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Abstract. Time series of geological ice core data from Greenland are inves-
tigated by statistical modelling. The decomposition of the total variation into

a long timescale variation (trend), a short timescale variation (fluctuations
around the trend) and a noise component (including measurement errors) is

proposed and discussed. A usually used time-invariant linear Gaussian model
is compared with more advanced time-dependent Gaussian models, derived as

approximations from the heavy-tailed distributional assumptions. In essence,
the derived time-dependent Gaussian models result in a local smoothing in

contrast to the global smoothing provided by the time-invariant model. To de-
scribe the mechanism of the local smoothing we introduce a concept of a local

variance function. The local variance function is derived from a heavy-tailed
density and is estimated from the observations. In the approximating Gaussian
model, the time-dependent error variance works as a time-dependent measure

of uncertainty about the dynamical development of the model state and it
controls the influence of observations on the estimates of the model state com-

ponents. The great advantage of the derived time-dependent Gaussian model
is that the Kalman filter and the Kalman smoother can be used as an efficient

computational tool performing the variation decomposition. Even though ge-
ological time series are investigated in this paper, the study is performed from

the perspective of data assimilation. The main objective of the study is to in-
vestigate how different distributional assumptions on the stochastic drift (the

model error) influence the estimate of the model state components. A few
results on the interpretation of the data are given in addition.

Key words: Data assimilation; on-line estimation; Kalman filter and Kalman
smoother; variation decomposition; local linear Gaussian model
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1. Introduction

1.1. Data modelling strategy. An objective of statistical inference is to con-
struct and interpret a statistical model, which is a simplistic representation of some
data generating mechanism (Lindsey, 1996). The data generating mechanism itself
is a complex process by which the data under investigation are produced. However,
all complexities of the process are not of interest when the information contained in
a particular random data set should be utilised. Rather, certain aspects of the pro-
cess, determined by the goal of the study in the particular case, should be isolated
and modelled.

In this paper we will analyse time series of measurements of some chemical
substances performed on two ice cores drilled at different locations in Greenland.
The ice cores taken from the arctic ice span a long period of time, and there is
variation present on several different timescales. Here, analysing these time series,
the specific interest is devoted to the decomposition of the variation into different
timescale variation components, in accordance with the model structure

data = long timescale variation
+short timescale variation

+noise .
A typical model assumption in statistical analysis of time series is that Gaussian
processes can describe variation. Convenience, simplicity and computational effi-
ciency play a great role in choosing just a Gaussian process to describe variability. In
this paper we will see that the standard Gaussian framework can easily be extended
to non-Gaussian processes. Such an extension provides a much better description of
the structure of ice core data, still preserving many attractive features of the Gauss-
ian framework. Because the physical laws controlling the generation of the time
series are complex and largely unknown, the assumptions to be made about model
dynamics are quite general, with strong influence from the observations themselves
on the model design.

The raw time series of observations are shown in Figure 1.
It is well known that the decomposition of the sample variability into different

temporal and/or spatial scales is not unique (Chiles and Delfiner, 1999). Subjective
prior assumptions about the amount of variability attributed to different compo-
nents will influence the decomposition. At the same time, the choice of model
describing the variability should fit the data under investigation.

In this paper the following model is assumed to describe the variability of
the observations {y(t), t ≥ 1} with most variability being attributed to the short
timescale variation component ψ(t)

(1) y(t) = µ(t) + ψ(t) + ε(t), t ≥ 1

where:

µ(t) ≡ is a non-stationary, smooth mean structure, which is called the long
timescale variation (or the “trend”).

ψ(t) ≡ is a stationary, zero mean random process, showing strong positive
auto-correlation between neighbouring values. This is called the short timescale
variation.

ε(t) ≡ is a zero-mean white-noise process and it is called the observation error or
the observation noise, even though other sources of variation may also contribute.

All three processes µ(t), ψ(t) and ε(t) are assumed mutually independent. A
basic assumption of the decomposition applied in this paper is that extraordinary
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Figure 1. The raw time series of observations of four selected
substances reconstructed from the measurements performed on the
ice cores drilled at two different locations. The title of each dia-
gram consists of the name of the corresponding ice-drilling project
(NGRIP or GISP2) and the name of the selected substance:
δ18O, log(Ca2+), log(SO2−

4 ) and MS−.

observations in comparison with their neighbourhood should influence mainly the
short timescale variation.

These eight time series, shown in Figure 1, will be modelled by linear state
space models. The short timescale variation will be modelled through a stochastic
cycle with a non-Gaussian (in most cases) assumption on the model error (the
stochastic drift in the dynamics of the short timescale variation). To perform the
total variation decomposition into different timescale variation components, and to
estimate parameters entering in the dynamical and statistical model formulation,
the Kalman filter and the Kalman smoother will be used as efficient computational
tools. An approximate time-dependent Gaussian model will be derived from the
original non-Gaussian linear state space model in order to create an environment
where the Kalman filter and the Kalman smoother can work. Conditionally, given
the observations, this model is able to capture the variability of essentially non-
linear time series of observations with regime of behaviour changing in time.

Even though the geological data are analysed in this paper, the our study is per-
formed from the perspective of data assimilation and concerns important subjects
of data assimilation. One of the most attractive properties of the Kalman filtering
is the possibility to model the time evolution of the conditional moments (the two
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first moments) of the unobservable model state. A proper modelling of these sta-
tistics substantially improves the efficiency in assimilating observations within the
framework of the mathematical model. Under the approximating time-dependent
Gaussian model, the time evolution of the first two conditional moments of the
model state, given observations, will partly be estimated from the observations.

When a heavy-tailed distribution is assumed under the original non-Gaussian
model, the approximate time-dependent Gaussian model will provide a type of local
smoothing, the mechanism of which is discussed in this paper. The impact of an
observation on the different components of the variability decomposition (given in
eqn. (1)) depends on its neighbourhood. The δ18O, log(Ca2+) and log(SO2−

4 )
series from the NGRIP and GISP2 ice cores under the local smoothing will be
compared.

The local smoothing will be carried out and compared for the following four
heavy-tailed alternatives to a Gaussian density: a mixture of two normal densities,
a density of a general error distribution, a Student t-density and a Cauchy density.

1.2. Structure of the study. The observational data and some aspects of the
data processing are discussed in Section 2. Section 3 concerns standard statistical
tools used in this paper. A time-invariant linear Gaussian state space model is
first fitted to each of the eight time series. Then the problem of the total variation
decomposition into different timescales is formulated as the solution to a system of
linear equations, which can be solved through Kalman filter and Kalman smoother
recursions. Diagnostics to check the model are also considered in Section 3.

Based on the conclusions from the diagnostic check, a linear non-Gaussian
state space model is proposed to model the variability of the δ18O, log(Ca2+)
and log(SO2−

4 ) time series from both ice cores, and this model is discussed in
Section 4. A linear non-Gaussian state space model with heavy-tailed distributional
assumptions on the stochastic drift of the short timescale variation is formulated.
The Monte Carlo approach for computing the likelihood under this non-Gaussian
model is discussed. An approximate time-dependent Gaussian state space model
is derived from the original non-Gaussian model in order to perform the variation
decomposition through an iterative application of a Kalman filter and a Kalman
smoother. The diagnostics of the statistical fit of the approximate time-dependent
Gaussian model for all six time series are considered as well.

The local variance function in the time-dependent Gaussian approximating
model, which is estimated from the observations, provides a time-dependent mea-
sure of the uncertainty about the dynamical development of the model components.
This local variance function is also discussed in Section 4. The mechanism of the
local smoothing, when the impact of an observation depends on its neighbourhood
in time, is finally also discussed.

Section 5 contains discussion on statistical modelling and some notes on inter-
pretation of the time series model. Conclusions of the study are summurised at the
end of this section.

2. A description of data

The two ice cores, referred to below by the names of the corresponding projects
NGRIP (Northen Greenland Ice core Project, 72.10oN, 45.32oW ) and GISP2
(Greenland Ice Sheet Project 2, 320 km to the south of NGRIP ), were drilled
in early 1990’s (GISP2) and early 2000’s (NGRIP ) on the Central (GISP2) and
the Northern (NGRIP ) Greenland Ice sheet. The time series represent high reso-
lution measurements of δ18O, log(Ca2+), MS− and log(SO2−

4 ) during the period
95,800 -11,400 B.P.(“before present”), averaged over sections of 200 years, see Table
1 for details (ppb (parts per billion by weight) is a concentration measure).
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Table 1. Investigated quantities -Meaning and Notations (ppb
(parts per billion by weight) is a concentration measure).

Notation Meaning Units
δ18O = {(18O/16O)sample − (18O/16O)std}/(18O/16O)std

where the std denotes the ratio in standard sea water
and sample denotes the ratio in the current sample and
16O and 18O are isotopes of oxygen.
(Grootes et al., 1993)
The quantity is used as an air temperature proxy.

log(Ca2+) calcium (2+) ion log(ppb)
The quantity is used as a terrestrial mineral dust proxy (by weight)
(Fuhrer et al., 1999)

log(SO2−
4 ) sulfate (2-) ion log(ppb)

originates from volcanoes, mineral dust and (by weight)
marine biological activity

MS− methanesulfonate (CH3SO3H) ppb
solely marine biological activity : (by weight)
as a result of oxidation of dimethylsulfide
(Saltzman, 1995)

A first brief insight into the data, supplementing Figure 1, can be obtained from
the first-order directed scatter diagram of each time series, presented in Figure
2. These are diagrams of (yt−1, yt) with adjacent points, that is (yt−1, yt) and
(yt, yt+1), linked by a straight line. Even from a first glance it can be seen that the
time series of observations of δ18O, log(Ca2+) and log(SO2−

4 ) exhibit some type of
a cyclic behaviour superimposed on a small magnitude variation.

The raw time series are shown in Figure 1.
The δ18O value is an air temperature proxy and shows the effect of climatic

oscillations. The Ca2+ value is a terrestrial mineral dust proxy. The SO2−
4 and

MS− measure concentrations of sulfur ions. SO2−
4 originates from a mixture of

sources such as volcanoes, mineral dust and marine biological activity as well as
aerosols induced anthropogenically in modern time (Charlson et al., 1992). Volcanic
eruptions can be recognized as distinct SO2−

4 concentration peaks in the ice core
records (Hammer, 1977). On the other hand, MS− originates solely from marine
biological activity and represents a result of oxidation of dimethylesulfide, which
is produced by phytoplankton in the oceans. To study the time evolution of the
global sulfur budget it is important to estimate the anthropogenic influence on the
climate (e.g. Sugarawa, 1961; Delmas and Boutron, 1976).

The concentration data of the Ca2+, SO2−
4 and MS− from the NGRIP ice

core used in this paper (on log-scale for Ca2+ and SO2−
4 ) were obtained by ion chro-

matography on aliquots of decontaminated melt water from continuous flow anal-
ysis (Röthlisberger et al., 2000a). Synchronisation of the GISP2 and the NGRIP
time series was done through outstanding features (the tie points) identified in the
SO2−

4 time series from the GISP2 ice core (Jonsell et al., in review). ( GISP2 data
sources: SO2−

4 Mayewski et al., 1997, available on the Greenland Summit ice core
CD-rom published on Internet, MS−, Saltzman et al., 1997, δ18O, White, 2004 ;
NGRIP data source: North Greenland Ice Core Project members, 2004). The out-
standing features identified in the SO2−

4 time series from the NGRIP and GISP2
ice cores are assumed to be deposited simultaneously. The outstanding features are
considered to represent Greenland Stadials (GS) (the abrupt climatic cold events)
and Greenland Interstadials (GIS) (abrupt climatic warm events, also known as
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Figure 2. The first-order directed scatter diagrams of four se-
lected substances reconstructed from measurements performed on
ice cores drilled at two different locations. The title of each di-
agram consists of the name of correspondent ice-drilling project
(NGRIP or GISP2) and the name the selected substance in the
following order: δ18O, log(Ca2+), log(SO2−

4 ) and MS−

.

Dansgaard-Oeschger (DO) events) and they are used as tie points to synchronise
the measurements from these two ice cores. The ages of the tie points from the
NGRIP ice core, according to NGRIP (GRIP )-chronology (Johnsen et al., 2001),
were transferred to the corresponding SO2−

4 observations from the GISP2 ice core.
A linear interpolation was used between adjacent tie points.

The six time series of δ18O, log(Ca2+) and log(SO2−
4 ) from the NGRIP and

GISP2 ice cores look quite similar, whereas the two MS− series look both mu-
tually different and different from the others. For example, the log-concentrations
log(Ca2+) and log(SO2−

4 ) are nearly linear functions of the ratio δ18O (the esti-
mated zero-lag cross-correlations are ρ0(log(Ca2+), δ18O) = 0.94 and
ρ0(log(SO2−

4 ), δ18O) = 0.91 for measurements from the NGRIP ice core).
As seen from the directed scatter diagrams of the time series shown in Figure

2 as well as from the raw time series in Figure 1, one can notice two regimes in the
behaviour of the δ18O, log(Ca2+) and log(SO2−

4 ) time series from both ice cores:
a relatively smoothly varying background signal and a number of strong, abrupt
deviations from this background signal.

