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Abstract

We present statistical models and methods for classification of bi-allelic
SNP genotypes when data represent two signal intensities, one signal x
from a primer matching one of the alleles, and the other signal y matching
the other allele. One such technique is protease-mediated allele-specific
extension (PrASE), and the study is at the same time a case study on
PrASE data. Most information for classification is contained in the variate
log(x/y), for which we derive a special 3-component mixture model from
molecular principles. We describe inference in this mixture model, but
we also discuss other topics such as assessing the number of components,
the information available in the orthogonal variation, detection of overall
outlying individuals, and supplementary use of the Hardy–Weinberg law.
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1 Introduction

Much recent effort in genomics has focused on analysis of the bi-allelic base
variations called single nucleotide polymorphisms (SNPs). These variations are
distributed across the genome with a frequency as high as one in every 1000
base pairs (bp) (Hapmap, 2005). Occasionally it has been possible to associate
(link) a certain SNP with a specific disease, but in order to find clues to more
complex diseases or phenotypic variation, combinations of several SNPs must
be investigated. In such cases the investigations will require characterization of
a large number of SNPs in a large number of individuals. This task requires
rapid and automatic genotyping techniques, and the present work aims at de-
veloping the statistical basis for an algorithm for automated assignment of each
individual to its genotype status (genotype calling), that is for each SNP posi-
tion characterization of the individual as homozygous with one of the two base
variants, or as heterozygous.

The present study is specifically aimed at data obtained by a competitive
enzymatic assay called protease-mediated allele-specific extension (PrASE), in
which 3’-terminus allele-specific primers match one each of the two alleles and
mismatch the other (Hultin et al., 2005). However, similar methodology has
been found adequate also under other data-generating mechanisms, in particular
by Carvalho et al. (2007).

In the PrASE assay, with fluorescent-labelled nucleotides detectable by a
scanner, a homozygous template should generate a relatively strong signal for
one of the allele-specific primers and a relatively weak signal for the other.
Accordingly, a heterozygous sample generates moderate signals for both primers.
More precisely, the data for this study were collected after specific amplification
with Tri-nucleotide Threading (TnT) technology (Pettersson et al., 2006) and
genotyping with PrASE.

Several other approaches to genotype classification have been reported re-
cently, for use with different genotyping methods (Lovmar et al., 2005; Hard-
enbol et al., 2005; Callegaro et al., 2006; Moorhead et al., 2006; Xiao et al.,
2007; Plagnol et al., 2007; Carvalho et al., 2007). These papers range from rela-
tively primitive undertakings, represented by nonparametric bivariate clustering
without explicit statistical models, to more sophisticated univariate or bivariate
parametric mixture models exploiting more or less of the structure that could
be expected in data.

The aim of the present paper is to demonstrate that such structures exist
and can be incorporated in the statistical analysis. From molecular principles we
will derive a special bivariate Gaussian mixture model for suitably transformed
PrASE data, and the model will be seen to fit well to typical such data. A
similar type of model with its associated classification method has recently been
proposed for Affymetrix SNP array (Genechip) data by Carvalho et al. (2007).
From a molecular point of view, the types of data are different. Also, the latter
paper suggests the model without particular motivation and without considering
more than a univariate marginal part of the model. Another difference is in the
type of applications in mind. Affymetrix genome-wide SNP arrays are pre-made
arrays of many thousands of SNPs, whereas PrASE is more intended for tailor-
made choice of SNPs in investigations of a moderate size. The Infinium assay
from Illumina, for which a genotype calling algorithm has been proposed by Teo
et al. (2007), also, like Affymetrix, relies on a different molecular mechanism
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and is targeting thousands or many more of fixed SNPs. Furthermore, the model
behind their genotype calling method can be criticized for being unnatural, see
Section 2.

The outline of this report is as follows. First the experimental situation will
be described. Next, the statistical model is developed in detail (Sections 3–
5). The methods used for model fitting are discussed in Sections 6 and 7. with
results presented and discussed in Section 8. Sections 9–10 bring up some further
aspects (outliers, and Hardy–Weinberg equilibrium), before the conclusions are
summarized in Section 11.

2 Experimental design and data

The PrASE genotyping technique is a further development of the allele-specific
extension (ASE) assays, where fluorescently labeled products are distinguished
by their signature tags. For a detailed description of the PrASE technique, see
Hultin et al. (2005). The signals acquired in this approach are not strictly
binary, as ideal data would be, mainly due to imperfect primer synthesis and to
differences in hybridization properties of the signature tags. These differences
can be attributed to sequence context and to the quality of the synthetic primers.
Hence, each SNP will have some unique characteristics, and a flexible algorithm
that can handle such differences is desired.

In this study 75 SNPs were identified and selected from genes linked to
various types of human cancers. Primers for parallel tri-nucleotide thread (TnT)
amplification were designed by a custom-made software tool (Pettersson et al.,
2006). Samples from 96 individuals were amplified and analyzed by PrASE in
an array format. The fluorescence detector registered the signal intensities x
and y from the primer extension of the first and second allele, respectively. The
left hand side of Figure 1 shows how SNP genotype data of PrASE typ appear
in these original variables for a well-behaved SNP. Often x and y are replaced
by two other characterics, the allelic fraction AF = x/(x + y), 0 ≤ AF ≤ 1,
and the total fluorescent signal intensity (on log-scale) t = log10(x + y), also
called the strength. An equivalent substitute for AF often used is the contrast
c = (x− y)/(x+ y) = 2(AF ) − 1. The right hand side scatter-plot of Figure 1
shows t versus AF for the same SNP. Many more such diagrams are found in
Hultin et al. (2005) and Pettersson et al. (2006), and similar types of diagrams
are found for example in Lovmar et al. (2005) and Hardenbol et al. (2005).

