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1 Introduction

Copulas, which will be defined in Section 2, describe the dependence of a
multivariate distribution that is invariant under monotone (increasing) trans-
formations of each coordinate. In this paper we investigate the dependence
that arise in a one-dimensional Markov process. Darsow et al. [1] began
studying copulas related to Markov processes, see also [4, Ch. 6.3]. More
precisely, they showed what the Kolmogorov-Chapman equations for tran-
sition kernels translates to in the language of copulas and introduced some
families of copulas (Cst)s≤t that are consistent in the sense that Cst is the
copula of (Xs, Xt) for a Markov process (Xt)t≥0.

We will in Section 2 introduce a Markov product of copulas C ∗D such that
if C gives the dependence of (X0, X1) and D the dependence of (X1, X2),
then C ∗D gives the dependence of (X0, X2) for a Markov chain X0, X1, X2.
An analogy is that of a product of transition matrices of finite state Markov
chains, in particular doubly stochastic matrices (whose column sums are all
one) since they have uniform stationary distribution.

This approach might at first seem like a sensible way of introducing the
machinery of copulas into the field of stochastic processes: Mikosch [3], for
example, has criticised the wide-spread use of copulas in many areas and
among other things pointed out a lack of understanding of the temporal
dependence, in terms of copulas, of most basic stochastic processes.

This paper builds on that of Darsow et al. [1], but with a heavier emphasis
on probabilistic, rather than analytic or algebraic, understanding. Our main
results are negative, in that we show how

1. a proposed characterisation of the copulas of time-homogeneous Markov
processes fails (Section 3),

2. Fréchet copulas imply quite strange Markov processes (Section 4),

3. Archimedean copulas are incompatible with the dependence of Markov
chains (Section 5),

4. a conjectured characterisation of idempotent copulas, related to ex-
changeable Markov chains, fails (Section 6).

2 Copulas and the Markov product

Definition 1. A copula is a distribution function of a multivariate random
variable whose univariate marginal distributions are all uniform on [0, 1].
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We will mostly concern ourselves with two-dimensional copulas. In the fol-
lowing all random variables denoted by U have a uniform distribution on
[0, 1] (or sometimes (0, 1)).

Definition 2. Π(x, y) = xy is the copula of independence: (U1, U2) has the
distribution Π if and only if U1 and U2 are independent.

Definition 3. M(x, y) = min(x, y) is the copula of complete positive depen-
dence: (U1, U2) has the distribution M if and only if U1 = U2 almost surely
(a.s.).

Definition 4. W (x, y) = max(x+ y− 1, 0) is the copula of complete negative
dependence: (U1, U2) has the distribution W if and only if U1 = 1 − U2 a.s.

Note that a mixture
∑

i piCi of copulas C1, C2, . . . also is a copula if p1, p2, . . .
is a probability distribution since one can interpret the mixture as a randomi-
sation: first chose copula according to the distribution p1, p2, . . . and then
draw from the chosen distribution.

It is well known that if X is a (one-dimensional) continuous random vari-
able with distribution function F , then F (X) is uniform on [0, 1]. Thus
if (X1, . . . , Xn) is an n-dimensional continuous random variable with joint
distribution function F and marginal distributions (F1, . . . , Fn), then the
random variable (F1(X1), . . . , Fn(Xn)) has uniform marginal distributions,
i.e. its joint distribution function is a copula, say C.

Sklar’s theorem, see [4, Thm. 2.10.9], states that any n-dimensional distribu-
tion function F with marginals (F1, . . . , Fn) can be “factored” into F (x1, . . . , xn) =
C(F1(x1), . . . , Fn(xn)) for a copula C, which is furthermore unique if the dis-
tribution F is continuous. We say that the n-dimensional distribution F , or
the random variable (X1, . . . , Xn), has the copula C.