A common approach to model such time series with two regimes of behaviour are
the non-linear SETAR models (the self-exciting threshold autoregressive models,
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Tong, 1990). Trials to capture the variability of the δ18O series through a simple
auto-regressive process are also known (e.g. Roe and Steig, 2004).

In this paper, a stationary stochastic cycle (or a stochastic wave process) with
a heavy-tailed random source will be used to model the behaviour of the short
timescale variation of these time series and to separate two regimes in the behaviour
of observations. Other possibilities of a statistical separation of the peaks caused
by volcanic eruption from the background signal have been studied by e.g. Fischer
et al., 1998 and Castellano et al., 2004.

The model used in this paper has a property of local smoothing. Under this
model the abrupt deviations from the background signal, which could originate
from some external force (such as volcano eruptions), will influence the estimate of
the short timescale variation but only to a minor extent affect the estimate of the
long timescale variation. What belongs to the background signal is determined by
neighbouring observations. The background signal will be modelled explicitly via
a trend and a wave-like variation around the trend. The abrupt deviation from the
background signal will be modelled implicitly via assumptions on a stochastic drift
of the wave-like process.

The time series of methanesulfonate (MS− from both ice cores) have different
patterns of behaviour. Investigation of Figure 2 and Figure 1 suggest a nearly
stationary zero-mean process with near-Gaussian time increments as a model for
the MS− time series from the GISP2 ice core. No apparent cyclic pattern is
present. Taking into account that the data investigated in this paper are averages
of the original high-resolution data over 200 years periods, the Gaussian process
can be sufficient to capture the variability of this time series. On other hand,
the MS− series from the NGRIP ice core indicates non-stationary fluctuations
with a spread dependent on the mean value. The observations are noisy and the
observation noise is especially strong for large values. This noise could originate
from the observational process itself (the data-collecting procedure) or from some
fluctuations un-resolvable on the time grid of 200 years.

3. Standard statistical tools

3.1. A Gaussian linear state space model. Structural time series models,
where the large- and small- scale variations as well as the error term are mod-
elled explicitly, have been used to describe time series of observations with great
success, see Harvey (1989) for a detailed discussion. A linear Gaussian state space
model provides a powerful tool in practical implementation of structural time series
models. Under the state space model approach, the different, unobservable, com-
ponents that make up the time series are modelled separately. The components
define unobservable time series of model state variables representing the model
development through time.

This development is formulated through a first-order vector autoregressive model
which is called the state equation. The model state is related to observations through
the so-called observation equation, which has the form of a linear regression (Durbin
and Koopman, 2001). One of the standard ways in which the general linear Gauss-
ian state space model can be written is

y(t) =Ztα(t) + εt, εt ∼ N (0, σ2
εt),

α(t) =Ttα(t− 1) +Rtηt−1, ηt ∼ N (0,Ωt), t = 1, . . . , n

where y(t), t = 1, . . . , n is a sequence of observations, α(t), t = 0, . . . , n
is an unobservable vector-sequence of model states and εt, t = 1, . . . , n and
ηt, t = 0, . . . , n−1 are observation and model state errors respectively. Due to the
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Markovian nature of the model, calculations necessary for the practical implemen-
tation can be performed in a very efficient recursive way, known as the Kalman filter
and Kalman smoother recursions (Fahrmeir and Knorr-Held, 2000). This compu-
tational algorithm allows efficient estimation of unknown parameters in the model
formulation. The same algorithm can treat even non-Gaussian and non-linear state
space models. In this case, the original model is iteratively approximated by a
sequence of linear Gaussian models.

To describe the variation of the time series shown in Figure 1, we will try a
structural time series model with a similar structure for the time series of each
substance. As a first step in the model fitting, a time-invariant Gaussian linear
model, in which all system matrices (Zt, Tt, Rt,Ωt and σ2

εt) are constant over time,
will be tried to describe the variation.

The model state will have long µ(t) and short ψ(t) timescale variation com-
ponents. The observations will be related linearly to the model state, y(t) =
µ(t) + ψ(t) + εt, where εt is an observational noise. Because the physical laws
describing deposition of the selected substances in the ice and snow are very com-
plicated, only general assumptions will be made about dynamical development of
the model state, at the same time allowing observations to have strong impact on
the dynamics.

The long timescale variation µ(t) is modelled through a Gaussian integrated
random walk (Young et al., 1991) ∆2µ(t + 1) = ξt, where ∆2 is the second-order
difference operator defined by ∆2x(t) = x(t)− 2x(t− 1) + x(t− 2).

(2) µ(t+ 1) = 2µ(t)− µ(t− 1) + ξt, ξt ∼ N(0, σ2
ξ ), t ≥ 1

with independent identically distributed (i.i.d.) ξt and with a diffuse prior on the
starting values µ(0), µ(1) ∼ N(0,K), K → ∞. For simplicity µ(0) and µ(1) are
assumed mutually independent. Such a formulation of the dynamics of the long
timescale variation component allows the non-stationary development of the time
series to be absorbed by the trend component, at the same time as imposing strong
requirements on the smoothness of the trend estimate.

The short timescale variation ψ(t) is modelled as a Gaussian stationary cyclic
process (a stochastic wave process (ψ(t), ψ∗(t))) of a certain frequency λc and a
variance σ2

ψ with a stochastic drift (Harvey and Streibel, 1998).

(
ψ(t+ 1)
ψ∗(t+ 1)

)
= ρ

(
cos(λc) sin(λc)
− sin(λc) cos(λc)

)(
ψ(t)
ψ∗(t)

)
+

(
Xt
X ∗t

)
, t ≥ 0,(3)

where the stochastic drift Xt and X ∗t are i.i.d. stochastic variables Xt, X ∗t ∼
N(0, (1 − ρ2)σ2

ψ). Because of the stationarity of the process, initial values of the

cyclic component have a distribution (ψ(0), ψ∗(0))′ ∼ N(0, σ2
ψI2) where 0 and I2

are 2× 2 zero and identity matrices, respectively.
A Gaussian stationary stochastic process can be considered as an extension of a

second-order autoregressive process. The wave-like development with the constant
wave length (3) will provide a simplistic representation of the dynamics of the short
timescale variation of the background signal. The stochastic drift will take care of
the abrupt deviations from the background signal.

The “damping factor” ρ (ρ < 1) helps to specify the extent of a wave-like
development in the formulation of the dynamical propagation of the short timescale
variation. If ρ→ 1, the cyclic component tends to a deterministic behaviour of the
wave and the wave process is assumed to capture well the time development of the
short timescale variation. The smaller the “damping factor”, the more stochastic
is the pattern in the behaviour of the wave and the stronger is the influence of
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the model error term. With the presence of a certain percentage of a stochastic
drift in the dynamics of the short timescale variation, the frequency parameter λc
stands for the averaged (the first-lag) auto-correlation of the time series. Small
values of λc, say λc < 0.45, indicate presence of a strong first-lag auto-correlation
ρ cos(λc) > 0.9ρ (provided ρ is sufficiently large).

The observation equation which relates the model state to the observations
Y = {y(1), . . . , y(n)} is

(4) y(t) = µ(t) + ψ(t) + εt, εt ∼ N(0, σε), 1 ≤ t ≤ n
All model error components ξt,Xt,X ∗t and εt, 1 ≤ t ≤ n are assumed to

be mutually uncorrelated and uncorrelated with the initial model state values
µ(0), µ(1), ψ(0), ψ∗(0).

Thus, the time-invariant linear Gaussian model in the state space form describ-
ing the variation of the time series represented in Figure 1 is

y(t) = Zα(t) + ε =

=
[

1 0 1 0
]
α(t) + εt, 1 ≤ t ≤ n

α(t+ 1) =Tα(t) +Rηt =

=




2 −1 0 0
1 0 0 0
0 0 ρ cos(λc) ρ sin(λc)
0 0 −ρ sin(λc) ρ cos(λc)


α(t) +Rηt, t ≥ 1

(5)

where the model state is

α(t) =




µ(t)
µ(t− 1)
ψ(t)
ψ∗(t)


 t = 1, . . . , n;

and the model error is

ηt =




ξt
Xt
X ∗t


 =




µ(t+ 1)− 2µ(t) + µ(t− 1)
ψ(t+ 1)− ρ cos(λc)ψ(t)− ρ sin(λc)ψ

∗(t)
ψ∗(t+ 1) + ρ sin(λc)ψ(t)− ρ cos(λc)ψ

∗(t)




∼ N(0,Ω), Ω =




σξ 0
0 (1− ρ2)σψ 0
0 0 (1− ρ2)σψ


 ; t = 1, . . . , n− 1.

The model error projection matrix R takes the form

R =




1 0 0
0 0 0
0 1 0
0 0 1


 .

Model (5) is a Gaussian linear model since both the model state equations (2)
and (3) and the observation equation (4) are linear in the model state components
µ(·), ψ(·), ψ∗(·), and all errors of the model ε, ξ,X and X ∗ are assumed to have
Gaussian distributions.

The set of model parameters Θ = {σ2
ξ , σ

2
ψ, σ

2
ε , λc, ρ} is estimated univariately,

for each time series Y ≡ Yn = {y(t), 1 ≤ t ≤ n} maximising the log-likelihood
9



Table 2. Direct parameter estimates and transformed parameter
estimates with their standard errors (stderr), obtained under the
assumption of a linear Gaussian state space model and valid for
the δ18O series on each ice core. Transform* means log-transforms
for the parameters σξ, σε, σψ and λc and a logit-transform for the
parameter ρ.

δ18O

core parameter estimate transform* stderr
NGRIP σξ 0.010 -4.609 0.242
GISP2 0.008 -4.844 0.335
NGRIP σε 0.081 -2.518 -
GISP2 0.001 -7.073 -
NGRIP σψ 1.489 0.398 0.078
GISP2 1.307 0.267 0.068
NGRIP λc 0.233 -1.499 0.394
GISP2 0.182 -1.704 0.586
NGRIP ρ 0.768 1.198 0.369
GISP2 0.727 0.980 0.179

l(Y; Θ) = log(p(Y)) =
∑n

1 log(p(y(t) | Yt−1)). A multivariate treatment of these
eight time series is a outside the scope of the present work.

Under the assumption of a linear Gaussian model the one step forecast er-
rors, often called innovations, in a linear case v(t) = y(t) − E(y(t) | Yt−1) (
p(v(t)) = p(y(t) | Yt−1) in general), are Gaussian and independently distributed
(see section Diagnostics). In this case, the exact log-likelihood (Schweppe, 1965,
also known from Harvey, 1989, as the prediction error decomposition) can efficiently
be calculated through Kalman filter recursions

(6) l(Y; Θ) = −n
2

log(2π)− 1

2

n∑

1

(log(F (t)) +
v(t)2

F (t)
)

where F (t) is the variance of v(t). Maximisation can be performed by a numer-
ical iterative maximum search routine, for example the BFGS (Broyden-Fletcher-
Goldfarb-Shannon) implementation of Newton’s method (Fletcher, 1987). In Ta-
ble 2, estimated parameters for δ18O from the NGRIP and GISP2 ice cores are
shown. In practice it is more efficient to maximise the likelihood with respect to
the log-/logit-transformed parameters, where logit(ρ) = log( ρ

1−ρ ), 0 < ρ < 1,

Θ∗ = {log(σξ), log(σψ), log(σε), log(λc), logit(ρ)}. The estimates of the original
parameters and the estimates of the transformed parameters together with their
standard errors are given in Table 2.

3.2. Maximum posterior estimate of the variation decomposition under
the assumption of a Gaussian state space model. When the unknown pa-
rameters Θ have been estimated, the decomposition of the variation into the long
and short timescale variations and observational noise can be obtained as a max-
imum posterior estimate of the model state vector α ≡ {α(t), t = 1, . . . , n}, given
the whole set of observations Y. According to Bayes theorem, the posterior density
for α is

(7) p(α | Y; Θ) =
p(Y | α; Θ)p(α; Θ)

p(Y; Θ)
∝ p(Y | α; Θ)p(α; Θ)

10



where p(α; Θ) is determined by the prior on the starting values and the state
equations (2) and (3) through the distributional assumption on the model error
vector η ≡ {ξt,Xt,X ∗t , t = 0, . . . , n − 1}, and p(Y | α; Θ) is determined by the
observation equation (4) through the distributional assumptions on the observation
error vector ε ≡ {εt, t = 1, . . . , n}.

Due to the mutual independence of the errors, the log-posterior density of α
under the assumption of a linear Gaussian model (5) differs by an additive constant
from

log(p(α | Y; Θ)) = constant− 1

2

n∑

1

(y(t)− µ(t)− ψ(t))2

σ2
ε

− µ(0)2

2K
− µ(1)2

2K
− 1

2

n∑

2

(µ(t)− 2µ(t− 1) + µ(t− 2))2

σ2
ξ

− ψ(0)2

2σ2
ψ

− 1

2

n∑

1

(ψ(t)− ρ cos(λc)ψ(t− 1)− ρ sin(λc)ψ
∗(t− 1))2

σ2
ψ(1− ρ2)

− ψ∗(0)2

2σ2
ψ

− 1

2

n∑

1

(ψ∗(t) + ρ sin(λc)ψ(t− 1)− ρ cos(λc)ψ
∗(t− 1))2

σ2
ψ(1− ρ2)

(8)

where K is a predefined large number (in the actual calculations K = 106 was
chosen). The method used here follows the technique discussed by Shephard and
Pitt (1997) and in more detail by Durbin and Koopman (1992, 2001).