When SNP genotype data are represented as in one of the diagrams of Fig. 1,
it is understandable that scientists have used cluster analysis in a nonparametric
way. It is obvious that (x, y)-data do not at all have Gaussian component distri-
butions, and there are also problems with Gaussian distributions for the allelic
fraction AF or the contrast c, since these quantities are restricted to bounded
intervals. Some algorithms are based on Gaussian distributions for AF or c,
even though the homozygotes are found close to the boundaries (Moorhead et
al., 2006; Plagnol et al., 2007). Others have used various artificial construc-
tions. In Hardenbol et al. (2005), AF is modelled by ‘Gaussian distributions
with non-Gaussian tails’, and Teo et al. (2007) use truncated t-distributions.
Furthermore, the three components in Figure 1 (right) clearly do not have the
same variance or any other simple feature relating them, so typically the three
components are modelled without any parameters in common.
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Figure 1: Two common plot types, illustrated on SNP number 2.
Left hand side: Plot of signals x and y.
Right hand side: Plot of total signal intensity against allelic fraction (AF)

Figure 2 shows a scatter-plot of log y versus log x for the PrASE data. The
first impression now is that the three point clusters are located as three par-
allel and quite similar bands, whose positions differ essentially along the 135◦

direction. Differences along this direction can be expressed in terms of AF,

log x− log y = log {AF/(1−AF )} (1)

or vice versa (with log read as loge),

AF = elog x−log y/(1 + elog x−log y) (2)

In the sequel, these data will be represented by the variables log x and log y,
and a technically and biologically motivated model for what is seen in Figure 2
and other diagrams of the same type will be derived.

3 Statistical modelling of data

The basic assumption when modelling competitive enzymatic, array-based SNP
data, for a selected SNP and the corresponding pair of primers, is that the
expected contributions from different sources add, and that the fluorescence
signal of such a contribution is proportional to the intensity of the source. This
means that the alleles of a homozygous sample will together contribute twice
as much as the same but single allele in a heterozygous sample. On the other
hand the latter sample will also receive an additive contribution from the other
allele. We will formalize these primer-mediated contributions below.

We can imagine three types of signal, of more or less specific character, to be
called match, mismatch and unspecific. Under specified experimental conditions
and for a heterozygous sample, let the primer-mediated contributions to be
expected for primer i = 1, 2 (i.e. x and y) be αij , j = 0, 1, 2, as follows:

α11 = match contribution from allele 1 with primer 1
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Figure 2: Plot of loge y versus loge x for SNP number 2, all 96 individuals.

α12 = mismatch contribution from allele 2 with primer 1
α10 = unspecific contribution with primer 1, not related to any of the alleles
α1′0 = unspecific contribution with antitag, unrelated to the tag of primer 1

α21 = mismatch contribution from allele 1 with primer 2
α22 = match contribution from allele 2 with primer 2
α20 = unspecific contribution with primer 2, not related to any of the alleles
α2′0 = unspecific contribution with antitag, unrelated to the tag of primer 2

These primer-mediated contributions from the two possible homozygous sam-
ples or a heterozygous sample are expressed in Table 1.

Table 1 Primer-mediated contributions from homozygous and heterozygous
samples for different primers 1 and 2 (corresponding to x and y).

Homozyg. (1+1) Heterozyg. (1+2) Homozyg. (2+2)
Primer 1 (x) 2α11 + α10 + α1′0 α11 + α12 + α10 + α1′0 2α12 + α10 + α1′0

Primer 2 (y) 2α21 + α20 + α2′0 α21 + α22 + α20 + α2′0 2α22 + α20 + α2′0

The aim of the primer construction is that primer 1 should be particularly
sensitive to allele 1, and analogously for primer 2 and allele 2, such that α11 >>
α12 + α10 + α1′0, and analogously for α22.

Typically the unspecific contributions are small even in comparison with the
mismatches, and therefore can be neglected. This will be assumed in the sequel,
but is not always satisfied. For occasional SNPs, relatively high unspecific signal
contributions can be observed, blurring the picture. Due to sample complexity
they cannot be predicted. They occur rarely, but when they do, they are non-
systematic and cannot be modelled, in contrast to the systematic relationship
between match and mismatch primers.
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The two primers will typically not be equally efficient, due to differences
in primer synthesis (hybridization properties towards template) and the fact
that they carry different signature tags (hybridization properties towards the
anti-tags on the array). This means that for example α11 and α22 will dif-
fer, and they may differ substantially. However, a primer efficiency advantage
factor for primer 1 over primer 2, α11 > α22, should be the same for α12 ver-
sus α21, so we have reason to expect ratios α11/α22 and α12/α21 to be the
same. It follows that we should have equality between α12/α11 and α21/α22,
say α12/α11 = α21/α22 = θ, where θ is an unknown but typically small effi-
ciency number, representing mismatch to match efficiency. Then Table 1 can
be rewritten in the form of Table 2.