Remark 1. When (X1, . . . , Xn) does not have a unique copula, all copulas
of this random variable agree at points (u1, . . . , un) where ui is in the range
Ri of the function xi 7→ Fi(xi). One can obtain a unique copula by an
interpolation between these points which is linear in each coordinate, and we
will, as Darsow et al. [1], speak of this as the copula of such random variables.

Copulas allows for a study of the dependence in a multivariate distribution
separately from the marginal distributions. It gives reasonable information
about dependence in the sense that the copula is unchanged if (X1, . . . , Xn) is
transformed into (g1(X1), . . . , gn(Xn)) where g1, . . . , gn are strictly increasing.

Example 1. The notion of copulas makes it possible to take a copula from
say a multivariate t-distribution and marginal distributions from say a nor-
mal distribution and combine them into a multivariate distribution where
the marginals are normal, but the joint distribution is not multivariate nor-
mal. This is sometimes desirable in order to have models with, in a sense,
“stronger” dependence than what is possible for multivariate normal distri-
bution.

Example 2. (X1, X2) has the copula Π if and only if X1 and X2 are inde-
pendent. (X1, X2) has the copula M if and only if X2 = g(X1) for a strictly
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increasing function g. (X1, X2) has the copula W if and only if X2 = h(X1)
for a strictly decreasing function h. (When X1 and X2 furthermore have
the same marginal distributions they are usually called antithetic random
variables.)

In this paper we are in particular interested in the dependence that arise in a
Markov process in R, e.g. the copula of (X0, X1) for a stationary Markov chain
X0, X1, . . . By [2, Prop. 8.6], the sequence X0, X1, . . . constitutes a Markov
chain in a Borel space S if and only if there exist measurable functions
f1, f2, · · · : S × [0, 1] → S and i.i.d. random variables V1, V2, . . . uniform
on [0, 1] and all independent of X0 such that Xn = fn(Xn−1, Vn) a.s. for
n = 1, 2, . . . One may let f1 = f2 = · · · = f if and only if the process is
time-homogeneous.

We can without loss of generality let S = [0, 1] since we can transform the co-
ordinates X0, X1, . . . monotonely without changing their copula. The copula
is clearly related to the function f above. We have fΠ(x, u) = u, fM(x, u) = x
and fW (x, u) = 1 − x with obvious notation.

Darsow et al. [1] introduced an operation on copulas denoted ∗ which we will
call the Markov product.

Definition 5. Let X0, X1, X2 be a Markov chain, and let C be the copula of
(X0, X1), D the copula of (X1, X2) and E the copula of (X0, X2) (note that
X0, X2 also is a Markov chain). Then we write C ∗D = E.

It is also possible to define this operation as an integral of a product of partial
derivatives of the copulas C and D, see [1, eq. (2.10)] or [4, eq. (6.3.2)], but
in this paper the probabilistic definition will suffice.

From the definition it should be clear that the operation ∗ is associative but
not necessarily commutative and for all C

Π ∗ C = C ∗ Π = Π

M ∗ C = C ∗M = C

so that Π acts as a null element and M as an identity. We write C∗n for
the n-fold Markov product of C with itself and define C∗0 = M . We have
W ∗2 = M so W ∗n = M if n is even and W ∗n = W is n is odd. In Section 6
we will investigate idempotent copulas C, meaning C∗2 = C.

Example 3. IfX0, X1, . . . is a time-homogeneous Markov chain where (X0, X1)
has copula C, then C∗n is the copula of (X0, Xn) for all n = 0, 1, . . . .

Definition 6. For any copula C(x, y) of the random variable (X, Y ), we define
its transpose CT (x, y) = C(y, x), the copula of (Y,X).

We can say that W is its own inverse since W ∗W = M .
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Definition 7. In general we say that a copula R is left-invertible or a right-
inverse if there exists a copula L so that L ∗ R = M , and we say that L is
right-invertible or a left-inverse.