Under the assumption of a linear Gaussian model, the log-posterior density
log(p(α | Y; Θ)) is a quadratic function in the model state components α(t) =
(µ(t), µ(t − 1), ψ(t), ψ∗(t))′ or, respectively, in the model error components ηt =
(ξt,Xt,X ∗t )′ and εt. Therefore, the maximum of the posterior density, provided
that standard regularity conditions hold, can be obtained by solving the system of
linear equations

∇α log(p(α | Y; Θ)) = 0.

In the case of a model specified by equation (5), the system of linear equations
will have the following form

∂p(α | Y; Θ)

∂µ(t)
=

εt
σ2
ε

− ξ(t− 1)

σ2
ξ

+ 2
ξt
σ2
ξ

− ξ(t+ 1)

σ2
ξ

,(9)

∂p(α | Y; Θ)

∂ψ(t)
=

εt
σ2
ε

− Xt−1

σ2
ψ(1− ρ2)

+ ρ cos(λc)
Xt

σ2
ψ(1− ρ2)

− ρ sin(λc)
X ∗t

σ2
ψ(1− ρ2)

,

∂p(α | Y; Θ)

∂ψ∗(t)
= − X ∗t−1

σ2
ψ(1− ρ2)

+ ρ sin(λc)
Xt

σ2
ψ(1− ρ2)

+ ρ cos(λc)
X ∗t

σ2
ψ(1− ρ2)

for t = 2, . . . , n − 2 together with the equations for the boundary observations at
t = 0, 1 and t = n− 1, n.

Because of Gaussianity, the maximum posterior estimator of the model state
vector α̂, that is the most probable estimator of α given the whole set of observations
Y, is identical to the conditional expectation E(α | Y) and can be efficiently com-
puted through the classical Kalman filter forward recursion and smoother backward
recursion (e.g. Kalman, 1960; Kohn and Ansley, 1989; de Jong, 1989; Anderson
and Moore, 1979; Koopman, 1993). Notice that the time evolution of the smoothed

trend component µ̂(t) and of the smoothed cyclic component ψ̂(t), t = 1, . . . , n, can
be obtained from either the Kalman model state smoother E(α | Y) or the Kalman
disturbance smoother η̂ = E(η | Y), ε̂ = E(ε | Y). The Kalman filter and the
smoother algorithms can be regarded as computational tools solving the system

11



of equations (9) without necessity for a Bayesian interpretation. All computations
necessary for the variation decomposition were performed using the statistical pack-
age SsfPack 2.2, developed by Koopman et al. (1999). The package works under
the Ox computing environment developed by J.A. Doornik (1998). Both packages
Ox and SsfPack 2.2 are freely available on the Internet.

One example of the total variation decomposition into the large timescale (µ̂(t)),

the short timescale (ψ̂(t)) and the noise (ε̂t) components, obtained by the time-
invariant linear Gaussian state space model (5), is shown in Figure 3 for the δ18O
time series from the NGRIP ice core.
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Figure 3. The decomposition of the total variation of the time
series of δ18O from the NGRIP ice core into the large-scale µ̂(t)

(upper right diagram) , the small-scale ψ̂(t) (lower left diagram)
and the observation noise ε̂ (lower right diagram) components un-
der the time-invariant linear Gaussian model specified by equation
(5). The fit of the “trend” + “cyclic” (the systematic part of ob-
servations Zα̂(t)) against raw observations, denoted by “stars”, is
shown on the upper left diagram.Note: The noise component is so
small that the difference between the curve and the stars in the
upper left diagram is impossible to distinguish.

The upper left diagram of Figure 3 contains the fit of observations cleaned from
observational noise (called as the systematic part of observations hereafter, equal
Zα̂(t)) together with raw observations marked by “stars”. The estimated long
timescale variation itself is shown on the upper right diagram. The estimated short
timescale variation is shown on the lower left diagram. The lower right diagram
illustrates the estimated observational noise. The raw observations are the δ18O
series from the NGRIP ice core already shown in Figure 1. The fit of observations

12



Table 3. The log-likelihood of corresponding time series under
the general Gaussian model (first line) and under the more parsi-
monious model with a perfect fit to observations (second line).

NGRIP GISP2
δ18O logCa2+ logSO2−

4 δ18O logCa2+ logSO2−
4 MS−

σ̂ε -606.466 -247.804 -176.806 -572.508 -301.279 -134.700 -248.250
σε ≡ 0 -606.468 -247.805 -176.808 -572.508 -301.280 -134.701 -248.251

is nearly perfect under the model. The estimated observational noise is negligible
compared with the total variation of the time series: σ̂ε = 0.081 compared to
σ̂ψ = 1.489. According to the Akaike information criterion, which is a log-likelihood
function with a maximum likelihood estimate of the parameters penalised by the
dimension of the vector of parameters (Akaike, 1974), a more parsimonious model
with perfect observation fit (y(t) = Zα(t) instead of the original model defined
by equation(4)) should be used to model the variation of the time series of δ18O,
log(Ca2+) and log(SO2−

4 ) from each ice core. The summary of the observed values
of the log-likehoods of the corresponding time series under the general and under
the more parsimonious model is given Table 3. The only observational error of a
similar order as the total variation of the time series was indicated for the MS−

observations from the NGRIP ice core with σ̂ε = 0.380 compared to σ̂ψ = 0.354.
This supports the visual impression based on a brief investigation of Figure 1 and
Figure 2.

Even if the fit of the observations is nearly perfect by the time-invariant linear
Gaussian model, the large sample diagnostic tests reject normality of the underlying
state space model for all time series except the MS− from GISP2.
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Figure 4. Empirical cumulative distribution function from 1000
simulations of Box-Ljung statistics Q(15) based on the first 15
autocorrelations under the hypothesis of mutually i.i.d. N (0, 1)-
distributed time series of N (N = 418) observations. The dashed
lines mark quantiles (as indicated) of the distribution of Q(15).
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The test of normality is performed on the standardised one-step forecast errors
known also as standardised innovations

ṽt =
v(t)√
F (t)

t = 2, . . . , n

When a linear Gaussian model underlies the time series, the innovations are
Gaussian and orthogonal to the past observations. Thus the standardised inno-
vations are i.i.d. N (0, 1)-distributed (e.g. Tong, 1990, Tests for linearity). The
Box-Ljung portmanteau statistic (Ljung and Box, 1978) was calculated to check
the serial correlation of the standardised innovations. This statistic is given by

(10) Q(k) = (n− 1)(n+ 1)

k∑

j=1

c2j
n− 1− j

for some preset positive value k where cj is the jth correlogram value, j = 1, . . . , k,

(11) cj =
1

(n− 1)m2

n∑

t=j+2

(ṽt −m1)(ṽt−j −m1).

Here m1 and m2 are usual the first- and the second-order moments of ṽt.

m1 =
1

n− 1

n∑

t=2

ṽt, m2 =
1

n− 1

n∑

t=2

(ṽt −m1)2.

Figure 4 shows a cumulative empirical distribution function FQ(15), constructed
from 1000 simulations of the Box-Ljung statistic Q(15) under the hypothesis of an
i.i.d. N (0, 1)-distributed time series of N = 418 observations (N = 418 is the length
of each of the time series y(t), t = 1, . . . , N investigated in this paper). Large values
of the statistics Q(k) >> k indicate presence of strong auto-correlations. Figure 4
will be used below as a reference for checking serial correlation.

Figure 5 shows diagnostic plots for the standardised innovations ṽt of the
MS− series from the GISP2 ice core. The figure contains four diagnostic dia-
grams: a plot of the standardised innovations (upper left), their histogram to-
gether with the estimated density (Parzen, 1962; Rosenblatt, 1956; Sarda and Vieu,
2000)Estimated densities shown in this paper are of the type Parzen-Rosenblatt
kernel density estimate with Epanechnikov kernel and over-smoothed bandwidth
h = 1.5hopt, where the hopt is the asymptotically optimal bandwidth in the case
of the standard Gaussian density hopt = 1.62 ∗ n−0.2. In our case the bandwidth
h = 1.5∗1.62∗0.299 = 0.73. (upper right), the QQ-plot of the standardised innova-
tions against the quantiles of their theoretical density N(0,1), in case the hypothesis
about normality of the underlying model holds (lower left), and the correlogram
(equation (11)) of the standardised innovations (lower right). The estimated density
of the standardised innovations corresponding to the MS− series from the GISP2
ice core looks much like a Gaussian one. The QQ-plot also shows quite a good corre-
spondence between the ordered standardised innovations and the N(0,1)-quantiles
with presence only of some positive outliers and a minor discrepancy in the left tail.
It is in fact only 6-% of data (25 of total 416) which exceed the two-standard devia-
tion level. The standardised innovations are nearly uncorrelated as can be seen from
the plot of the correlogram. The corresponding value of Q(15) statistics is 16.69.
The empirical cumulative distribution function FQ(15)(16.69) = 0.681. Based on
the diagnostic plots presented in Figure 5, the time-invariant linear Gaussian model
(5) can be considered acceptable to describe the variation of the MS− series from
the GISP2 ice core.

The results of the variation decomposition based on model (5) for the MS−

time series from the GISP2 ice core are shown in Figure 6. The smoothed estimate
14
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Figure 5. Diagnostics plots for standardised innovations of the
time series of methanesulfonate MS− observations from the
GISP2 ice core. The upper left diagram shows the standardised
innovations. The upper right diagram shows their histogram to-
gether with the estimated density (solid curve). The Gaussian den-
sity is shown as a reference (dashed curve). The lower left diagram
shows the QQ-plot of the ordered standardised innovations against
the N(0,1) quantiles (innovations are plotted along the y-axes and
normal quantiles along the x-axes). The lower right diagram shows
the correlogram cj of the standardised innovations (lag j is along
x-axes.).

of the trend µ̂(t) has the simple form of a decreasing linear function in time, µ(t+
1)−µ(t) = µ(t)−µ(t− 1). Under the Akaike information criterion, a simpler state

space model with no stochastic drift in the dynamical trend development (σ̂2
ξ = 0)

and no observation error (σ̂2
ε = 0) adequately describes the MS− series from the

GISP2 ice core. The estimated value of the damping factor ρ is relatively small
(see Table 4) and 54% of the short-range variation comes from a stochastic drift.

When a heavy-tailed Student t-distribution was tried for modelling the stochas-
tic drift of the cyclic component, the estimated degree of freedom ν was relatively
high (ν = 19). This fact supports again that the Gaussian assumption on the dis-
tribution is reasonable. Only minor differences in the variation decomposition were
noticed under these two different underlying models. The estimated parameters
(the original and the transformed) together with the standard error of the trans-
formed parameters are shown in Table 4 (see section 3.1 for an explanation of the
meaning of the parameters).
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Figure 6. The decomposition of the total variation of the MS−

series from the GISP2 ice core into the large-scale (µ̂(t)) (the

upper right diagram), the small -scale (X̂t) (the lower left diagram)
variations and the observation noise (the lower right diagram; note
scale) under the time-invariant linear Gaussian model specified by

equation (5). The systematic part ŷ(t) = Zα̂(t) = µ̂(t) + ψ̂(t)
against the raw observations y(t) (stars) is shown on the upper left
diagram.

Table 4. Parameter estimates for the MS− series from the
GISP2 ice core under the time-invariant linear Gaussian state
space model. The notation “transform*” means the log-transform
of parameters σψ and λc and logit transform of parameter ρ. The
standard error corresponds to the transformed parameters.

parameter estimate transform* stderr (Gauss)
σ̂ψ 0.589 -0.529 0.057

λ̂c 0.175 -1.751 0.755
ρ̂ 0.697 0.832 0.166

The results of the diagnostic check for normality of the standardised innova-

tions ṽt, the standardised smoothed trend residuals ξ̃t (ξ̃t = ξ̂t/stderr(ξ̂t))and the

standardised smoothed cyclic component residuals X̃t ( X̃t = X̂t/stderr(X̂t)) cor-
responding to the δ18O, log(Ca2+) and log(SO2−

4 ) time series are presented in
Figure 7 in the form of QQ-plots. The standardised smoothed model state resid-
uals η̃(t) = (ξ̃t, X̃t, X̃ ∗t )′ are often called auxiliary residuals and are discussed in
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Figure 7. The QQ-plots of the standardised innovations ṽt (the
first column of diagrams), of the standardised smoothed trend

residuals ξ̃t (the second column of the diagrams ) and of the stan-

dardised smoothed cyclic component residuals X̃t (the third col-
umn of the diagrams) against their theoretical quantiles N (0, 1) of
the δ18O series (the first row of the diagrams), of the log(Ca2+)
series (the second row of the diagrams ) and of the log(SO2−

4 ) se-
ries (the third row of diagrams) from the NGRIP ice core (the
solid line) and from the GISP2 ice core (the dashed line). The
time-invariant linear Gaussian model (5) is applied.

detail in Harvey and Koopman (1992). In general auxiliary residuals are cross- and
auto-correlated.

