• We assume Ṫ2 = 1 year, t = 0, Ṫ = Ṫ1 and Ṫ2 − Ṫ1 = 31/365.

• We set a = 9/80, b = 1/8 and c = 1/10 in the model given by Equation (8). This
implies a long-term volatility of 10 % and a short-term volatility of about 100 %.

Figure 1 illustrates a simulated plot of the payo� of the contingent claim of the strip
of daily spot contracts. The payo� of the corresponding European option on the
monthly forward is plotted in the same �gure. We have applied the static hedge given
by Equation (6). We see that the two payo�s coincide when |FṪ − K| is large, as
expected. The residual between the two payo�s, ie, ε(FṪ ,K) is also plotted. The
estimated set of linear functions is plotted together with ε(FṪ , K).

A simulated price path and the corresponding hedging strategies are displayed in
Figure 2. Two forward prices are displayed. The deliveries are 30 days apart. We note
that one of the forward prices are constant after the contract has been delivered. In
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Figure 1: Simulated outcome of payo� and Epsilon element. Estimated set of linear functions
are also displayed.

particular, we see that there is an increasing volatility when maturity approaches, as
expected. We also see that the forward contracts are highly correlated, but not perfectly
correlated. The correlation decreases when maturity approaches, as expected. We see
that the hedges do not fully coincide with each other, but that they behave similarly.

A particular simulation of 100 paths resulted in the following hedge e�ciencies:

Hedging strategy Hedge e�ciency
u∗(s, ·) 82 %

∆s 86 %

Table 1: Results of simulations � Hedge e�ciencies

New simulations lead to similar results which indicate a stability of the results. It is
surprisingly high hedge e�ciencies, in both cases. In a real-world situation we would
expect lower hedge e�ciencies due to a number of reasons. The volatilities that are
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Figure 2: Simulated price paths and the resulting hedging stratgies.

fed to the hedging delta calculations would obviously not coincide perfectly with the
observed volatilities. Forward prices are probably less correlated than we have in this
speci�c model setup. Moreover, parameters are more di�cult to estimate in a real-
world situation. We have also neglected some of the characteristics of forward prices
such as local trends. Anyhow, the simulated results give a very strong indication that
both hedging strategies should work well which is the aim of this report. We note that it
is not unreasonable that the simpli�ed hedge performs better than the locally optimal.
Indeed, di�erent de�nitions of optimal stratgies may lead to di�erent outcomes. In
particular, the analytically attractive simpli�ed hedging strategy seems to be a very
good choice under all practical circumstances.

5. Extensions to more complex contingent claims

The strip of hourly payo�s with a �x strike price, dealt with in this report, is a
contract that has been provided to customers in the Swedish retail market. Moreover,
it is a good approximation to the case of a power plant where the price on the fuel is
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assumed to be stable and when there are no ramping e�ects, start-up costs etc. Even
in many cases with restrictions of the type mentioned above, we are still able to use
the proposed simpli�ed hedging strategy. We give three examples of extensions here.
Example: Cross border contract. First, consider a cross border contract, ie, an
inter-connector between two di�erent price areas. The holder of this contract optimizes
the direction and the amount of energy that �ow in the inter-connector each hour
based on the expectation of the price di�erence, ie, it is a typical example of a real
option. Here we disregard operational characteristics such as planned or unplanned
outage, transmission fees etc. For each hour, we are dealing with one spread option
in each direction. In this case, we must extend our sample space to include random
variables for forward and spot prices in both price areas, say F 1

t , F 2
t , S1

t , S2
t . We impose

a dependency between the prices in the di�erent price areas. We can replicate the
previous ideas in this report in the new setting. We deal with an option payo� of the
type

Πstrip(Ṫ2) =
∑

Ti∈IṪ1,Ṫ2

er(Ṫ2−Ti)
(
max

(
S1

Ti
− S2

Ti
, 0

)
+ max

(
S2

Ti
− S1

Ti
, 0

))
,

and we replace the payo� above with the simpli�ed payo�

Πsimple(Ṫ ) =
(
max

(
F 1

Ṫ
− F 2

Ṫ
, 0

)
+ max

(
F 2

Ṫ
− F 1

Ṫ
, 0

)
+ ε(F 1

Ṫ
, F 2

Ṫ
)
)
NIṪ1,Ṫ2

.

Note that we have given ε(F 1
Ṫ
, F 2

Ṫ
) a somewhat new meaning here. Here ε(F 1

Ṫ
, F 2

Ṫ
)

is the residual in the current context. See Berglund [5] for more details about this
example.
Example: Spark spread. Second, consider a gas-�red power plant. We extend our
sample space with the random variables FP

t , FG
t , SP

t , SG
t , where superscripts P and G

stand for Power and Gas respectively. We also have to introduce the conversion rate ν,
which tells us the relation between the amount of gas and the amount of power. Then,
in a similar way as above we get

Πstrip(Ṫ2) =
∑

Ti∈IṪ1,Ṫ2

er(Ṫ2−Ti)
(
max

(
SP

Ti
− νSG

Ti
, 0

))
,

and we replace the payo� above with the simpli�ed payo�

Πsimple(Ṫ ) =
(
max

(
FP

Ṫ
− νFG

Ṫ
, 0

)
+ ε(FP

Ṫ
, FG

Ṫ
)
)
NIṪ1,Ṫ2

.
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Also in this example, ε(FP
Ṫ

, FG
Ṫ

) shall be interpreted as the residual in the current
context. In regions involved in emission trading we also need to expand the sample
space with the price of CO2. Corresponding correlations must be estimated.