The equation L ∗ R = M implies that any randomness in the transition
described by L is undone by R, and thus fR(x, u) must be a function of x
alone. A rigourous proof of the last proposition may be found in [1, Thm.
11.1]. Furthermore, if L is a right-invertible copula of (X, Y ) then its right-
inverse R can be taken as the transpose of L, R = LT , since M is the copula
of (X,X), and thus R should be the copula of (Y,X) so that L,R correspond
to the Markov chain X, Y,X. A proof of this can also found in [1, Thm. 7.1].

Example 4. Let Lθ be the copula of the random variable (X, Y ) whose distri-
bution is as follows: (X, Y ) is uniform on the line segment y = θx, 0 ≤ x ≤ 1
with probability 0 ≤ θ ≤ 1 and (X, Y ) is uniform on the line segment
y = 1 − (1 − θ)x, 0 ≤ x ≤ 1 with probability 1 − θ. The function

fLθ
(x, u) = θx1(u ≤ θ) + (1 − (1 − θ)x)1(u > θ)

can be used to describe the transition from X to Y . Let Rθ = LT
θ . One can

take

fRθ
(y, v) =

y

θ
1(y ≤ θ) +

1 − y

1 − θ
1(y > θ)

to describe the transition from Y to X. Note that fRθ
(y, v) is a function

of y only. We also get fRθ
(fLθ

(x, u), v) = fM(x, w) = x so that indeed
Lθ ∗Rθ = M .

The Markov product is linear:

∑

i

piCi ∗
∑

j

qjDj =
∑

ij

piqjCi ∗Dj , (1)

since the left hand side can be interpreted as first choosing a Ci with prob-
ability pi as transition mechanism from X0 to X1 and then independently
choosing a Dj with probability qj as transition mechanism from X1 to X2,
whereas the right hand side can be interpreted as choosing a combined tran-
sition mechanism Ci ∗Dj from X0 to X2 with probability piqj .

For a given Markov process (Xt)t≥0 in continuous time we will denote the
copula of (Xs, Xt) by Cst for s ≤ t. For time-homogeneous processes we only
write Ct for the copula of (Xs, Xs+t) for t ≥ 0. Note that for all t

Ctt = C00 = C0 = M.

Copulas for continuous time Markov processes must obey a Kolmogorov-
Chapman-type relationship:

Crt = Crs ∗ Cst, r ≤ s ≤ t. (2)
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3 Some families of copulas

Let (Xt)t≥0 be a Markov process with transition kernel Pst(x, ·) and marginal
distributions (Ft)t≥0. Now

Cst(Fs(x), Ft(y)) = P(Xs ≤ x,Xt ≤ y) =
∫ x

−∞

Pst(u, (−∞, y])dFs(u), (3)

and from this Cst may be derived in principle.

The expression (3) becomes more manageable if the marginal distributions
are uniform, and if the transition kernel furthermore has a density fst(x, y)

we get that the density cst(x, y) = ∂2

∂x∂y
Cst(x, y) of the Markov copula equals

the transition density: cst = fst.
Example 5. Let (Ut)t≥0 be a Brownian motion reflected at 0 and 1, with
σ = 1 and with U0 uniform on (0, 1). This process is stationary and time-
homogeneous with

ct(x, y) =
1√
2πt

∑

n∈Z

(

e−
(2n+y−x)2

2t + e−
(2n−y−x)2

2t

)

.

It is clear that Ct → M as t→ 0, and Ct → Π as t→ ∞.

It is usually hard to compute transition densities for interesting processes,
so another way of obtaining families of Markov copulas is to construct them
directly from copulas so that (2) holds. A problem with this approach is that
a probabilistic understanding of the process may be lost.
Example 6. Darsow et al. [1] pose the question of whether all time-homo-
geneous Markov copulas may be expressed as

Ct = e−at

(

E +
∞
∑

n=1

antn

n!
C∗n

)

, (4)

where a is a positive constant and E and C are two copulas satisfying C∗E =
E ∗C = C and E is idempotent (E ∗E = E). We observe immediately that
C0 = E according to equation (4), and thus E cannot be taken arbitrary,
but must equal M . However, since M commutes with all copulas, C may be
arbitrary. As M = C∗0 we can rewrite