Table 2 Primer-mediated contributions from homozygous and heterozygous
samples for different primers x and y when unspecific contributions are negligi-
ble, and α12/α11 = α21/α22 = θ

Homozyg. (1+1) Heterozyg. (1+2) Homozyg. (2+2)
Primer 1 (x) 2α11 (1 + θ)α11 2θα11

Primer 2 (y) 2θα22 (1 + θ)α22 2α22

The intensity level will vary between individuals, and this variation is of-
ten substantial. Hence we should also allow an individual intensity factor λ,
being the same for the two primers but varying between individuals. Without
restriction we may take λ to have geometric mean 1 over all individuals, that is
average zero on log-scale. In a log–log diagram for (x, y), Table 2 implies that
we can expect the homozygous samples to be found in points

Pα + (0, log θ) + log λ (1, 1) (3)

and
Pα + (log θ, 0) + log λ (1, 1), (4)

where Pα = (log(2α11), log(2α22)), and the heterozygous sample in the point

Pα + log{(1 + θ)/2}(1, 1) + log λ (1, 1). (5)

These model implications are shown in Figure 3. In words this means that
irrespective of the values of α11, α22 and θ, the heterozygous sample (point B)
will be located along a 45◦ line below Pα, and the homozygous samples (points A
and C) will be located at equal distances γ(θ) from the perpendicular projection
of Pα on a line of slope 135◦. In the latter direction, the heterozygous sample
will thus be located in the middle between the two homozygous samples, but
moved a distance ν = ν(θ) along the 45◦ direction. Because this distance is
always > 0, the expected position of a heterozygous sample is above the 135◦

line between the two homozygous samples (A and C).
This theoretical reasoning is supported by data, see Figure 4 for an example,

where we have introduced variables u and w representing data along the 45◦

and 135◦ axes,

u = (log x+ log y)/
√

2 (6)

w = (log x− log y)/
√

2. (7)
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Figure 3: Geometric illustration of the expected model implications on logarith-
mic scale.

Figure 4: Data for SNP number 2, as in Figure 2, but with u-and w-axes in-
serted, representing variation in the 45◦ and 135◦ directions.
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Figure 5: Data for SNP number 2, represented by coordinates u and w. Groups
A and C are the homozygous genotypes and group B the heterozygous genotype.

Figure 4 illustrates that the means in the 135◦ direction (w) for the homozy-
gous genotypes (A and C) are equidistant from the mean of the heterozygous
genotype (B). The analyses to follow will be performed in the derived variables
u and w. Expressed in (u,w) we assume that data derive from three bivari-
ate normal distributions. We further assume that u and w are uncorrelated.
This holds automatically in the typical case when log x and log y have the same
variance. Figure 5 illustrates this, where:

• µwA , µwB and µwC are the equidistant means in the w-direction, with
pairwise distance

γ(θ) = log(1/θ)/
√

2 or θ = exp(−
√

2γ), (8)

• µuA = µuC
are the means in the u-direction for the two homozygous

genotypes A and C, whereas the heterozygous genotype B has mean value
µuB = µuA + ν(θ) with

ν(θ) = γ(θ)−
√

2 log(2/(1 + θ)) > 0. (9)

This means that the six location parameters in the three bivariate normal dis-
tributions are reduced to three parameters.

An assumption for the technique to be efficient is that the distance γ is
large, i.e. that the quotient θ be small. To see if this assumption is fulfilled, we
anticipate the estimation of γ and show a histogram over SNPs of estimated θ-
values, calculated from estimated γ-values through equation (8). This histogram
is shown in Figure 6. The θ-values are reasonably small, typically ≤ 0.1.

In addition, there is extensive random variation in the data. One reason is
biological variation between individuals (and between samples within individ-
ual), for example in the amount of genomic material sampled. Other variation

8



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

2

4

6

8

10

12

14

Estimated  θ

A
bs

ol
ut

e 
fr

eq
ue

nc
y

Distribution of θ over 63 SNPs

Figure 6: Histogram of estimated θ-values, representing match–mismatch effi-
ciency for SNPs with 3 or 2 genotypes.

is more purely technical, for example between subarrays (“chip” effects) and
between print tips, and measurement errors. Much of this variation can be
expected to be multiplicative in character and represented by variation in the
proportionality factor λ, common to both x and y, so after transformation of
variables to u and w this will be seen exclusively in u. Variation in the amount
of sampled primers and genomic material will be of this kind, but much other
variation, too, for example the variation between subarrays. We must also ex-
pect occasional gross errors, which may obscure the picture for an individual
or for a particular SNP. Biological variation due to pathological genetic com-
position will be assumed absent, but if it appears, anyhow, it will appear as
outliers.

Weak signals are likely to be influenced by the background and background
intensity variation, which is not necessarily multiplicative. This can perhaps
largely explain why the heterozygous groups typically have a smaller variance
in w than the homozygous groups. The reason should then be that for the
homozygous groups one of the signals, x or y, should be small, whereas for the
heterozygous group none of them is small.

The left-most cluster in Figures 4 and 5 indicates that the variance in w is
somewhat larger when the measured intensity u is quite low, but for simplicity
it will subsequently be assumed constant. A more sophisticated analysis would
give different weight to the w-values of different observations depending on their
u-values.

4 Are u-data useful for SNP classification?

We show here that intensity data u are not of much value for the separation
between genotypes. However, they can be useful for the characterization of
genotypes when only two genotypes are reported in the sample, see Section 10.
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Figure 7: Plot of functions γ(θ) (solid line) and ν(θ) (dotted line), 0 < θ ≤ 1.

In Figure 3 we introduced the distances γ(θ) and ν(θ) in the w and u direc-
tions, respectively, as functions of the efficiency parameter θ. given by formulae
(8) and (9).

It follows that there is an unambiguous relationship between γ and ν through
θ. Here θ is aimed at being a small positive number. When we have problems
separating the genotypes, it is because θ is not small enough in relation to the
noise levels in w and u, Figure 7 shows how the distances γ(θ) and ν(θ) decrease
as θ increases from 0 to 1. The conclusion is that in comparison with w, u is
relatively useless for inference about the parameters. This conclusion is based
on the following facts:

• The distance γ in w is always bigger than the distance ν in u, whereas in
contrast the sample variances are typically substantially higher in u than
in w. Hence, from u-data we have to make inference about a smaller mean
value difference from samples with a higher variance.

• As θ increases, ν (dotted line) approaches zero much faster than γ (solid
line), so the relative contribution of information from u-data to that of w-
data is decreasing when the total information in the data for discrimination
decreases.