In the QQ-plots, the NGRIP and GISP2 data are represented by solid lines
and dashed lines, respectively. The QQ-plots from the two sites are remarkably
similar. The QQ-plots of the standardised innovations clearly indicate that the
hypothesis about an underlying time-invariant Gaussian model should be rejected
for the δ18O, log(Ca2+) and log(SO2−

4 ) time series from both ice cores. The ṽt are
heavy-tailed: the ones corresponding to the δ18O series have a heavy right tail and
the ones corresponding to log(Ca2+) and log(SO2−

4 have heavy left tails. The non-
Gaussianity noted in the distribution of the innovations ṽt comes basically from
the non-Gaussian behaviour of the cyclic component residuals X̃t, as seen from
comparison of columns 1 and 3 in Figure 7.

The standardised trend component residuals ξ̃t for the time series are symmetric
and coincide well with Gaussian ones except in the tails which are too light. The
light tails in the distribution of the ξ̃t are caused by a deficiency in the dynamics of
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the trend model, which provides an over-smoothed trend estimate. An alternative
dynamical model of the trend time development with a weaker assumption on the
smoothness (µ(t + 1) = µ(t) + ξt instead of (2)) improves the behaviour of the
smoothed trend residuals in the tails. On the other hand, it is usually expected
that the curve representing a trend should be very smooth.

The non-Gaussian character of the standardised innovations ṽt is even more
clearly illustrated in Figure 8. Here the same plots as for MS− from the GISP2
ice core, presented in Figure 5, are shown for the ṽt of the log(SO2−

4 ) time series
from the GISP2 ice core. The estimated density is clearly non-Gaussian with a
very heavy left tail.
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Figure 8. Diagnostics plots for the standardised innovations ṽt
of the log(SO2−

4 ) time series from the GISP2 ice core. The up-
per left diagram shows the standardised innovations. The upper
right diagram shows their histogram together with the estimated
density. The lower left diagram shows the QQ-plot of the ordered
standardised innovations against the N(0,1)-quantiles. The lower
right diagram shows the correlogram of the standardised innova-
tions. (Q(15) = 12.64, FQ(15)(12.64) = 0.37

It is interesting to notice that ṽt corresponding to the δ18O, log(Ca2+) and
log(SO2−

4 ) time series all seem to be nearly mutually uncorrelated within the series.
This means that the underlying state space model is close to a linear one. Table 5
presents a summary of the Box-Ljung statistics Q(15) (eqn. 10) based on the first
15 autocorrelations c(j), j = 1, . . . , 15, for the δ18O, log(Ca2+) and log(SO2−

4 )
time series from the NGRIP and the GISP2 ice cores. Included are also the
corresponding P -values, FQ(15) = P{Q(15) ≤ Q(15)obs}, and the maximal absolute
value of the autocorrelations c(j)max = max1≤j≤15|c(j)|. An empirical cumulative
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Table 5. The Box-Ljung statistics based on the first 15 autocorre-
lations for the standardised innovations corresponding to the δ18O,
log(Ca2+) and log(SO2−

4 ) time series from both ice cores.

substance ice core Q(15) FQ(15) c(j)max
d18O NGRIP 8.63 0.111 -0.07

GISP2 10.81 0.239 -0.09
log(Ca2+) NGRIP 16.05 0.634 -0.09

GISP2 15.77 0.610 -0.10

log(SO2−
4 ) NGRIP 12.30 0.347 -0.09

GISP2 12.64 0.370 -0.11

distribution function, constructed from 1000 simulated values of the Box-Ljung
statistics Q(15) under the hypothesis of the i.i.d. N(0, 1)-distributed time series
with N = 416 observations, is shown Figure 4.
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Figure 9. The decomposition of the total variation of the MS−

time series from the NGRIP ice core under the time-invariant lin-
ear Gaussian state space model (5) and the diagnostics plots for
the standardised innovations and auxiliary residuals testing the fit
of the model. The four diagrams to the left present the total vari-
ation decomposition into different timescales: the systematic part

of the MS− series (solid curve) ŷ(t) = µ̂(t) + ψ̂(t) together with
the raw observations (dots) y(t) (upper left), the smoothed esti-
mate of the long-range variation µ̂(t) (upper 2nd from the left), the

smoothed estimate of the short-range variation ψ̂(t) (lower left)
and the smoothed estimate of the observation noise ε̂(t) (lower
2nd from the left). The four diagrams to the right present the
diagnostic plots of the model fit : the QQ-plots of the standard-
ised innovations ṽt (upper 2nd from the right), the standardised

smoothed trend component residuals ξ̃t (upper right), the stan-

dardised smoothed cyclic component residuals X̃t (lower 2nd from
the right) and standardised smoothed observations residuals ε̃(t)
(lower right) against their theoretical N (0, 1) quantiles.
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The diagnostics performed on the MS− time series from the NGRIP ice core
indicate that the underlying structure is not Gaussian. The decomposition of the
total variation into different timescales and the diagnostic plots to check normality
of the standardised innovations are shown in Figure 9. It is interesting to notice that
the trend component µ̂(t) (the long timescale variation) absorbs the largest amount
of variation. The non-stationary process dominates the modelling of the variation
of the time series. The standardised trend component residuals ξ̃t are heavy-tailed
in this case. The substantial observation noise with a number of outliers contributes
additionally to a non-Gaussian behaviour of the state space model based on this
MS− time series. As it was already mentioned, the observational noise could
originate from the measurement process itself, or it may represent processes, un-
resolvable on the current time grid, where 1 time step is equal to 200 years.

The presence of strong outliers among the MS− observations from the NGRIP
ice core can be modelled assuming a heavy tailed distribution for the observation
error. This is a commonly used technique, which results in a reduced impact of
outliers on the smoothed estimate of the model state α̂. An observation y(t) influ-
ences the smoothed estimates of a model state at the particular moment t through
a one-step-forecast error (or innovation) v(t) scaled by the inverse of its estimated
variance F (t) = var(v(t)). The estimated variance F (t), which becomes large for
the outliers if a heavy-tailed distribution is assumed for the observation error, weak-
ens the influence of the outlier y(t) on the systematic part of the variation, Zα̂(t),
and increases the impact of the outlier on the estimate of the observation noise ε̂t.

On the other hand, the fitted models for δ18O, log(Ca2+) and log(SO2−
4 ) time

series from both ice cores contain essentially only the systematic part of the vari-
ation, Zα̂(t), and are nearly free from the observation error (σ̂2

ε ≈ 0). The non-
Gaussian character of the variation of the time series will be modelled through a
time-dependent linear Gaussian model derived from a heavy-tailed distributional
assumption on the cyclic model error component Xt,X ∗t . This modelling approach
has some nice properties of local smoothing and will be discussed in the next section.

There exists a large number of various approximate smoothing and filtering
algorithms which deal with robustified state-space modelling (e.g. Masreliez, 1975;
Masreliez and Martin, 1977; Kitagawa, 1987). We follow the methodology presented
in Koopman et al., 1998.

4. A linear non-Gaussian state space model.

4.1. Heavy-tailed distributions for the cyclic model error component.
Heavy-tailed distributions are assumed for the cyclic model error component to
describe the variation of the δ18O, log(Ca2+) and log(SO2−

4 ) time series from both
ice cores.

y(t) = Zα(t) + [ε(t)], ε(t) ∼ N(0, σ2
ε ), σε ≡ 0, 1 ≤ t ≤ n

α(t+ 1) = Tα(t) +




ξt
Xt
X ∗t


 ,

ξt ∼ N(0, σ2
ξ )

Xt,X ∗t ∼ Hk
, t ≥ 0

(12)

where the stochastic drift Xt and X ∗t are assumed to have one of four zero-mean
symmetric heavy-tailed densities X ,X ∗ ∼ Hk, k = {1, 2, 3, 4}.
• H1 denotes a t−Student-distribution with ν degree of freedom and the scale

parameter σX (variance σ2
X )

h1(u; ν, σ2
X ) =

1√
π

Γ(0.5(ν + 1))

Γ(0.5ν)

1√
(ν − 2)σ2

X

(
1 +

u2

(ν − 2)σ2
X

)−0.5(ν+1)

, ν ≥ 3
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Table 6. The estimated values of the parameters involved into
the state space model formulations describing the variation of the
δ18O, log(Ca2+) and log(SO2−

4 ) time series.

substance ice core distribution σ̂X σ̂ξ σ̂ψ ρ̂ λ̂c
NGRIP N (0, σ2

X ) 0.953 0.010 1.489 0.768 0.233
H1(t-dist) ν = 4 0.695 0.010 1.349 0.877 0.135
H2(MN) λ = 0.9, χ = 20 0.507 0.007 1.011 0.865 0.014

δ18O GISP2 N (0, σ2
X ) 0.879 0.008 1.307 0.727 0.182

H1(t-dist) ν = 4 0.701 0.010 1.197 0.810 0.075
H2 (MN) λ = 0.9, χ = 20 0.465 0.008 0.993 0.843 0.026

NGRIP N (0, σ2
X ) 0.395 0.005 0.722 0.837 0.252

H1(t-dist) ν = 4 0.194 0.006 0.693 0.898 0.116
H2 (MN) λ = 0.85, χ = 20 0.164 0.003 0.496 0.944 0.008

log(Ca2+) GISP2 N (0, σ2
X ) 0.456 0.005 0.817 0.830 0.226

H1(t-dist) ν = 4 0.222 0.006 0.784 0.897 0.104
H2 (MN) λ = 0.85, χ = 20 0.210 0.003 0.691 0.953 0.029

NGRIP N (0, σ2
X ) 0.347 0.003 0.543 0.769 0.172

H1(t-dist) ν = 4 0.278 0.003 0.529 0.851 0.134
H2 (MN) λ = 0.85, χ = 10 0.193 0.002 0.384 0.862 0.026

log(SO4−) GISP2 N (0, σ2
X ) 0.317 0.002 0.459 0.759 0.142

H1(t-dist) ν = 4 0.256 0.003 0.448 0.820 0.117
H2 (MN) λ = 0.85, χ = 10 0.218 0.003 0.403 0.841 0.039

The larger the degree of freedom ν the closer the density h1(u; ν, σ2X ) is to the
Gaussian N(0, σ2

X ).
For each of the six time series, considered here, the same value of the degree of

freedom ν = 4 was found to provide a good model fit to the data. Such a low value
of the estimated degree of freedom indeed indicates much heavier tails than for a
Gaussian one.
• H2 denotes a mixture of two normal densities with parameters λ,χ and a

basic variance σ2
X

h2(u;λ, χ, σ2
X ) =

λ√
2πσ2

X
exp

(
u2

2σ2
X

)
+

1− λ√
2πχσ2

X
exp

(
u2

2χσ2
X

)

where (1−λ) is a percentage of outliers among the data, λ is near 1, say λ ≥ 0.85
and χ is large, say from 10 to 100, and determines the variance of the outliers.
• H3 denotes a Cauchy distribution with the parameter σ2

X (Feller, 1966)

h3(u;σ2
X ) =

1

π
√
σ2
X

(
(1 +

u2

σ2
X

)

)−1

Note that the Cauchy density is very heavy-tailed and has an infinite variance.
The Cauchy density corresponds to a limiting case of the t-densities with the degree
of freedom ν → 2.
• H4 denotes a general error distribution with a parameter q and a variance

σ2
X (Box and Tiao, 1973)

h4(u; q, σ2
X ) =

2
√

Γ(0.75q)

l
√

(Γ(0.25q))3

1√
σ2
X

exp

(
−
(

Γ(0.75q)

Γ(0.25q)

)0.5q (
u2

σ2
X

)0.5q
)
, 1 < q < 2

The closer q is to 2, the closer is the density to the Gaussian N(0, σ2
X ). A

Gaussian density N (0, σ2
X ) can be considered as a special case of a general error

distribution H4 with parameters q = 2 and σ2
X .
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Figure 10. Plot of the different estimates of the large-scale vari-
ation µ̂(t) for the δ18O time series from the NGRIP ice core
under the Gaussian (solid curve) and the non-Gaussian distribu-
tional assumptions on the cyclic model error component Xt,X ∗t ∼
Hk, k = {1, 2, 3}: the t-distribution with ν = 4 degree of freedom
(dashed curve), the mixture of two normal densities with param-
eters λ = 0.9 and χ = 20 (dash-dotted curve) and the Cauchy
distribution (dotted curve). The observations are denoted by “*”.

In order to preserve stationarity of the cyclic process the variance of the heavy-
tailed distributions σ2

X is parametrised as σ2
X = (1 − ρ2)σ2

ψ. The same definition

of σ2
X is used even in the case of the Cauchy distribution. Notice that in this case

the cyclic process is not stationary anymore because of the infinite variance of the
Cauchy distribution.