Ct =
∞
∑

n=0

(at)n

n!
e−atC∗n = E

[

C∗N(t)
]

, (5)

where N is a Poisson process with intensity a. We can thus give the following
probabilistic interpretation: A Markov process has the Markov copula of
equation (5) if it jumps according to the Poisson process N with intensity
a, and at each jump, it jumps according to the copula C. Between jumps it
remains constant. This clearly does not cover all possible time-homogeneous
Markov processes or Markov copulas, cf. the previous example 5.
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4 Fréchet copulas

In this section we only consider Markov processes in continuous time.

A copula C is said to be in the Fréchet family if C = αW+(1−α−β)Π+βM
for some non-negative constants α and β satisfying α + β ≤ 1, [4, p. 12].
Darsow et al. [1] find conditions on the functions α(s, t) and β(s, t) in

Cst = α(s, t)W + (1 − α(s, t) − β(s, t))Π + β(s, t)M

so that Cst satisfies equation (2). By equation (1) we find

β(r, t)α(s, t) + α(r, s)β(s, t) = α(r, t), (6)

α(r, t)α(s, t) + β(r, s)β(s, t) = β(r, t). (7)

Darsow et al. [1] solved these equations by putting r = 0 and defining f(t) =
α(0, t) and g(t) = β(0, t) which yields

α(s, t) =
f(t)g(s) − f(s)g(t)

g(s)2 − f(s)2

β(s, t) =
g(t)g(s)− f(s)f(t)

g(s)2 − f(s)2

This solution in terms of the functions f and g does not have an imme-
diate probabilistic interpretation and it is therefore hard to give necessary
conditions on the functions f and g for (6) and (7) to hold.

We will first investigate the time-homogeneous case, where α(s, t) = a(t− s)
and β(s, t) = b(t− s) for some functions a and b. The equations (6) and (7)
are then

b(s)a(t) + a(s)b(t) = a(s + t) (8)

a(s)a(t) + b(s)b(t) = b(s + t) (9)

Letting ρ(t) = a(t)+ b(t), we find by summing the two equations (8) and (9)
that

ρ(s)ρ(t) = ρ(s + t). (10)

Since ρ is bounded and ρ(0) = 1 (since C0 = M), necessarily ρ(t) = e−λt

where λ ≥ 0, or ρ(t) = 1(t = 0). Note that ρ(t) equals the probability that
a Poisson process NW with intensity λ has no points in the interval (0, t].

For the moment we disregard the possibility ρ(t) = 1(t = 0). Since ρ is
positive we can define σ(t) = a(t)/ρ(t). By dividing both sides of (9) with
ρ(s + t) and using (10) we get

σ(s)σ(t) + (1 − σ(s))(1 − σ(t)) = σ(s+ t). (11)
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Now let τ(t) = 1 − 2σ(t) and equation (11) yields

τ(s)τ(t) = τ(s+ t), (12)

and by the same reasoning as for ρ we get τ(t) = e−2µt for some µ ≥ 0 or
τ(t) = 1(t = 0). We disregard the latter possibility for the moment. Thus
σ(t) = 1

2
− 1

2
e−2µt = e−µt sinh µt for some constant µ ≥ 0. Note that

σ(t) = e−µt sinhµt =
∑

k=0

e−µt (µt)2k+1

(2k + 1)!
, (13)

i.e. σ(t) equals the probability that a Poisson process NΠ with intensity µ
has an odd number of points in (0, t].

Thus, we have

Ct = σ(t)ρ(t)W + (1 − ρ(t))Π + (1 − σ(t))ρ(t)M

= e−(λ+µ)t sinh µtW + (1 − e−λt)Π + e−(λ+µ)t coshµtM (14)

= P(NW (t) is odd, NΠ(t) = 0)W

+ P(NΠ(t) ≥ 1)Π

+ P(NW (t) is even, NΠ(t) = 0)M,

where the aforementioned Poisson processes NΠ and NW are independent.