In other words:

• When the information in u is substantial, it is not needed, because the
information content in w is high enough for precise discrimination.

• When the information content in w is not very high, so additional infor-
mation could help, the relative amount of information in u is too small to
be of value.
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Figure 8: Data w for SNP number 2. The middle part of the histogram repre-
sents the heterozygous genotype (group B), and it is flanked by the two homozy-
gous types (groups A and C).

5 Normal mixture model for w-data

In previous sections we have seen that the variability in the u direction is con-
siderable, and that the u-data usually contribute little to the discrimination
between genotypes. Therefore, the clustering analysis to be described will be
based on the w-data alone.

Consider the variable w = (log x − log y)/
√

2, for a given SNP. For the
purpose of illustration, a histogram for w is shown in Figure 8. We assume that
the observed data w1, w2, ..., wn for one SNP data set come from a mixture of
three univariate normal distributions with equidistant mean values µ1 < µ2 <
µ3, µ3 − µ2 = µ2 − µ1(= γ), see Figure 5, and variances, σ2

i , i = 1, 2, 3, with
σ2

1 = σ2
3 . The unknown mixing proportions πi, i = 1, 2, 3, satisfy 0 ≤ πi ≤ 1

with
∑
πi = 1 . The complete parameter vector can be taken as

β =
(
µ1, µ2, µ3, σ

2
1 , σ

2
2 , σ

2
3 , π1, π2, π3

)
(10)

or alternatively with µA, µB , etc. There are three linear restrictions as specified
above, one in µ, one in σ, and one in π. The normal mixture model to be fitted
has the density

f(w;β) =
3∑

i=1

πi

σi
φ(
w − µi

σi
) (11)

where φ(.) is the standardized normal density function. This model is illustrated
in Figure 9 (the best fitting such model).

For some data sets one of the three groups is missing, most likely one of the
homozygous groups. In this case of a two-component mixture, the parameter
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Figure 9: Mixture model with three assumed normal densities, illustrated for
SNP 2 (as fitted by MLE).

restrictions on means and variances vanish. More rare data sets are represented
by a single normal component. In this case ML estimation is standard and need
not be discussed here. How to determine the appropriate number of components
is discussed in Section 7.

6 Parameter estimation by the EM algorithm

We have used the maximum likelihood (ML) method for parameter estimation.
The Expectation-Maximization (EM) algorithm is an iterative method for com-
puting these estimates, when standard likelihood maximization is numerically
difficult or impossible because of incomplete data problems (Dempster et al.,
1977; McLachlan and Thriyambakam, 1997). By incomplete data in this case
we refer to the lack of membership knowledge that characterizes mixtures. With
a label on each observation telling its genotype, we would have had “complete”
data, and the estimation would have been much simpler. The idea is to pretend
we know the complete data and adjust this knowledge in a two-step iterative
method, an expectation E-step alternating with a maximization M-step.

From the mixture model we know that each observation originates from one
of the g = 2 or g = 3 distribution components, and we use v as the unobserved
indicator vector of dimension g, with one component 1 and all others 0, vij = 1
when individual j belongs to component i. Together (v, w) form the “complete”
data.

The case g = 2 of two mixed arbitrary normal distributions is standard
in the literature on mixtures, even though mixtures with a common variance
parameter are perhaps more common. Our case g = 3 is nonstandard, however,
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due to the parameter restrictions, which make the likelihood smoother and the
resulting estimates more precise, but the formulae more complicated. When
g = 2 the complete data family is a full exponential family, and the M-step is
unique and extremely simple, see Sundberg (1974). When g = 3, our complete
data model is a curved exponential family, i.e. the minimum sufficient statistic
is of higher dimension than the parameter. This typically implies that the ML
estimate does not have an explicit form, and the global likelihood maximum
point need not be a unique root of the likelihood equations.

In fact, the situation has some similarities with the Behrens–Fisher problem
(i.e. two normal samples with common mean but different variances), where it
is known that the corresponding mean value estimator can be a local minimum
point of the likelihood, when the data are such that they do not fit the model.
It is not clear and has not been investigated if this might possibly be the case
here, too. However, it is not likely to be an important defect, if the likelihood
maximum is slightly underestimated when data do not fit the model.

The “complete” data vector is (v, w) and the corresponding log-likelihood
for the parameter vector β has a partially multinomial form

logL(β; v, w) =
3∑

i=1

n∑
j=1

vij log πi +
3∑

i=1

n∑
j=1

vij log fi(w; ηi)

=
3∑

i=1

n∑
j=1

vij log πi − (n/2) log(2π)

− 1
2

3∑
i=1

n∑
j=1

vij

{
log σ2

i + (wj − µi)2/σ2
i

}
(12)

E-step. In this step we calculate, under the current parameter β(k) after k
iterations, the conditional expected value of the complete data log-likelihood
(12), given the observed data (the w-values). That is, we calculate

Eβ(k) [logL(β; v, w) |w ] (13)

Note that logL is linear in the unobservable vij . This implies that the condi-
tional expectation to be calculated is obtained by simply replacing vij by its
conditional expected value given w-data, that is (after step k) by

v
(k)
ij = Eβ(k) [Vij |w ] = Pβ(k)(Vij = 1 |w ) (14)

From Bayes’ theorem we get

v
(k)
ij =

π
(k)
i fi(wj ; η

(k)
i )

g∑
l=1

π
(k)
l fl(wj ; η

(k)
l )

=
π

(k)
i

σi
e
− 1

2σi
(wj−µi)

2

g∑
i=1

(
π

(k)
i

σi
e
− 1

2σi
(wj−µi)2

) (15)

for i = 1, 2, 3 and j = 1,. . . , n (dependence of µ and σ on k suppressed).
Note that v(k)

ij is the posterior probability that the unit with observed value
wj belongs to the ith component of the mixture, and the ultimate aim of the
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statistical analysis is to provide for each individual the best v-values.