The ML (Maximum Likelihood) estimates of the parameters involved into the
state space model formulations under the different assumptions on the distribution
for the cyclic model error component, the Gaussian one, the t-distribution (H1) and
the mixture of two normal densities (H2), are presented in Table 6. The parameters
are estimated by maximising the corresponding likelihood function. The weaker
the restrictions of the variability expressed in the distributional assumptions on
the cyclic model error component, the larger part of the variability is attributed
to the stochastic part of the dynamic development of the cyclic component. The

damping factor ρ̂ increases and the wave frequency λ̂c decreases at the same time
as the estimated variance σ̂ψ of the cyclic component becomes more robust to the
exceptional observations in the comparison with their surrounding values in time.

For all six time series, the observations seem to originate from two different
regimes of the underlying model: the background signal with a smooth pattern
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of the behaviour (originates from some continuous process in time), to which the
majority of the observations belongs, and the “alternative” regime, which contains
the severe deviations from the background signal, which could be caused by a
momentary influence of some external forcing (volcanic eruptions, as one example).
From the model perspective the splitting of the observations into

regime dominated by the background signal & the alternative regime
corresponds to the spliting

those observations that the model is able to predict &
those observations that the model is not able to predict.

Under the non-Gaussian assumptions on the cyclic model error component, the
observations, which bring up the background signal, are explicitly handled by the
model dynamical propagator T (eqn 12). The observations which belongs to the
alternative regime are handled implicitly via the assumptions on Xt,X ∗t . Different
distributional assumptions on the cyclic model error result in different splitting
of the observations into the regime dominated by the background signal and the
alternative regime.

The different estimates of the long timescale variation µ̂(t) for δ18O from the
NGRIP ice core under the Gaussian (solid curve) and the heavy-tailed assumptions
on the distribution for the cyclic model error (the t-distribution with ν = 4 (dashed
curve), the mixture of two normal densities with parameters λ = 0.9 and χ = 20
(dash-dotted curve) and the Cauchy distribution (dotted curve)) are presented in
Figure 10. The estimates of the µ̂(t) for δ18O under Gaussian and the general
error distribution H4 are given in Figure 11 and discussed in next section. Under
the Cauchy distributional assumptions, almost all variation of the time series was
attributed to the short-range variation, as it could be expected under so generous
assumptions on the size of the allowable variation (the infinite variance) as is in
the case with the Cauchy distribution. Due to the same reason different estimates
of the long timescale variation µ̂(t) are obtained assuming the t-distribution or the

mixture of two normal densities as the distribution for X̂t, X̂ ∗t . The mixture of the

two normal densities, with the parameters λ̂ = 0.9 and χ = 20 fitted to the data,
is less restrictive on the size of the variability for the cyclic model error than the
t-distribution with ν = 4 (see details in section 4.4.).

However, despite these different estimates of the long timescale variations, the

systematic part of the variation ŷ(t) = Zα̂(t) = µ̂(t) + ψ̂(t) is nearly identical
under the different model assumptions because of the nearly error-free observations:
ŷ(t) = y(t)− ε̂(t) with σ̂ε(t) ≈ 0.

4.2. The computation of a likelihood under the linear non-Gaussian state
space model. The set of unknown parameters Θ∗ (the specific ones ν under H1,
λ, χ under H2, q under H4 and the general ones σξ, ση, σψ, λc and ρ) are estimated
by maximising the corresponding log-likelihood function l(Θ∗) = log p(Y; Θ∗).

p(Y; Θ∗) =

∫
p(Y | α; Θ∗)p(α; Θ∗)dα =

∫ n∏

t=1

g(ε(t); Θ∗)
n−1∏

t=0

g(ηt; Θ∗)h(Xt; Θ∗)h(Xt; Θ∗)dηtdXtdX ∗t
(13)

where p(·) denotes any probability density function, g(·) denotes a Gaussian
density function and h(·) denotes one of the heavy-tailed density functions men-
tioned above. It is impossible to compute the exact value of log-likelihood l(Θ∗)
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Figure 11. The estimate of the long timescale variation µ̂()t of
δ18O observations from the NGRIP ice core when the Gaussian
distribution (the solid line) and the general error distribution H4

with q = 1.8 (the dashed line) are assumed for the cyclic model
error. The observations are denoted by “*”.

under a linear non-Gaussian state space model as it was done under a linear Gauss-
ian one (see (6)). Still a close approximate value of the likelihood (13) can be
computed using importance sampling (Ripley, 1987).

The idea is to use that

p(Y; Θ∗) =

∫
p(Y, α; Θ∗)
g(α | Y)

g(α | Y)dα

for any convenient sampling density g(α | Y) of the model state α, for exam-
ple the one obtained under the time-dependent Gaussian approximate state space
model to be described below (19).

Then

p(Y; Θ∗) =g(Y; Θ∗)
∫
p(Y, α; Θ∗)
g(Y, α; Θ∗)

g(α; | Y; Θ∗)dα =

Lg(Θ
∗)Eg(

p(Y, α; Θ∗)
g(Y, α; Θ∗)

),

(14)

where Lg(Θ
∗) is an exact likelihood under the time-dependent Gaussian ap-

proximating state space model computed by (6) and Eg(p(Y, α; Θ∗)/g(Y, α; Θ∗))
is the mathematical expectation of the functional p(Y, α; Θ∗)/g(Y, α; Θ∗) with re-

spect to the sampling density g(α | Y; Θ∗). Thus the likelihood ˆL(Θ∗) under the
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Table 7. Estimated values of statistical and dynamical param-
eters describing the variation of the δ18O time series from the
NGRIP ice core under the Gaussian and under the heavy-tailed
distributions assumed for the cyclic model error.

Xt,X ∗t ∼ σ̂ξ σ̂ψ ρ̂ ρ̂ cos(λ̂c) ρ̂ sin(λ̂c)
√

(1− ρ̂2)σ̂2
ψ

N(0, σ2
X ) 0.010 1.489 0.768 0.749 0.170 0.953

H1, ν = 4, σ2
X 0.009 1.349 0.877 0.870 0.108 0.649

H2, λ = 0.9, χ = 20, σ2
X 0.007 1.011 0.865 0.865 0.012 0.507

H3, σ
2
X 0.006 1.195 0.906 0.906 0.024 0.506

H4, q = 1.8, σ2
X 0.009 1.265 0.783 0.767 0.203 0.786

linear non-Gaussian model (12) can be approximated by

ˆL(Θ∗) = Lg(Θ
∗)w̄

, where

w̄ =
1

N

N∑

i=1

p(Y;αi)

g(Y, αi) ,

and where α1, α2, . . . , αN is the simulation sample generated by the sampling den-
sity g(α | Y; Θ∗). The current methodology originates from Durbin and Koopman,
2001, and Shephard and Pitt, 1997. In order to improve the precision of the L(Θ∗)
estimation, the dependent sample of αi, i = 1, . . . , 4 ∗ N ′, with four antithetic
variables was generated (Ripley, 1987; Durbin and Koopman, 1997 ). The sample
was balanced for scale and for location.

As an example, Table 7 shows a number of important statistical and dynamical
parameter estimates for the δ18O time series from the NGRIP ice core. The param-
eters were estimated both under the linear Gaussian state space model (12) and
under the heavy-tailed distributional assumptions on the cyclic error component
Xt,X ∗t ∼ Hk, k = {1, 2, 3, 4}. To obtain the estimates both the exact likelihood
(6) under the linear Gaussian state space model and the approximate likelihood (14)
under the “heavy-tailed” state space model were maximised numerically. The ap-
proximate likelihood was computed using the simulation sample αi, i = 1, . . . , 4∗N
with N = 200. Under all distributional assumptions σ2

X = (1− ρ2)σ2
ψ.

One important aspect should be mentioned in connection with Table 7. As will
be discussed later, the heavy-tailed assumption on the cyclic model error component
distribution (Hk, k = {1, 2, 3, 4}) results in a kind of local model fitting. The
Cauchy distribution(H3) has the strongest local model fitting effect and the general
error distribution with parameter q = 1.8 (H4) has the weakest such effect among
the heavy-tailed distributions discussed in this paper. The Gaussian assumption on
the distribution provides a global model fitting, for which all available observations
influence the estimate of parameters.

It was mentioned in section 3.1 that the value of the parameter ρ̂ contains im-
portant information about the dynamical model fitting. The closer the “damping
factor” ρ is to 1, the better the wave-like process captures the time development of
the short timescale variation of the background signal. As it can be seen from the
Table 7, the estimate of ρ̂ has a larder value under each of the heavy-tailed distribu-
tional assumptions on the cyclic model error than under the Gaussian assumption.
The largest value of ρ̂ is obtained assuming the Cauchy distribution for the cyclic
model error. Indeed, under the Cauchy distribution nearly all variability is attrib-
uted to stochastic drift that does not have any restrictions on the amplitude. This,
of course, does not guarantee the proper statistical model fitting.
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Figure 11 illustrates the smoothed trend estimate µ̂(t) of the d18O series from
the NGRIP ice core under the Gaussian linear model (5) (the solid line) and under
model (12) with the general error distribution assumed for the cyclic model error
Xt,X ∗t ∼ H4, q = 1.8 (the dashed line). The value q = 1.8 was estimated from the
data by numerical maximisation of the non-Gaussian likelihood (13). In fact the
same value of the parameter q = 1.8 was estimated for all six time series. This value
makes the distribution very close to the Gaussian one that corresponds to q = 2.
This model gives the total variation decomposition into the long and the short
timescale variations very similar to the one under the time-invariant linear Gaussian
model. The distributional assumption H4 was excluded from further investigations
in this paper. We should mention, that the non-Gaussian log-likelihood seems to
be very flat in q and small deviations from the chosen value q does not influence
the evaluation of the non-Gaussian log-likelihood.

4.3. A time-dependent Gaussian state space model approximation. Given
the maximum likelihood estimate of the model parameteres Θ, the decomposition
of the total variation into the long timescale and the short timescale variation
components is performed. In the case of the linear non-Gaussian models (12), the

maximum posterior estimate of the trend and the cyclic development µ̂(t) and ψ̂(t),
t = 1, . . . , n, are not identical to the posterior mean. Still the Kalman filter and
the Kalman smoother recursions can be used as efficient computational tools for
estimating the maximum posterior density of the non-Gaussian model. The poste-
rior density for model (12) is defined by (7) in a similar way as in a linear Gaussian
model (e.g. Fahrmeir and Tutz, 1994). In order to use the Kalman filter and the
smoother recursions as computational tools to maximise the posterior density, the
non-Gaussian heavy-tailed densities should be approximated by Gaussian ones in
such a way that the system of equations which determines the posterior maximum

(15) ∇α log(p(α | Y)) = ∇α log(p(α)) +∇α log(p(Y | α)) = 0

has a form similar to the linear system of equation (9). We can say that instead of
treating the original non-Gaussian model (12), we construct an approximate Gauss-
ian model which will have the same posterior mode α̂ as the original non-Gaussian
model. Then we will use the Kalman filter and Kalman smoother recursions to
compute the posterior mode, which is identical to the posterior mean of the ap-
proximate Gaussian model. The methodology of solving equation (15), used in this
paper, follows the methodology proposed by Durbin and Koopman (1997). Alter-
native possibilities to solve non-Gaussian state space models are given by Fahrmeir
and Kaufmann (1991) and Fahrmeir and Wagenpfeil (1997).

It is useful to notice that all densities Hk, like the Gaussian density

g(u;σ2) =
1√
(2π)

exp

(
− u2

2σ2

)
,

are unimodal around 0.
The first-order derivative of the Gaussian log-density of the stochastic variable

u with respect to the variable u is a linear function of variable u itself

d log(g(u;σ2))

du
= − u

σ2
.

One can express the first-order derivative of a heavy-tailed log-density of hk(u), in
a similar form,

(16)
d log(hk(u))

du
= − u

σ2
k(u)
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where σ2
k(u) now is not a constant but a certain function of the stochastic variable

u.
Under the heavy-tailed distributional assumptions on the cyclic model error

Xt, X ∗t ∼ Hk, and assuming that the model error vector components are mutually
independent, the log-posterior density of the model state α will differ by an additive
constant from

log(p(α | Y)) =constant

− µ(0)2

2K
− µ(1)2

2K
− 1

2

n∑

t=2

(µ(t)− 2µ(t− 1) + µ(t− 2))2

σξ

+ log hk(ψ(0)) +
n∑

t=1

log hk(ψ(t)− ρ cos(λc)ψ(t− 1)− ρ sin(λc)ψ
∗(t− 1))

+ log hk(ψ∗(0)) +

n∑

t=1

log hk(ψ∗(t) + ρ sin(λc)ψ(t− 1)− ρ cos(λc)ψ
∗(t− 1))

(17)

For simplicity, the dependency of the posterior density p(α | Y) on the observa-
tion error vector ε has been omitted, because a more parsimonious model with the
perfect observation fit was suggested for the δ18O, logCa2+ and logSO2−

4 , using
the Akaike information criterion, also motivated by the small contribution to model
from the observation error component, for δ18O, logCa2+ and logSO2−

4 , as it is
summarised in Table 3.