Probabilistic interpretation. The time-homogeneous Markov process with Ct

as copula is therefore rather special. We may without loss of generality
assume that all marginal distributions are uniform on [0, 1]. It “restarts” —
becoming independent of its history — according to a Poisson process NΠ.
Independently of this process, it “switches” by transforming a present value
Ut− to Ut = 1 − Ut−, and this happens according to a Poisson process NW .
Note that the intensity of either process may be zero.

If τ(t) = 1(t = 0) then σ(t) = 1
2
1(t > 0) so that Ct = ρ(t)(1

2
W + 1

2
M) +

(1 − ρ(t))Π for t > 0. The process can be described as follows. Between
points ti < ti+1 of NΠ the collection of random variables (Ut)ti≤t<ti+1

are
independent and have the distribution P (Ut = Uti) = P (Ut = 1 − Uti) = 1

2
.

If ρ(t) = 1(t = 0), we have Ct = Π for t > 0, so that the process is at
each moment independent of the value at any other moment, i.e. (Ut)t≥0 is a
collection of independent random variables.

With the probabilistic interpretation, it is easy to rewrite equation (14) in
the form (5), when ρ, σ > 0. The process makes a jump of either “restart”
or “switch” type with intensity λ+ µ and each jump is of “restart” type with
probability λ/(λ+ µ) and of “switch” type with probability µ/(λ+ µ). Thus

Ct =
∞
∑

n=0

((λ+ µ)t)n

n!
e−(λ+µ)t

(

λ

λ+ µ
Π +

µ

λ+ µ
W

)∗n

= E

[

C∗N(t)
]

,
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where C = λ
λ+µ

Π + µ
λ+µ

W and N is a Poisson process with intensity λ+ µ.

It is clear that the time-homogeneous process can be generalised to a time-
inhomogeneous Markov process by taking NΠ and NW to be independent
inhomogeneous Poisson processes. With

ρ(s, t) = P(NΠ(t) −NΠ(s) = 0)

σ(s, t) = P(NW (t) −NW (s) is odd)

we get a more general version of the Fréchet copula:

Cst = σ(s, t)ρ(s, t)W + (1 − ρ(s, t))Π + (1 − σ(s, t))ρ(s, t)M,

with essentially the same probabilistic interpretation as the time-homogeneous
case.

In the time-inhomogeneous case it is also possible to let either or both of
the two processes consist of only one point, say τΠ and/or τW that may have
arbitrary distributions on (0,∞). In addition to this, both in the Poisson
case and the single point case, it is possible to add deterministic points to
the processes NΠ and NW and still retain the (time-inhomogeneous) Marko-
vianity.

5 Archimedean copulas

If a copula of an n-dimensional random variables is of the form

φ(φ−1(u1) + · · · + φ−1(un)) (15)

it is called Archimedean. In order to have an Archimedean copula for the
random variable (X1, . . . , Xn) for all n, φ must equal the inverse φ = ψ−1

of a Laplace transform ψ of a positive random variable, say Y , see [4, Thm.
4.6.2 & Lem. 4.6.5].

Example 7. Let Y be a positive random variable with ψ(t) = E[e−tY ] for
t ≥ 0 and let P(X1 ≤ −x1, . . . , Xn ≤ −xn|Y ) = e−(x1+···+xn)Y for xi ≥ 0, i =
1, . . . , n. One can say that the random variables X1, . . . , Xn are conditionally
i.i.d. with a negative exponential distribution with intensity y given Y = y.
Thus

P(X1 ≤ −x1, . . . , Xn ≤ −xn) = E[e−(x1+···+xn)Y ] = ψ(x1 + · · ·+ xn).