M-step. In iteration k+1 we update β(k) to β(k+1) by maximizing with respect
to β expression (13), that is the complete data likelihood with current condi-
tional expected values v(k)

ij inserted for the missing v-data. The maximization
is different for g = 2 and g = 3.

The case g = 2. We maximize (13) under the single, trivial restriction π1 +π2 =
1. We have no reason to assume σ1 = σ2, because the missing genotype is
not likely to be the heterozygous one, in particular not under Hardy–Weinberg
equilibrium. The explicit solution, given the v-data v(k) from the E-step, is for
i = 1, 2,

π
(k+1)
i =

n∑
j=1

v
(k)
ij /n (16)

µ
(k+1)
i =

n∑
j=1

v
(k)
ij wj/(nπ

(k+1)
i ) (17)

(σ2
i )(k+1) =

n∑
j=1

v
(k)
ij (wj − µ

(k+1)
i )2/(nπ(k+1)

i ) (18)

The case g = 3. For a mixture of three normal distributions, with three restric-
tions as described in Section 5, the solution may be derived and expressed by
use of the method of Lagrange multipliers. We maximize

logL∗3(β; v, w) =
3∑

i=1

n∑
j=1

vij log πi +
3∑

i=1

n∑
j=1

vij log fi(w; ηi)

− λ1

(
3∑

i=1

πi − 1

)
− λ2(σ2

1 − σ2
3)− λ3(µ1 + µ3 − 2µ2).(19)

The complete data estimates of πi, i = 1, 2, 3 are independent of the means and
variances, so they are still given by the same formula (16) as for g = 2, but now
extended to three groups. For given πi, the complete data estimates of σ2

i and
µi satisfy the following equation system, involving the Lagrange multiplier λ3:

σ2
1 = σ2

3 =

n∑
j=1

v
(k)
1j (wj − µ1)2 +

n∑
j=1

v
(k)
3j (wj − µ3)2

n(π1 + π3)
(20)

σ2
2 =

n∑
j=1

v
(k)
2j (wj − µ2)2/(nπ2) (21)

µi =

n∑
j=1

v
(k)
ij wj − λ

(k+1)
3 σ2

i

nπi
, i=1, 3 (22)

µ2 =

n∑
j=1

v
(k)
2j wj − 2λ(k+1)

3 σ2
2

nπ2
, (23)
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where λ3 satisfies

λ3 =

∑
v
(k)
1j wj/π1 − 2

∑
v
(k)
2j wj/π2 +

∑
v
(k)
3j wj/π3

σ2
1/π1 + 4σ2

2/π2 + σ2
3/π3

. (24)

Instead of solving this equation system iteratively, we used formula (17) ex-
tended to three groups to obtain explicit formulas (20) and (21) for the variance
parameters. In that way we were able to turn the equation system into explicit
formulas also for λ3 and the mean value parameters (22) and (23). In our expe-
rience, the differences from the true roots were typically found to be negligible,
but alternatively an iteration step could be applied in which the resulting mean
values are used for updating the other parameters.

Starting values for the EM algorithm. Starting values for the unknown
parameters are needed. These will differ depending on the number of mixture
components.

With three equidistant components, natural starting values are obtained by
dividing the interval (min(w), max(w)) in three subintervals of equal length,
counting the number of observations in each subinterval, and calculating their
mean values and standard deviations (pooling between the two outer intervals).
Less data-dependent starting values (πi = 1/3, outer means located in min and
max points, etc) have also been seen to work well. In all cases of convergence
problems, data appeared to have less than three true components.

Starting values for two components are more crucial, in particular if data do
not clearly follow the model. They can be selected in a similar way as for g = 3,
but see also McLachlan and Peel (2000).

Results for one of the SNP data sets. For the purpose of illustration we
describe in detail the results for one SNP data set (SNP 2), see Figures 8 and 9
for data and for its 3-component model.

The 3-component EM algorithm converged in just 4 steps and with g = 2 it
was also fast, around a dozen iterations. The ML estimates and log likelihood
maximum values logLg(β̂) are given in Table 3 below, g = 1, 2, 3.

Table 3 Estimated parameters and log likelihood functions for SNP 2 for three,
two and one normal components (genotypes, g).

g π1 π2 π3 µ̂1 µ̂2 µ̂3 σ̂2
1 σ̂2

2 σ̂2
1 logLg(β̂)

3 0.25 0.46 0.29 −4.5 −1.4 1.7 0.2 0.1 0.2 −107
2 0.72 0.28 −2.5 1.7 2.6 0.1 −160
1 1 −1.3 5.4 −183

Table 3 shows that the estimated likelihood function with three normal com-
ponents has a much larger value, (logL3-max= −107), than with fewer compo-
nents. Hence we can conclude that more than two components are needed. This
result agrees with the impression from visual inspection of Figure 8. There are
24 estimated observations in one of the homozygous genotypes (group A), 44
in the heterozygous genotype (group B) and 28 in the other homozygous geno-
type (group C). The ML solution for g = 2 clumps together A and B. A local
maximum of logL2 of the same magnitude clumps together B and C, instead.
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The 3-component log-likelihood maximum value (logL3-max) should always
be higher than the 2-component maximum (logL2-max), since the latter is a
special case, but the relation between the deviance (i.e. twice logL3-max minus
logL2-max) and the parameter dimensions for mixture models is not simple, For
example, a standard large sample χ2 test argument is not applicable for testing
if the model can be reduced from 3 to 2 components or from 2 to 1 component
(McLachlan and Peel, 2000). We require another criterion than the standard
deviance criterion for assessing the number of components.