Taking into account expression (16) for the first-order derivative of the heavy-
tailed log-densities log hk(u) with respect to the stochastic variable u, the non-linear
system of equations (15) can be written in a form similar to the system of linear
equations (9),

∂p(α | Y)

∂µ(t)
= −ξt−1

σ2
ξ

+ 2
ξt
σ2
ξ

− ξt+1

σ2
ξ

,(18)

∂p(α | Y)

∂ψ(t)
= − Xt−1

σ2
k(Xt−1)

+ ρ cos(λc)
Xt

σ2
k(Xt)

− ρ sin(λc)
X ∗t

σ2
k(X ∗t )

,

∂p(α | Y)

∂ψ∗(t)
= − X ∗t−1

σ2
k(X ∗t−1)

+ ρ sin(λc)
Xt

σ2
k(Xt)

+ ρ cos(λc)
X ∗t

σ2
k(X ∗t )

for t = 2, . . . , n − 2, together with the equations for the boundary points t = 0, 1
and t = n− 1, n.

The log-likelihood for the non-Gaussian model (12) yields approximately the
same equation system as if we had a Gaussian model with the time-varying variance
σ2
k(X̂t), σ2

k(X̂ ∗t ) for the cyclic model error.

y(t) = Zα(t), 1 ≤ t ≤ n

α(t+ 1) = Tα(t) +




ξt
Xt
X ∗t


 ,

ξt ∼ N(0, σ2
ξ )

Xt ∼ N(0, σ2
k(X̂t))

X ∗t ∼ N(0, σ2
k(X̂ ∗t ))

; t > 0
(19)

where σ2
k(X̂t) k = {1, 2, 3} are time-dependent functions of the maximum

likelihood estimate of the cyclic model error (also called the smoothed cyclic model
residuals) and they are determined by the form of the heavy-tailed distributions
H1- H3, defined above.

27



Indeed, the Kalman filter and smoother recursions can be used to solve itera-
tively the non-linear equation system (18) and to compute the posterior mode of
the approximating Gaussian model (eqn. 19) with the time-dependent variance of
the cyclic model error. Here we just sketch the idea of this method. During ith iter-
ation, given a currently available estimate of the posterior mode of the model state
vector αi−1 or , equivalently, given a currently available estimate of the posterior
mode of the model error vector ηi−1 = {ξi−1

t ,X i−1
t ,X ∗,i−1

t , t = 0, . . . , n − 1}, the
model (eqn. 19) is approximated by an analogous model with the time-varying vari-

ance σ2
k(X i−1

t ), σ2
k(X ∗,i−1

t ). The Kalman filter and the Kalman smoother are used
to obtain new estimate of the posterior mode of the model state αi or the model
error ηi vector. The iterations are repeated until convergence, i.e. ηi−1 = ηi := η̂
(αi = αi−1 := α̂). The solution of the iterative procedure of the equation system
(eqn. 18) is the posterior mode of both the approximate time-dependent Gaussian
model (eqn. 19) and the original non-Gaussian model (eqn. 12). For the detailed
description of the iterative method see Durbin and Koopman, 1997.

Figures 12, 13 and 14 show diagnostic plots of the model fit for the approximate
time-dependent linear Gaussian state space model (19) derived from the original
non-Gaussian state space model: H1 (Figure 12), H2 (Figure 13) and H3 (Figure
14). Solid curves represents the time series obtained from the NGRIP ice core and
dashed curves the ones from the GISP2 ice core. Similar plots under the time-
invariant linear state space model are shown in Figure 7 (see section 3.1 where the
diagnostics are introduced and discussed).

It should be mentioned, that the values of the parameters Θ∗ in the definition of
the actual non-Gaussian linear state space model (both the specific and the general
ones) were determined by numerically maximising the corresponding non-Gaussian
likelihood. The solution of the maximisation procedure is not unique. The solution
with the largest possible “damping factor” ρ̂ was chosen among the “equally-likely”
ones. The estimated values of the parameters Θ∗ involved in the definition of the
models are summarised in Table 7.

As it can be seen from Figures 12 and 13, especially comparing with Figure
7, the statistical model fit is improved under the time-dependent linear Gaussian
model derived from the original non-Gaussian model, given by equation (12) with
H1 or H2. The time-dependent Gaussian models with the local variance functions
σ2

1(X̂t) and σ2
2(X̂t) provide a more proper normalisation of the smoothed cyclic

residuals, such that the distribution of the standardised X̂ becomes close to a
Gaussian one. The proper weighting of the smoothed cyclic residuals (the third
column of the diagrams), especially for its large values, improves the fit of the sta-
tistical model. This can be seen from the QQ-plot of the standardised innovations
(the first column of the diagrams) for all six time series. The time-dependent lin-
ear Gaussian model derived from (12) with H3 (the Cauchy distribution) assumed
for the cyclic mode error component cannot adequately describe the data. The
down-weighting of large values of the smoothed cyclic residuals by the local vari-
ance function σ2

3(X̂t) is so strong that the distributions of the standardised X̂ and
the standardised innovations become too light-tailed (Figure 14).

The result of the variation decomposition obtained by assuming the mixture
of two normal densities as a distribution for the Xt,X ∗t should be interpreted with
great care (Figure 13). The trend component residuals seem to have lighter tails un-
der H2 than under H1 in comparison with their theoretical quantiles. The estimate
of the trend under H2 is over-smoothed for the log(Ca2+) and the log(SO2−

4 ) time
series because as much as 15% of the observations (λ = 0.85) are assumed to belong
to the “alternative regime” with the strong deviations from the background signal
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Figure 12. The QQ-plots of the standardised innovations ṽt (the
first column of diagrams), the standardised smoothed trend resid-

uals ξ̃t (the second column of the diagrams) and the standardised

smoothed cyclic component residuals X̃t (the third column of the
diagrams) against their theoretical quantiles N (0, 1), under the
approximate time-dependent Gaussian model (19) with H1 (the
Student t) distributional assumptions on the cyclic model error.
The diagnostics plots for the δ18O time series are given in the first
row of diagrams, for the log(Ca2+) time series in the second row of
diagrams and for the log(SO2−

4 ) time series in the third row of the
diagrams. Solid curves respresent time series from the NGRIP ice
core and dashed curves ones from the GISP2 ice core. The stan-
dardised innovations or standardised residuals are plotted along
the y-axes and quantiles of N (0, 1) are plotted along the x-axes.

and enter through the stochastic drift Xt,X ∗t only. This destroys the variation de-
composition into the long and the short timescale variation as it can be seen from
the estimated time-averaged autocorrelation function ρτ for the short cyclic model
component ψ(t) with a very long timescale variation being present. Figure 15 shows
the time-averaged auto-correlation functions ρ(τ) of the short timescale variation

component ψ̂(t) of the δ18O (solid curve), the log(Ca2+) (dashed curve) and the
log(SO2−

4 ) time series (dash-dotted curve) estimated under the time-invariant lin-
ear Gaussian model (the diagram to the left), under the time-dependent Gaussian
models derived from the H1 (the middle diagram) and from the H2 (the diagram to
the right) distributional assumptions on the Xt,X ∗t . The estimated auto-correlation
functions for all three time series oscillate around non-zero value when the mixture
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Figure 13. The QQ-plots of the standardised innovations ṽt (the
first column of diagrams), the standardised smoothed trend resid-

uals ξ̃t(the second column of the diagrams) and the standardised

smoothed cyclic component residuals X̃t (the third column of the
diagrams) against their theoretical quantiles N (0, 1) under the
time-dependent Gaussian model (19) with H2 (the mixture of two
normal densities) distributional assumptions on Xt,X ∗t . The di-
agnostics plots for the δ18O time series are given in the first row
of diagrams, for the log(Ca2+) time series in the second row of
diagrams and for the log(SO2−

4 ) time series in the third row of the
diagrams. Solid curves represent time series from the NGRIP ice
core and dashed curves the ones from the GISP2 ice core.

of two normal densities (H2) was assumed as the distribution for Xt,X ∗t . This
indicates the presence of a long timescale variation in the estimate of the short
timescale variation.

In Table 8 we present a summary of the Box-Ljung statistics Q(15) for the check
of the serial correlation of the standardised innovations ṽt under the time-invariant
linear Gaussian model (N ) and the time-dependent Gaussian models derived from
the non-Gaussian assumptions on the Xt,X ∗t : H1 (Student t-distribution), H2 (the
mixture of two normal densities) and H3 (the Cauchy distribution). One can notice
the influence of the iterative solution of the system of the non-linear equations (18),
which determine the mode of the posterior density. The observed value of the Box-
Ljung statistics Q(15), based on the first 15 autocorrelations of ṽt, is larger under
all the time-dependent Gaussian models than under the time-invariant Gaussian
model. Still the observed values of Q(15) presented in Table 8, are not large enough
to indicate the presence of strong autocorrelations among the corresponding series
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Figure 14. The QQ-plots of the standardised innovations ṽt (the
first column of diagrams), the standardised smoothed trend resid-

uals ξ̃t (the second column of the diagrams) and the standard-

ised smoothed cyclic component residuals X̃t (the third column of
the diagrams) against their theoretical quantiles N (0, 1) under the
time-dependent linear Gaussian model (19) with H3 (the Cauchy)
distributional assumptions on Xt,X ∗t . The diagnostics plots for
the δ18O time series are given in the first row of diagrams, for
the log(Ca2+) time series in the second row of diagrams and for
the log(SO2−

4 ) time series in the third row of the diagrams. Solid
curves represent time series from the NGRIP ice core and dashed
curves the ones from the GISP2 ice core.

of the ṽt (compare with Figure 4), although weakly positive correlations appear
due to the non-linearity of the system (eqn. 9). The highest value of Q(15) as
well as the largest absolute values of the autocorrelation are observed among the
innovations ṽt corresponding to the log(Ca2+) time series, which have the worst
fit to the linear Gaussian model (see diagnostic diagrams in Figures 12, 13 and 7).
Notice that the Ca2+ series were not used explicitly in the synchronisation process
(see section 2).

The diagnostics of the statistical model fit discussed above concerns the approx-
imate time-dependent Gaussian model, given by equation (19), only. To investigate
if the original non-Gaussian model, given by equation (12), fits the time series, a
more advanced and comprehensive analysis using simulation techniques must be
performed. On the other hand, it is the approximate time-dependent Gaussian
model that determines the mechanism of the total variation decomposition into
different timescale variation components.
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Figure 15. The autocorrelation functions ρ(τ) of the cyclic
model component ψ(t) of the time series of δ18O (solid curve),
log(Ca2) (dashed curve) and log(SO2−

4 ) (dash-dotted curve) from
the GISP2 ice core plotted as functions of lag τ under different as-
sumptions on the distribution of the cyclic model error: a Gaussian
one (the left diagram), a t-Student distribution (the middle dia-
gram) and a mixture of two normal densities (the diagram to the
right).

Table 8. The Box-Ljung statistics based on the first 15 autocor-
relation of ṽt corresponding to the δ18O, log(Ca2+) and log(SO2−

4 )
time series from the NGRIP ice core under the time-invariant lin-
ear Gaussian model and under the time-dependent Gaussian mod-
els derived from H1, H2 and H3 assumed as a distribution for
Xt,X ∗t .

distribution
d18O log(Ca2+) log(SO2−

4 )
Q(15) FQ(15) c(jmax) Q(15) FQ(15) c(jmax) Q(15) FQ(15) c(jmax)

N 8.627 0.111 -0.067 16.050 0.634 -0.094 12.305 0.347 -0.089
H1 13.566 0.444 0.075 26.753 0.967 0.155 12.782 0.380 0.095
H2 11.356 0.291 0.087 20.935 0.858 0.142 10.813 0.239 0.091
H3 13.264 0.421 0.103 21.216 0.867 0.146 18.849 0.778 0.127

4.4. The local variance function. The local variance functions σ2
k(X̂t), in the

formulation of the time-dependent Gaussian approximating model (equation (19)),
depend on the chosen distributions for Xt,X ∗t ∼ Hk, k = {1, 2, 3} and are given
by
• σ2

1(u) is corresponding to a t-density H1 with ν degrees of freedom and a
variance (a scaling parameter) σ2

X

σ2
1(u) =

1

ν + 1
u2 +

ν − 2

ν + 1
σ2
X

• σ2
2(u) is corresponding to a mixture of two normal densities H2 with param-

eters λ , χ and a basic variance σ2
X

σ2
2(u) =

σ2
Xλχ
√
χ exp(−u∗2) + χσ2

X (1− λ) exp(−u∗2/χ)

λχ
√
χ exp(−u∗2) + (1− λ) exp(−u∗2/χ)

where u∗2 = u2

2σ2
X

.