Since t 7→ ψ(−t) is an increasing function from the non-positive real numbers
to the non-negative real numbers we have

P(ψ(−X1) ≤ ψ(x1), . . . , ψ(−Xn) ≤ ψ(xn)) = ψ(x1 + · · · + xn),

9



or equivalently,

P(ψ(−X1) ≤ u1, . . . , ψ(−Xn) ≤ un) = ψ(ψ−1(u1) + · · · + ψ−1(un))

for 0 ≤ ui ≤ 1, i = 1, . . . , n. Hence (X1, . . . , Xn) has an Archimedean copula
generated by φ = ψ−1. If P (Y = y) = 1 for some y, then X1, . . . , Xn are
i.i.d.

Consider a sequence of random variables X1, . . . such that the copula of
(X1, . . . , Xn) is given by (15) for all n. Without loss of generality we may
assume that the marginal distribution of each Xi is that of the example 7
above, i.e. P (Xi ≤ x) = ψ(−x) for x ≤ 0, since we can always transform
each coordinate monotonely so that it has the proposed distribution after
transformation. By the law of large numbers, limn→∞

1
n

∑n
i=1Xi = −1/Y

a.s., since E[X1|Y ] = −1/Y . Therefore the observation of X1, . . . , Xn gives
more information about Y and thus also Xn+1 than the observation of only
Xn, which would be the case if X1, . . . were a Markov process. Thus it is
not possible to have a Markov process with an Archimedean copula for the
distribution of X1, . . . , Xn for all n, unless all X1, . . . are independent.

6 Idempotent copulas

A copula is said to be idempotent if C ∗C = C. In this section we will inves-
tigate Markov chains with idempotent copulas whose probabilistic structure
will turn out to be quite peculiar.

Example 8. Let Ii = [ai, bi], i = 1, 2, . . . , be a set of disjoint intervals in [0, 1].
Let I0 = [0, 1]\∪i≥1Ii and let pi = λ(Ii) be the Lebesgue measure of each set
Ii, i = 0, 1, . . . Consider the random variable (U, V ) that has the following
distribution: (U, V ) is uniform on Ii × Ii with probability pi for i = 1, 2, . . .
and U = V with U uniform on I0 with probability p0. Let D be the copula
of (U, V ). (D is a so-called “ordinal sum” of copies of Π and M , see [4, Ch.
3.2.2].) We have

fD(x, u) = x1(x ∈ I0) +
∑

i≥1

((bi − ai)u+ ai)1(x ∈ Ii).

It is easy to check that fD(fD(x, u), v) = fD(x, v) so that D ∗ D = D, i.e.
D is idempotent. If U0, U1, . . . is a Markov chain governed by the copula D,
then all U0, U1, . . . lie in the same set Iι, where the random index ι differs
from realisation to realisation.

If C is idempotent and L and R = LT are two copulas satisfying L ∗R = M ,
then also R ∗ C ∗ L is idempotent. Darsow et al. [1] conjectured that all
idempotent copulas could be factored in this form with C as in the example
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8. We will show that the class of idempotent copulas, even though they
correspond to quite a restricted kind of dependence, is richer than what
can be covered by that characterisation. If a Markov chain X0, . . . , which
we without loss of generality assume is in [0, 1], is governed by the copula
R ∗D ∗ L then all fR(X0, u0), fR(X1, u1), . . . are in the same set Iι for some
random ι, and there are only countably many such possible sets. Note that
fR(x, u) is a function of x only.

We start with some background on spreadable and exchangeable sequences,
with notation from [2], which will be useful.

Definition 8. An infinite sequence ξ1, ξ2, . . . is said to be exchangeable if

(ξ1, ξ2, . . . )
d
= (ξk1, ξk2, . . . )

for all permutations (1, 2, . . . ) 7→ (k1, k2, . . . ) which affects a finite set of
numbers. The sequence is said to be spreadable if the equality in distribution
is required only for strictly increasing sequences k1 < k2 < · · · .