7 Criteria for assessing the number of compo-
nents

We have developed an algorithm that allows the automatized estimation in
parallel of one, two or three normal components (genotypes). It remains to
assess the number of components. Such assessment is a frequent and important
problem, but difficult and perhaps not yet completely resolved, see McLachlan
and Peel (2000). There is no method that works for all real-world data. If we try
to fit two components to 3-component data, we will be exposed to problems with
local maxima and possible convergence problems with the iteration method. On
the other hand, even with good data, one or several genotypes can be missing
and the interpretation of data is not necessarily straight forward. Therefore, in
ambiguous cases the automatic algorithm is supposed to send a signal that a
closer inspection of data is needed.

Instead of using the deviance in this non-standard statistical test situation,
we will assess the order (number of components) of the mixture model by using
several different information criteria that are penalized forms of the log likeli-
hood functions logLg(β̂), g = 1, 2, 3. After trying various information criteria
proposed in the literature, we selected the following four criteria for use:

1. Akaike’s Information Criterion, AIC, in this context proposed by Bozdo-
gan and Sclove (1984)

2. Bayesian Information Criterion, BIC (Schwarz, 1978)

3. Classification Likelihood Criterion, CLC (Biernacki and Govaert, 1997)

4. Integrated Classification Likelihood Criterion, ICL (Biernacki and Celeux,
2000)

For each of them the selected number of components corresponds to the lowest
value of the criterion function. Notationally logLg will here denote the esti-
mated log likelihood maximum with g normal components, and d will denote
the total number of parameters in the model.

The performance of these methods has been evaluated in many mixture
model studies. AIC tends to overestimate the correct number of components in a
mixture model (Koehler and Murphee, 1988). CLC works well when the mixing
proportions are about equal (Biernacki et al., 1999) but tends to overestimate
the correct number of components when there is no restriction on the mixing
proportions. In a simulation study by McLachlan and Peel (2000), ICL selected
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the true number of components in all the simulated data sets and performed
better than AIC, BIC and CLC.

Table 4 below shows the results from application of the different information
criteria on the same data set as in the previous sections (SNP 2). The table
gives the concordant answer that the minimum value of the four information
criteria is the mixture with three components, figures given in boldface. We
may draw the conclusion that this SNP has three genotypes, as is also clear
from visual inspection.

Table 4. Results from five information criteria for SNP 2 for three, two and
one normal components (genotypes, g). The number of selected components is
shown in bold-face.

g AICg BICg CLCg ICLg

3 226 241 214 241
2 330 342 328 351
1 371 376 367 376

8 Model evaluation and results

At the outset there were data for 75 SNPs. The experiment partially failed for
5 SNPs, which were excluded. The remaining 70 SNP data sets were analysed
with our algorithm and the number of mixture components were assessed with
the four information criteria.

Experience from application of the algorithm. The algorithm programmed
fits g-component models to data for g = 1, 2, 3, and for each such model calcu-
lates the information criterion functions described above. In some cases the EM
algorithm failed to converge, but instead produced a signal saying this. For 62
of the 70 data sets the algorithm gave parameter estimates for all three model
types. For two of the other data sets, the 2-component model failed, because
data looked like a single sample except for a single outlier. With the outlier
as a component of its own, the likelihood goes to infinity when the variance
parameter for this component goes to zero. For the remaining six data sets, all
seen to be clear-cut examples of 2-component models, the EM algorithm failed
for the 3-component model.

Another experience was that the iterations for obtaining estimates for the
3-component model usually converged very fast, typically in less than ten iter-
ation steps. However, when data followed a 1-component model the algorithm
required hundreds or many more iteration steps for estimating parameters in
the 2- and 3-component models.

Easily interpretable results. As much as 65 of the 70 cases gave concor-
dant results, i.e. all four information criteria selected the same number of
components:

• 51 cases with three components (genotypes),

e.g. SNP 2 and SNP 62 in Figure 9.1, a and b, respectively.
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• 12 cases with two components,

e.g. SNP 10 and SNP 56 in Figure 9.1, c and d, respectively.

• 2 cases with one component,

SNP 19 and SNP 72 in Figure 9.1, e and f, respectively. These results are
reasonable in view of the data in Figure 9.1 and with the other 59 data
sets.

Method ICL tends to discriminate better than the other three methods. The
value for this criterion deviates more between the different models. This has
to do with the penalty term that contains both an entropy term and a term
involving the number of parameters and the number of observations. Methods
AIC and BIC tend to discriminate less than the other two methods and the
CLC method gives results somewhere in between, see e.g. Table 5 for one of
the 1-component sets (SNP 72). If one of these methods is to be chosen we
recommend the ICL method, in line with McLachlan and Peel (2000).

Table 5. Results from the four information criteria with SNP 72 for three, two
and one normal components (genotypes, g). The number of selected compo-
nents is shown in bold-face.

g AICg BICg CLCg ICLg

3 114 130 127 154
2 114 127 179 202
1 109 114 105 114

Ambiguous results. The results for the five data sets giving conflicting num-
ber of components by the four criteria are summarized in Table 6, including a
SNP with pathological likelihood. Histograms are presented in Figure 11. Here
are some comments.

Table 6. The criterion values for the five data sets, for which conflicting re-
sults were obtained, see Figure 11. For each criterion, the number of selected
components is marked by a bold-face criterion value.
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Figure 10: Histogram of data set SNP 2 (a), SNP 62 (b), SNP 10 (c), SNP 56
(d), SNP 19 (e), SNP 72 (f)with their corresponding density functions.