• σ2
3(u) is corresponding to a Cauchy distribution H3 with a scaling parameter

σ2
X
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σ2
3(u) = 0.5(u2 + σ2

X )

−2 −1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 smoothed Xt

σ2 k

k = 3
k = 2
k = 1
GAUSS

90 80 70 60 50 40 30 20
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

ky B.P.

lo
g 

Ca
2+

Figure 16. Diagram to the left: Plot of the local variance
functions σ2

k(X̂t)(on the y-axes) of the time-dependent Gauss-
ian model derived from the non-Gaussian assumptions on the
Xt,X ∗t ∼ Hk, k = {1, 2, 3} plotted as functions of the smoothed

cyclic residuals X̂t (on the x-axes): σ2
1(X̂t) (“+”), σ2

2(X̂t) (“*”) and

σ2
3(X̂t) (“o”). The plot corresponds to the log(Ca2+) time series

from the NGRIP ice core. The global estimate of the variance
of the cyclic model error σ2

X = 0.141 (from a Gaussian assump-
tion on the error distribution, solid line). Diagram to the right:
Plot of the smoothed estimates of the long timescale variation µ̂(t)
for the log(Ca2+) time series from the NGRIP ice core under the
different distributional assumptions on the Xt,X ∗t : the Gaussian
distribution (solid curve), the Student t-distributionH1 with ν = 4
degrees of freedom (dashed curve), the mixture of two normal den-
sities H2 with λ = 0.85 and χ = 20 (dash-dotted curve) and the
Cauchy distribution H3 (dotted curve). The raw observations are
denoted by “x”

As one can see, all local variance functions σ2
k(X̂t) are some kind of a com-

promise between the global estimate of the variance σ2
X of the cyclic model error

component Xt and the momentary estimates of the variance being simply(X̂t)2.
One example of the local variance functions corresponding to the log(Ca2+) time
series from the NGRIP ice core is shown in Figure 16 (the diagram to the left).
The corresponding variation decomposition is shown in Figure 16 (the diagram to
the right).

The local variance functions corresponding to a t-distribution σ2
1(X̂t) and to

a Cauchy distribution σ2
3(X̂t) are additive combinations of the momentary and

the global variance estimates, with increasing weight of the momentary variance
estimate for the large values of X̂t, (see Figure 16). The local variance function

σ2
3(X̂t) is almost completely dominated by (X̂t)2 for large values of X̂t.

A very interesting pattern has the local variance function corresponding to the
mixture of two normal densities σ2

2(X̂t), which splits the smoothed cyclic residuals

by assigning to them the basic variance σ2
X (for the small values of X̂t) or the outlier

variance χσ2
X (for the large values of X̂ ) or a linear combination of both of them
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with weights exponentially depending on the momentary variance estimate (X̂t)2

(see Figure 16). The global estimate of the variance σ̂2
X is equal 0.141 and is

obtained under the time-invariant linear Gaussian model.
It is important to notice that even if the same parameter σ2

X enters in the
formulation of all local variance functions σ2

k, k = {1, 2, 3}, the estimates of
the parameter are different under the different distributional assumptions on the
cyclic model error. The estimate of the parameter σ̂2

X is smaller under each of the
investigated heavy-tailed assumptions on the cyclic model error component than
under the Gaussian one. This is exactly as it should be under a more robust measure
of the error, for which the eventually observed large values have a smaller impact
on the variance estimate.
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Figure 17. Diagram to the left: Plots of the local variance
functions σ2

k(X̂t), k = 1 (upper plot), k = 2 (middle plot), k = 3

(lower plot), corresponding to the log(SO2−
4 ) time series from the

NGRIP ice core. The global estimate of the variance of the cyclic
model error is σ̂2

X = 0.144 under the time-invariant linear Gaussian
model. Diagram to the right: Plot of the different smoothed
estimates of the long timescale variation µ̂(t) for the log(SO2−

4 )
time series from the NGRIP ice core under different distribu-
tional assumptions on the Xt,X ∗t : the Gaussain distribution (solid
curve), the Student t-distribution H1 with ν = 4 degrees of free-
dom (dashed curve), the mixture of two normal densities H2 with
λ = 0.85 and χ = 10 (dash-dotted curve) and the Cauchy distri-
bution H3 (dotted line). Raw observations are denoted by “x”.

A local variance function can be considered as a temporal (time-dependent)
measure of the uncertainty about the dynamical development of ψ(t). Figure 17
(the diagram to the left) shows the local variance functions in the time-dependent
linear Gaussian models, derived from the different distribution assumptions, as
functions of time. Figure 17 corresponds to the log(SO2−

4 ) time series from the
NGRIP ice core. The corresponding variation decomposition is shown in Figure
17 (the diagram to the right).

The local variance function plays an essential role in the total variation decom-

position into the long (µ̂(t)) and short timescale (ψ̂(t)) variations. It is important
to notice that, under this time-dependent measure of the uncertainty about the dy-
namical development of the ψ(t), not only do the large values of the smoothed cyclic

residuals X̂t indicate larger (temporal) uncertainty about the development of the
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cyclic component ψ̂(t) in comparison to the global estimation of the uncertainty. At
the same time do the small values of the smoothed cyclic residuals indicate larger
relative uncertainty about the development of the long timescale variation µ(t).

The simple dynamical model used in this paper exaggerates the influence of
the model error specification on the variation decomposition. At the same time
it helps to outline one of the basic properties of Kalman filtering and Kalman
smoothing. The larger the relative uncertainty about a particular model state
component is in comparison to other model state components, the larger will the
impact of newly in-coming observations be on just that component. In other words,
the data assimilation by a linear Gaussian model will always work for a reduction
of the uncertainty.

When a Gaussian distribution is assumed for Xt,X ∗t , a global smoothing is per-
formed, under which all observations y(t) of the time series have the same impact

on µ̂(t) and ψ̂(t), as soon as the steady state solution (see next section) is achieved.
Under a time-dependent Gaussian model, derived from the non-Gaussian assump-
tion on the distribution of the cyclic model error, a local smoothing is performed.
The impact of each observation y(t) on the estimated long timescale µ̂(t) and short

timescale ψ̂(t) variations depends on its similarity with the surrounding values in
time, expressed through the local variance function in the model state space. A
scaled innovation, the one-step-forecast error v(t) = y(t)−ŷ(t) scaled by its variance
F (t), is the most natural measure, taken in observational space, of how exceptional
the observation y(t) is in comparison with its surrounding. As shown later, the

smoothed cyclic residual X̂t−1 is in a nearly deterministic linear relationship with

the innovation v(t). This is why the local variance function σ2
k(X̂t−1), being a sym-

metric function of X̂t−1, is a measure of dissimilarity of the observation y(t) to its
neighbourhood, taken in model state space.

Three local variance functions σ2
1(X̂t), σ2

2(X̂t) and σ2
3(X̂t), which are different

measures of dissimilarity of the log(SO2−
4 ) observations to their neighbourhoods,

are illustrated in Figure 17 (the diagram to the left). All three time series are
observed on the NGRIP ice core. Each of these measures recognizes both regimes
from which the observations originate. The majority of observations represent the
“background signal”. They are modelled explicitly through the dynamical propa-
gator T , are well predicted and they induce small (scaled) innovations. As a result,
a small temporal uncertainty will be assigned to the dynamical development of
the cyclic model component just before the observation comes, and thus a large
relative uncertainty will be assigned to the dynamical development of the trend
component at that moment. That observation will thus be an influential source
of information for the long timescale variation µ̂(t). The observations from the
alternative regime, extraordinary observations in comparison with their neighbour-
hoods, are not modelled explicitly, and they induce large scaled innovations, and
thus a large temporal uncertainty will be assigned to the dynamical development of
the cyclic model component just before the observation comes. The extraordinary
observations will therefore have a strong impact on the short timescale variation

ψ̂(t).
When the Student t-distribution is assumed for the cyclic model error compo-

nent, the local variance function σ2
1(X̂t) increases slowly with increasing v(t + 1).

Thus a few large values of the local variance function are induced by the most
extraordinary observations, at the same time as the well predictable majority of
observations causes a lot of small values of the local variance function. As a re-
sult, the estimated trend under the time-dependent Gaussian model derived from
Xt,X ∗t ∼ H1 has more energy on shorter scales due to the extra strong influence
of the well predictable observations than under the Gaussian assumption on the
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Figure 18. The spectral density functions f(ω) of the autocor-

relations of the trend component residuals ξ̂t of the time series of
δ18O (the solid line), log(Ca2+) (the dashed line) and log(SO2−

4 )
(the dash-dotted line) from NGRIP ice core plotted as functions
of wave number ω under different assumptions on the distribution
of the cyclic model error: a Gaussian one (the left diagram) , a
t-Student distribution (the middle diagram) and a mixture of two
normal densities (the diagram to the right.)

distribution. If the mixture of two normal densities is assumed for the Xt,X ∗t , the

σ2
2(X̂t) sharply increases in magnitude as soon as the observation y(t + 1) from

the alternative regime is waiting to come. So all observations from the alternative
regime are prohibited to influence the estimate of the long timescale variation and
they enter directly in the estimate of the short timescale variation. The estimate
of the long timescale variation becomes over-smoothed, as can be seen from the
spectral densities of the autocorrelation function of the trend component residuals

ρτ (ξ̂t, ξ̂t+τ ), shown in Figure 18. Even more, the process of total variation de-
composition fails. As we already have mentioned above, the estimate of the short
timescale variation clearly contains long timescale variation as can be seen from
the time-averaged estimated autocorrelations ρ(τ) of the short timescale variation

ψ̂(t), which oscillate around a non-zero value for all three time series, (see Figure
15, the diagram to the right).

Even worse results of the total variation decomposition into different timescales
are obtained with the Cauchy distribution for which the σ2

3( ˆXt−1) increases dramat-
ically with v(t). The estimation of the trend becomes un-acceptably over-smoothed
and clearly too much variation is attributed to the short timescale variation, see
Figure 17.

4.5. The local smoothing mechanism. As already mentioned above, a linear
Gaussian model (5) provides a global treatment of the time series. The reason is
that all parameters, which define the model, are constant in time. Linear Gaussian
models have an exceptional property that innovations (or the one-step-ahead fore-
cast errors v(t) = yt − ZE(α(t) | Yt−1)) are mutually independent (Harvey, 1989).
This very strong property has the consequence that the conditional variance of the
innovations, F (t) = V ar(v(t) | Yt−1) = V ar(v(t)), is free from dependence on data
Yt−1.

Even conditional variances of the model state and model error, given observa-
tions, are not dependent on the observations (except through the parameter esti-
mates). The time development of the conditional mean and variance of the model
state, given observations, is governed by the Kalman filter and the smoother re-
cursions. The forward Kalman filter recursions provide a sequential update of the
knowledge about the model state each time t a new observation yt is available and

36



express the time evolution of the two first conditional moments of the model state
given the set of observations available up to time t (Durbin and Koopman, 2001).

E(α(t+ 1) | Yt) := at+1 = Ta(t) +Ktv(t),

V ar(α(t+ 1) | Yt) := Pt+1 = TPtT
′ − TPtZ ′(ZPtZ ′ + σ2

ε )−1ZPtT
′ + Ω,

K∗t = PtZ
′(ZPtZ

′ + σ2
ε )−1,

Kt = TK∗t ,

v(t) = yt − Za(t),

V ar(v(t)) := F (t) = ZPtZ
′ + σ2

ε , t = 1, . . . , n

(20)

The backward Kalman smoothing recursions finalise the estimation of the model
state when the whole set of observations Y is given. For example, the smoothed
model state estimate α̂(t) is equal to the conditional mean of the model state,
given the whole set of observations under the assumption of a linear Gaussian
model. The smoothed model state estimate α̂(t) consists of the filtered value and
the linear influence of future innovations. Notice that the filtered value itself is a
certain linear combination of the history (previously occurred) innovations.

E(α(t) | Y) := α̂(t) = at +

n−t∑

j=0

ctjv(t+ j)

= as +

t−s∑

j=1

ct−jv(t− j) + ct0v(t) +

n−t∑

j=1

ctjv(t+ j), 0 ≤ s < t ≤ n

(21)

The influence from the innovations can be computed from the output of the
Kalman filter recursions (20)

ct0 = K∗t = PtZ
′(F (t))−1

ctj = PtL
′
t . . . L

′
t−1+jZ

′(F (t+ j))−1, j = 1, . . . , n− t
ct−j = (T ·)j−1Kt−j , j = 1, . . . , t− s

where Ls = (T −KsZ).
The notation (T ·)j stands for the j-times repeated application of the operator

T . With the current definition of the dynamical propagator T , equation (5), we
will have

T (·)j =




j + 1 −(j) 0 0
j −(j − 1) 0 0
0 0 ρj cos(j ∗ λc) ρj sin(j ∗ λc)
0 0 −ρj sin(j ∗ λc) ρj cos(j ∗ λc)




Under such a time-invariant linear state space model (5), the Kalman filter
recursions (20) converge to a steady state solution after a certain number of updates.
This steady-state solution is determined by a matrix equation for the conditional
variance of the model state Pt+1 = V ar(α(t + 1) | Yt) ≡ P̃ , t ≥ tconv, where tconv
is a time when the convergence of Pt to P̃ (Durbin and Koopman, 2001; Harvey,
1989) has occured.

(22) P̃ = T P̃T ′ − T P̃Z ′(ZP̃Z ′ + σ2
ε )−1ZP̃T ′ + Ω

As soon as the steady state solution is achieved (for t ≥ tconv), the output of
the Kalman filter becomes constant.