Assuming that ξ takes its values in a Borel space, exchangeability and spread-
ability are in fact equivalent, and these notions are also equivalent to E[ξ ∈
·|η] = η∞ for a random distribution η, i.e. equivalent to the sequence being
conditionally i.i.d. given η. Furthermore η = limn→∞

1
n

∑

k≤n δξk
, the almost

sure limit of the empirical distribution of (ξ1, . . . , ξn), see [2, Thm. 11.10].

We will need the following observation. If a sequence is conditionally i.i.d.
given some σ-algebra F , i.e. E[ξ ∈ ·|F ] = η∞, then σ(η) ⊆ F .

Let X0, X1, . . . be a Markov chain, whose Markov copula C is idempotent.
Thus C∗n = C for all n and by the Markov property this implies the the
sequence is spreadable and hence exchangeable and conditionally i.i.d. Since

spreadability implies (X0, X1)
d
= (X0, X2), it is in fact equivalent to the

copula being idempotent. This was noted by Darsow et al. [1], but we can
take the analysis further by using the fact that the sequence in particular is
conditionally i.i.d. given σ(η), where η is as above. Thus, for all n

P(Xn+1 ∈ ·|X0, . . . , Xn) = P(Xn+1 ∈ ·|Xn) = P(Xn+1 ∈ ·|X0),

where the first equality is due to the Markov property and the second is due
to the exchangeability. Therefore

P (∩n
i=0{Xi ∈ Ai}) = P(Xn ∈ An|Xn−1 ∈ An−1, . . . , X0 ∈ A0)·

· P(Xn−1 ∈ An−1|Xn−2 ∈ An−2, . . . , X0 ∈ A0)·
· · ·P(X1 ∈ A1)

= P(Xn ∈ An|X0 ∈ A0) · · ·P(X1 ∈ A1|X0 ∈ A0)·
· P(X0 ∈ A0),

and thus X1, X2, . . . are conditionally i.i.d. given X0, i.e. σ(η) ⊆ σ(X1).
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Example 8. (Continued.) Note that ι is a function of U0 since ι is the index
of the set that U0 lies in: P(U0 ∈ Iι) = 1. It is clear that the random variables
U0, U1, . . . that constitute the Markov chain of the example are i.i.d. given
U0, since all other random variables are either uniformly distributed on Iι
if ι = 1, 2, . . . , or identically equal to U0 if ι = 0 (and constant random
variables are independent). Here the random measure

η = δU01(ι = 0) +
∑

i≥1

1

pi

λ|Ii
1(ι = i)

where δx is the point mass at x and λ|I is the Lebesgue measure restricted
to the set I. Since η is a function of X0, σ(η) ⊆ σ(U0).

The following example shows how the proposed characterisation fails.

Example 9. Let Jx = {2−nx, n ∈ Z} ∩ (0, 1) for all x ∈ (0, 1). It is clear that
{Jx}x∈[ 1

2
,1) is a partition of (0, 1). Let m(x) = max Jx. We can construct a

stationary Markov chain by letting U0 be uniform on (0, 1) and

P (Uk+1 = 2−nm(x)|Uk = x) = 2−(n+1)

for n = 0, 1, 2, . . . and k = 0, 1, . . . . Let E be the copula of this Markov
chain. As function fE we can take

fE(x, u) =
∞
∑

n=0

2−nm(x)1(2−(n+1) ≤ u < 2−n)

Given U0 = x the rest of the values of Markov chain U1, U2, . . . are indepen-
dent on Jx, so the process is conditionally i.i.d., and E is thus idempotent.
Here the random measure

η =
∞
∑

n=0

2−(n+1)δ2−nm(U0)

where U0 is uniform on (0, 1). Thus σ(η) ⊆ σ(U0) is apparent. We note that
the cardinality of the set of the disjoint sets {Jx}x∈( 1

2
,1] that gives the possible

ranges of the Markov chain is uncountable and the copula E can therefore
not be of the form LT ∗D ∗ L.
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