19



SNP g AIC BIC CLC ICL
11 3 96 111 154 181

2 104 117 112 135
1 125 130 121 130

29 3 79 94 81 108
2 74 87 85 108
1 248 253 244 253

30 3 356 371 350 377
2 356 368 350 373
1 371 376 367 376

52 3 169 185 179 206
2 168 181 186 209
1 189 194 185 194

60 3 119 135 118 145
2 −∞ −∞ −∞ −∞
1 134 139 130 139

For SNP 11, the AIC and BIC methods choose three components, the CLC
method prefers g = 2, while the ICL method prefers a single component. The
log likelihood is in fact of the same order of magnitude for the three models
(logL3(β̂) = −42, logL2(β̂) = −47 and logL1(β̂) = −61). The penalty term
for CLC and ICL involves the entropy and this tends to reduce the number of
components. After looking at Figure 11(a) (SNP 11), we chose to follow the
proposal from the ICL method that there is only a single component.

For SNP 29, all criteria except CLC select only two components. However,
the differences between the criterion values for two and three components are not
large for any method. Again the value of the entropy term has an impact. Only
a single observation appears to represent one of the homozygous genotypes in
this case, see Figure 11(b). Without this observation we would decide that there
are two components, but the single observation is in the right place to represent
the homozygous alternative. If the small middle group is heterozygous we also
have reason to expect none or very few homozygous observations of the other
homozygous type (cf. Hardy–Weinberg equilibrium).

For SNP 30, as for SNP 29, CLC chooses three components while the
other criteria choose two components. The log likelihood has almost the same
value for two and three components (logL3(β̂) = −172, logL2(β̂) = −173 and
logL1(β̂) = −183). By inspection of Figure 11(c) we infer that there are obvious
difficulties in analyzing this data set. The data are of too low quality.

For SNP 52, AIC and BIC select two components, CLC three components,
and the ICL method only one component. The data set appears to be of low
quality.

For SNP 60, all criteria actually agree, but the minimum likelihood is de-
generate. The natural interpretation of data is that there is one component
and one additional outlying observation, where this observation perhaps repre-
sents another component. In the case g = 2, this interpretation corresponds to
a singular solution with one component having zero variance. This yields an
infinite likelihood, and all criteria have infinite values. Note that in the case of
three components with a single outlying observation, such as in Figure 11(b),
this situation does not occur, due to the variance restriction σ1 = σ3. When we
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consider what alternatives to two components the criteria suggest, all criteria
except ICL choose three components. The ICL method selects a single compo-
nent. Looking at the histogram in Figure 11(e), it is reasonable to select a one-
or two-component model to represent the data.

Our overall conclusion from the five cases (a) to (e) is that the ICL cri-
terion selects the number of components that is best in line with our visual
interpretation of the data.

9 Detection of overall outlying individuals.

Each SNP dataset contains the same n = 96 individuals. We may want to
know if some individuals yield generally uncertain values and perhaps should
be regarded as outliers. Such analyses can be made separately on u- and w-data.

The variate u measures the general intensity of the individual signal. A nat-
ural and very simple criterion to identify possibly unreliable individuals would
be to look for extremely small values of the average ū over all SNPs. A more
sophisticated version would adjust for heterozygosity, by using an estimated
ν-value, via formula (9).

In order to look for individuals with much uncertainty in w we first run the
classification algorithm, as described in previous sections, to find the normal
components of each SNP dataset. Then we form a quadratic distance measure
ψ defined as follows. First consider a single, fixed SNP for the individual j in
question and calculate a value of type

ψj =
g∑

i=1

v̂ij
(wj − µ̂ij)2

σ̂2
ij

, (25)

where g is the number of normal components, µ̂i and σ̂ij are mean and standard
deviation, respectively, of the ith component and v̂ij is the posterior probability
that individual j with observed value wj belongs to the ith component of the
mixture, for the particular SNP. This is carried out for all K SNPs, resulting in
values ψjk, k = 1, . . . ,K. Next we average the individual’s ψ-values over all K
SNPs, ψj =

∑
k ψjk /K.

Figure 12 shows a histogram of the n = 96 ψ-values, for the identifiable
SNPs. Most individuals have small ψ-values, which means that they are typ-
ically located centrally in their normal components, whereas some individuals
on average over SNPs (in quadratic mean sense) deviate more than twice the
corresponding standard deviation from their component means. Since this is not
only for a single SNP, but on the average over a large number of SNPs, it might
be regarded as remarkable. The four individuals with highest ψ-values, in size
around 6, should be further examined before their classifications are trusted.

10 Identifying the heterozygous group when one
group is missing.

When the number of components has been assessed to be g = 2, it remains to
identify which one (if any) is heterozygous. There are at least three possibilities
to be tried, which are discussed below.
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Figure 11: Histograms for SNPs with non-concordant criteria for the number of
components (SNPs 11, 29, 30, 52 and 60).
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Figure 12: Histogram of ψ-values, indicating individuals with large w-errors on
the average over SNPs.

10.1 Strong and weak signals

If we could say in advance what signals should be denoted strong, moderate and
weak, we should expect (at least) one of the components to have a weak x or y
signal, whereas the heterozygous component should not have any weak signal.
This will perhaps yield the most conclusive answer in many cases when the
clustering is clear. This criterion is not independent of the next one, however.

10.2 Inference from u-data

For identification of the two components, support can be obtained by using u-
data. The component with the highest mean value in u is more likely to be
heterozygous than homozygous, in particular if a two-sample t-test shows that
there is a statistically significant difference between the mean values. However,
note that “chip” effects and other variability make the variance in u high and
the mean value comparison uncertain, so preferably the comparison between
components should adjust for a chip effect in order to be efficient.