Example: Power plant with ramping. Third, consider a power plant with ramp-
ing. Ramping means that there is a time lag when the power plant is started or shut
o�. Only after some time the plant can be run on its maximum e�ect, which is a very
common feature of power plants. Here we brie�y mention how our setup can be used to
include ramping. If there is an optimal dispatching strategy that is Fs-measurable we
can estimate a function ε(FṪ ,K) based on historical outcomes. The historical outcomes
are calculated using the optimal dispatch strategy. This is a straightforward exercise.
Then we can proceed in the same way as in the other cases.

6. Conclusions

Our concern is to �nd feasible hedging strategies of a contingent claim on a strip
of spot deliveries. As the corresponding individual forward contracts are not traded
our aim is to �nd strategies in terms of the traded monthly forward contracts instead.
In particular, we propose a simple way to construct such a hedging strategy. The
idea is to split the payo� on the contingent claim into two parts, one European option
on the monthly forward and a burn analysis part on the residual. The burn analysis
part is by construction only depending on the traded monthly forward. Hence, we are
able to get explicit trading strategies directly in terms of the traded contracts. The
simpli�ed strategy is compared with an optimal hedge in the sense of a local minimum
variance optimization. Simulation of a certain three-factor model of the forward curve
gives the possibility to evaluate the hedge e�ciency of the two strategies. Dynamic
hedging is assumed before delivery and a static hedge is applied through delivery.
Our results indicate that the simpli�ed strategy performs well in comparison with the
locally optimal hedge. We note that the simpli�ed strategy is especially attractive in
practice, since the estimation of the involved parameters is straightforward and implicit
volatilities are often available from traded European style options. The local minimum
variance optimal strategy would either require a speci�c parametric model or a large
number of parameters to be estimated.
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Appendix A. Proofs and technicalities

Proof of Proposition 3.2.

Proof. De�ne the partial expectation of a random variable X with threshold v as

g(v) =
∫ ∞

v

xf(x)dx,

where f(x) is the density. For a lognormal density f(x) = logN
(
ln Ft − σ2

2 (Ṫ − t), σ2(Ṫ − t)
)

it can be shown that

g(v) = FtΦ

(
ln Ft

v + σ2(Ṫ − t)/2

σ
√

Ṫ − t

)
.

It is also straightforward to calculate

∫ v2

v1

f(x)dx = P (X ∈ (v1, v2)) = E
(
I{X∈(v1,v2)}

)

= Φ

(
ln v2

Ft
+ σ2(Ṫ − t)/2

σ
√

Ṫ − t

)
− Φ

(
ln v1

Ft
+ σ2(Ṫ − t)/2

σ
√

Ṫ − t

)
.
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Assume that FṪ |Ft ∼ f(x). We have

Et (ε(FṪ ,K)) =
n−1∑

i=0

Et

(
I{FṪ∈(ai,ai+1)}yest(FṪ )

)

=
n−1∑

i=0

Et

(
I{FṪ∈(ai,ai+1)}(bi + ki(FṪ − ai))

)

=
n−1∑

i=0

kiEt

(
I{FṪ∈(ai,ai+1)}FṪ

)
+

n−1∑

i=0

Et

(
I{FṪ∈(ai,ai+1)}(bi − kiai)

)

=
n−1∑

i=0

ki

(∫ ∞

ai

xf(x)dx−
∫ ∞

ai+1

xf(x)dx

)

+
n−1∑

i=0

(bi − kiai)Et

(
I{FṪ∈(ai,ai+1)}

)

= Ft

n−1∑

i=0

ki

[
Φ

(
ln Ft

ai
+ σ2(Ṫ − t)/2

σ
√

Ṫ − t

)
− Φ

(
ln Ft

ai+1
+ σ2(Ṫ − t)/2

σ
√

Ṫ − t

)]

+
n−1∑

i=0

(bi − kiai)

[
Φ

(
ln ai+1

Ft
+ σ2(Ṫ − t)/2

σ
√

Ṫ − t

)
− Φ

(
ln ai

Ft
+ σ2(Ṫ − t)/2

σ
√

Ṫ − t

)]
.

Deltas are easy to obtain from the expression above.

Bjerksund's approximation formula: We refer to Bjerksund et al [6]. Note that
our formulae below have corrected some errors in Bjerksund's results. For the volatility
parameter of the forward contract Ft = F (t, Ṫ1, Ṫ2), we have

(Ṫ − t)
(
σṪ1,Ṫ2

t,Ṫ

)2

=
(

a

Ṫ2 − Ṫ1

)2 ∫ Ṫ

t

(
ln

Ṫ2 − s + b

Ṫ1 − s + b

)2

ds +

+
2ac

Ṫ2 − Ṫ1

∫ Ṫ

t

ln
Ṫ2 − s + b

Ṫ1 − s + b
ds + c2

∫ Ṫ

t

ds. (12)

The dilogarithm function is de�ned by

dilog(x) =
∫ x

1

ln(s)
1− s

ds, where x ≥ 0.

The dilog function is available in Maple. In Matlab, it is possible to call the Maple
function by the syntax mfun('dilog',x). Set

α =
1
2
(Ṫ2 − Ṫ1), X(s) = b +

1
2
(Ṫ2 + Ṫ1)− s.
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We have the following expressions for the integrals in Equation (12)
∫ Ṫ

t

(
ln

Ṫ2 − s + b

Ṫ1 − s + b

)2

ds = [(x + α)(ln(x + α))2 − 2(x + α) ln(x + α) ln(x− α) +

+ 4α ln(2α) ln
(

x− α

2α

)
− 4αdilog

(
x + α

2α

)
+

+ (x− α)(ln(x− α))2]X(t)

X(Ṫ )
,

∫ Ṫ

t

ln
Ṫ2 − s + b

Ṫ1 − s + b
ds = [(x + α) ln(x + α)− (x− α) ln(x− α)]X(t)

X(Ṫ )
.
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