10.3 Support from Hardy–Weinberg law.

The genotype distribution (between AA, Aa and aa) of a population may but
need not follow the Hardy–Weinberg law of equilibrium. The paper by Teo et al.
(2007) states that they assume such an equilibrium — a very strong assumption.
However, presuming that all individuals have been classified into two or three
components (genotypes), we may check if the frequencies are consistent with
Hardy–Weinberg equilibrium. For exact tests the genotype membership should
be known, but for a crude check it is enough that we have approximate numbers.
Assuming that the individuals form a random sample from a population, we can
think of using the test results to conclude if the underlying population can be
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in Hardy–Weinberg equilibrium. However, less demanding and more reasonable
in the present situation is to expect only very approximate Hardy–Weinberg
equilibrium, and

• in a 2- or 3-component model check for crude agreement with Hardy–
Weinberg equilibrium in the classification inferred from data. Disagree-
ment may but need not indicate errors in the classification.

• in the 2-component model infer which two genotypes are most likely
present.

The latter inference is very simple as far as it concerns only estimation: The
smaller of the two non-void classes is the heterozygous genotype, and in the
variate w it is in the middle between the larger class and the expected position
for the void class.

10.4 Illustration on SNP data sets with g = 2

First we reconsider the examples from Figure 10(c) and (d). For SNP 10, the
larger component has substantially smaller u-values on average, due to much
smaller y-values, so all criteria say that the smaller component is heterozygous,
For SNP 56, the situation is very similar. One more argument speaks for the
smaller component as heterozygous in this case: it has a substantially smaller
variance in w than the larger group.

Finally we reconsider SNP 60, see Figure 11(e), with one observation devi-
ating from all others. This single observation is the only one that has a very
small x or y, namely y = 0.7. Also it has the smallest u-value of all observa-
tions, due to this small value. Hence the first two criteria above indicate that
all individuals except one constitute a heterozygous component, and one indi-
vidual is homozygous. However, this is very far from reasonable if there should
be any tendency towards Hardy–Weinberg equilibrium. All three criteria taken
together therefore indicate that the single observation represents a gross error
in its very low y-value,

11 Concluding discussion

We have modelled data from a PrASE type competitive enzymatic assay, and
argued theoretically for a particular bivariate Gaussian 3-component mixture
model. The model is not a saturated model, but utilizes expected relationships
between its component parameters. This is particularly helpful when one geno-
type is little represented in the sample. The model was found to describe well
all typical datasets. Except when one genotype is absent, almost all information
for classification is in the marginal univariate model for log-ratio-transformed
intensities. For parameter estimation in this mixture model the EM algorithm
typically shows a rapid and robust convergence. Our model and algorithm
has proven to work well and we have constructed a program for automatic as-
sessment of the number and character of the genotypes. We have used four
different criteria for assessment of the number of genotypes present (AIC, BIC,
CLC, ICL), of which ICL appears to be the most reliable one. The criteria gave
discordant answers in only 5 out of 70 SNPs. Such SNPs with unclear answers
were left for further manual examination of the data.
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Of all 70 SNPs, 12 were classified as lacking exactly one of the three geno-
types. In all but one of these cases we could unambiguously characterize one
of the two mixture components as heterozygous, by using information orthog-
onal to the log-ratio of intensities, and by crude comparison with the expected
distribution under Hardy–Weinberg equilibrium.

We may draw the following conclusions from our study:

• The model described in this paper is useful for genotyping SNP data, at
least for competitive enzymatic assays, but probably also for several other
types of SNP data. Carvalho et al. (2007) have already used the same
model for their analogue to the main response w with Affymetrix data
(but without molecular motivation), whereas it has not yet been proposed
for other types of data.

• The procedures may easily be implemented for automatic identification of
the number of genotypes, using some or all of the criteria AIC, BIC, CLC,
and ICL.

• The criteria for assessing the number of genotypes (components) may also
be used for detecting anomalies in data or in the data structure. When
the four criteria give different answers a closer inspection of the data is
suggested.

• Other criteria may be used to identify outliers in the set of individuals
and to identify the heterozygous group in the case of two groups.

References

Biernacki, C and Celeux, G (2000). Assessing a mixture model for clustering
with the integrated completed likelihood, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 22 (7), 719–725.

Biernacki, C and Govaert, G (1997). Using the classification likelihood to choose
the number of clusters, Computing Science and Statistics, 29 (2), 451–457.

Biernacki, C and Celeux, G and Govaert, G (1999). An improvement of the
NEC criterion for assessing the number of clusters in a mixture model, Pattern
Recognition Letters, 20, 267–272.

Bozdogan, H and Sclove, SL (1984). Multi-sample cluster analysis using Akaike’s
information criterion, Ann. Inst. Statist. Math., 36, 163–180.

Callegaro, A, Spinelli, R, Beltrame, L, Bicciato, S et al. (2006). Algorithm for
automatic genotype calling of single nucleotide polymorphisms using the full
course of TaqMan real-time data. Nucleic Acids Research, 34 (7), e56.

Carvalho, B, Bengtsson, H, Speed, TP and Irizarry, RA (2007). Exploration,
normalization, and genotype calls of high-density oligonucleotide SNP array
data, Biostatistics, 8 (2), 485–499.

Dempster, A, Laird, N and Rubin, D (1977). Maximum likelihood from incom-
plete data via the EM algorithm (with discussion), J. Royal Statist. Soc., Series
B, 39 (1), 1–38.

25



Hapmap (2005). A haplotype map of the human genome. Nature, 437, 1299–
1320.

Hardenbol, P, Yu, F, Belmont, J, Mackenzie, J, et al. (2005). Highly multi-
plexed molecular inversion probe genotyping: over 10,000 targeted SNPs geno-
typed in a single tube assay Genome Research, 15 (2), 269–275.
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