Smoothing weights ctj , −100 ≤ j ≤ 100, corresponding to the steady state

solution of the Kalman filter for the log(Ca2+) time series from the NGRIP ice
37
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Figure 19. The smoothing weights of innovations ctj , −100 ≤
j ≤ 100 for the estimate of the smoothed model state for the
log(Ca2+) time series from the NGRIP ice core under the time-
invariant linear Gaussian model. The smoothing weights of the
innovations, lagging j time steps from the moment t, represent the
influence of the innovation v(t+ j) on the different components of
the model state at time t, are shown as functions of the lag. The
weights for the estimate of the trend component µ̂(t) at moment t
are denoted by a solid curve and the weights for the estimate on

the short timescale variation ψ̂(t) by a dashed curve. The weights
correspond to time moments when the steady state solution has
been achieved.

core are given in Figure 19. The impact of innovations v(t + j), lagging j time
steps from the moment t, on the smoothed estimate of the different components of
the model state at time moment t, are shown as functions of the lag j. The solid
line is corresponding to the influence of the standardised innovations on the long
timescale variation µ̂(t)) and the dashed line is corresponding to the influence on

the standardised innovations on the short timescale variation ψ̂(t).
As soon as the steady state solution (22) has been achieved (tconv ≈ 30 to

achieve convergence with 3 decimal digits and tconv ≈ 15 to achieve convergence
with 2 decimal digits), the influence of the innovation v(t + j) on the smoothed
estimate of the model state components at moment t is dependent only on the time
lag j and is completely independent of the size of the innovation itself. This property
puts a strong requirement on the allowable size of the innovations. The historical
innovations (a(s) +

∑t−s
j=1 c

t
−jv(t − j) + ct0v(t), s < t) determine, in principle, the

value of the estimate at moment t and the future innovations
∑n−t
j=1 c

t
jv(t+j) provide

the smoothness of the estimate as function of t. The presence of a number of large
innovations, which correspond to extraordinary observations in comparison with the
surrounding, can strongly bias the estimate of the trend toward the extraordinary
observations. At the same time, the effect of the extraordinary observations on the
short timescale variation will be masked due to the smoothing of the surrounding
innovations in time.
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A local smoothing, with the impact of the innovations depending on their size,
is a better alternative to represent variations of such time series where extraor-
dinary observations in comparison to their surrounding in time are present. A
non-Gaussian linear model with a heavy-tailed assumption on the model error dis-
tribution, such as the one used in this paper to represent the variation of the δ18O,
log(Ca2+) and log(SO2−

4 ) time series from both ice cores, has the desirable prop-
erty.
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Figure 20. The Kalman gain of the trend µ(t) (the first row of
the diagrams) and of the cyclic component ψ(t) (the second row of
the diagrams) under the time-dependent Gaussian model, derived
from the non-Gaussian assumptions on the X ,X ∗ ∼ Hk, k =
1, 2, 3 (shown in the corresponding columns of the diagrams) as
a function of the innovations v(t). The Kalman gain corresponds
to the log(Ca2+) time series from the NGRIP ice core. Under a

time-invariant linear Gaussian modelK trend
t = 0.291 andKcyclic

t =
0.684.

The linear dependency of the µ̂(t) and ψ̂(t) on the innovations (21) holds even
under the time-dependent Gaussian approximating model (19). However, the de-

pendency of µ̂(t) and ψ̂(t) on the observations themselves is not linear anymore,
but expressed via the system of non-linear equations (18).

Under the time-dependent Gaussian approximating model the Kalman filter
does not converge to a steady state solution due to the local variance function

σ2
k(X̂t), k = 1, 2, 3. The dynamics of the conditional variance of ψ̂(t) is dominated

by the time fluctuations of the local variance function, which is a function of the
cyclic component residuals. One example of the time fluctuations of the local
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variance function σ2
k(X̂t), k = 1, 2, 3 is shown on Figure 17 (the diagram to the

left). The dynamics of the conditional variance of µ̂(t) is mainly determined by the
deterministic time propagator (σ2

ξ is quite small in comparison to other sources of

variation).

Pt+1 = TP ′tLt + (σ2
ξ , 0, σ

2
k(X̂t), σ2

k(X̂ ∗t ))′

The conditional variance Pt enters non-linearly into the Kalman gain and makes it
dependent on the size of the cyclic component residual X̂t.

(K∗)trendt+1 =
d1

d1 + d2 + σ2
ε

(K∗)cyclict+1 =
d2

d1 + d2 + σ2
ε

(23)

where

d1 =(p11)t + (p13)t + σ2
ξ

d2 =(p13)t + (p33)t + σ2
k(X̂t) (k = 1, 2, 3).

Here (pij)t is the corresponding element of the one-step-forward deterministically
developed analysis variance from time moment t, i e. TPtL

′
t. Notice that Ft+1 =

d1 +d2 +σ2
ε . For the large values of the cyclic component residuals d2 will dominate

Ft+1 and will thus force (K∗)cyclict+1 to come close to 1.
For comparison, we may note that in the case of the Gaussian linear model,

the dynamics of the conditional variance of the model state does not depend on the
amplitude of residuals.

P̃ = T P̃ ′Lt + (σ2
ξ , 0, (1− ρ2)σ2

ψ, (1− ρ2)σ2
ψ)′.

After the steady state solution is attained, the Kalman gain converges to a constant
value, where d1 = p̃11 + p̃13 + σ2

ξ and d2 = p̃13 + p̃33 + (1 − ρ2)σ2
ψ. Here (p̃ij) is a

corresponding element of the steady state matrix P̃ .
The total impact of the new observation yt+1, attributed to the model state is

dependent on the assumptions about the observation error

(K∗)trendt+1 + (K∗)cyclict+1 = 1− σ2
ε

d1 + d2 + σ2
ε

.

For error-free observations (as the time series of δ18O, log(Ca2+) and log(SO2−
4 )

observations could be considered to be) we will have

(K∗)trendt+1 + (K∗)cyclict+1 = 1.

One example of the Kalman gain Kt = TK∗t under the time-dependent Gauss-
ian approximating model is shown in Figure 20. The Kalman gain is derived for the
log(Ca2+) time series from the NGRIP ice core. The estimates of the unknown
parameters in the model specification are obtained by maximising the correspond-
ing log-likelihood and are given in Table 6. Performing the global smoothing, the
Kalman gain of the trend component K trend

t = 0.291 and for the cyclic component

Kcyclic
t = 0.684 under the steady state solution. One can notice a clear dependency

of the Kalman gain on the magnitude of the innovations. The large magnitude
innovations will have a much smaller impact on the estimate of the µ̂(t) and much

a larger impact on the ψ̂(t) than they would have under the time-invariant linear
Gaussian model. How small the innovations are and thus how large influence they
will have on the estimate of the long and the short timescale variation components
will be determined from the surrounding observations in time and depend on the
particular choice of the local variance function σ2

k(X̂t).
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Figure 21. The inverse innovation variance as a function of the
innovations v(t) of the log(Ca2+) time series from the NGRIP
ice core under the time-invariant linear Gaussian model (“·”) and
under three different non-Gaussian distributional assumptions on
the X̂t, X̂ ∗t : the t-distribution (“+”), the mixture of two normal
densities (“*”) and the Cauchy distribution (“o”.)

Under the time-dependent approximate Gaussian model the components of

the residuals ξ̂t, X̂t, X̂ ∗t are certain additive combinations of the future innovations
{v(t+ 1), . . . , v(n)}. .

ξ̂t =
σ2
ξ

Ft+1
v(t+ 1) +

n−1∑

j=t+1

σ2
ξ [at+1,j ]1v(j + 1)

X̂t =
σ2
k(X̂t)

F (t+ 1)
v(t+ 1) +

n−1∑

j=t+1

σ2
k(X̂t)[at+1,j ]3v(j + 1)

X̂ ∗t =

n−1∑

j=t+1

σ2
k(X̂ ∗t )[at+1,j ]4v(j + 1)

(24)

where [at+1,j ]l is the l-th element of the vector at+1,j = (
∏j
i=t+1 L

′
i)Z
′(F (j +

1))−1. The relationship between the components of the residuals and the innova-
tions is non-linear because the coefficients in front of the innovations are functions of
the residuals themselves. As it was already mentioned, the local variance function
σ2
k(X̂t) is the dominating part in the expression of the innovation variance F (t+1).

As a result, the smoothed cyclic component residual X̂t is in a very good agreement
with the innovation v(t+1) (the coefficient in front of v(t+1) in the expression of X̂t
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Table 9. The Box-Ljung statistics Q(15) based on the first 15

autocorrelations of {ξ̃t, 0 < t < n} and {X̃t, 0 < t < n} residuals
corresponding to the δ18O, log(Ca2+) and log(SO2−

4 ) time series
from the NGRIP ice core under the time-invariant linear Gaussian
model (N ) and under the time-dependent Gaussian models derived
from the heavy-tailed distributions H1, H2 and H3, assumed for
the cyclic model error component.

substance disturbance distribution Q(15) FQ(15) c(jmax)

δ18O

N 5104.50 - 0.997

ξ̃ H1 5129.00 - 0.994
H2 5267.11 - 0.995
H3 5587.10 - 0.997
N 14.57 0.528 -0.079

X̃ H1 18.85 0.778 -0.089
H2 16.24 0.645 -0.082
H3 17.36 0.696 -0.089

log(Ca2+)

N 4862.30 - 0.995

ξ̃ H1 4613.20 - 0.989
H2 5179.60 - 0.992
H3 5530.50 - 0.995
N 22.34 0.891 -0.135

X̃ H1 29.43 0.987 -0.165
H2 29.83 0.988 -0.159
H3 30.40 0.989 -0.166

log(SO2−
4 )

N 5128.10 - 0.997

ξ̃ H1 4996.80 - 0.995
H2 5455.90 - 0.997
H3 5650.10 - 0.995
N 16.44 0.564 -0.106

X̃ H1 22.33 0.891 -0.123
H2 19.25 0.800 -0.118
H3 22.65 0.900 -0.128

is close to 1). At the same time the influence of the innovations {v(t+2), . . . , v(n)}
on X̂t is negligible in comparison with the influence from v(t+ 1) due to the nearly
noise-free observations. This is why the dependency of the covariance function Pt+1

on the cyclic model component residual X̂t makes the Kalman gain Kt+1 and the
innovation variance F (t+ 1) to be dependent on the innovation v(t+ 1).

One example of the inverse innovation variance (F (t))−1 as a function of the
innovations v(t) is presented in Figure 21. Under the time-dependent Gaussian
approximating model, the innovation variance increases with the magnitude of in-
novations and is not constant anymore, as in the case of the time-invariant linear
Gaussian model. As it can be seen from the diagnostics plots (Figure 12 and Fig-
ure 13), the dependency of the innovation variance on the innovation magnitude
improves the fit of the statistical model.

The cyclic component residuals {X̂t, 0 < t < n}, all of them being functions of
the future innovations, are nearly serially uncorrelated (see Table 9 and compare
with Figure 4) due to the particular property of the cyclic component residual

X̂t ≈ v(t+ 1). Therefore, the structure of the short timescale variation is captured
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Table 10. The averaged zero-lag cross-correlation between the

trend and the cyclic component residuals ρ0(ξ̂t, X̂t) under the dif-
ferent distributional assumptions on the cyclic model error. The
results correspond to the data from the NGRIP ice core. The
cross-correlations with maximal magnitude ρmaxτ∗ are given as well.

distribution
δ18O log(Ca2+) log(SO2−

4 )
ρ0 ρmaxτ∗ : max|ρτ | ρ0 ρmaxτ∗ ρ0 ρmaxτ∗

N -0.089 -0.150 -0.071 -0.149 -0.110 -0.167
H1 0.009 0.073 0.013 -0.090 -0.018 -0.084
H2 -0.012 0.077 -0.014 -0.082 -0.038 -0.081
H3 -0.013 0.079 -0.024 -0.071 0.032 0.096

through the dynamical propagator (3) and is summarised in the parameters ρ and
λc estimated from data.

On the other hand, the estimate of the trend component residual ξ̂ is just a sum
of a large number of small impacts from future innovations without any dominant
member in the sum. This is why the Gaussian assumption on the distribution

of ξ̂t is reasonable. The same dynamical model is used for describing the time
development of the large timescale variation (equation (2)) for all of the time series
in this paper, which essentially expresses a requirement on the smoothness of the

estimate. Therefore the trend component residuals themselves {ξ̂t, 0 < t < n}
contain the particular structure of the data in the form of their autocorrelations.

Table 9 contains the summary of the Box-Ljung statistics Q(15) based on the
first 15 auto-correlations of the standardised trend component and cyclic component
residuals, corresponding to the δ18O, log(Ca2+) and log(SO2−

4 ) time series from the
NGRIP ice core under the time-invariant linear Gaussian model (N ) and under
the time-dependent Gaussian model derived from the heavy-tailed assumptions on
the distribution for the cyclic model error. Besides the observed values of Q(15) sta-
tistics, included are the corresponding P -values FQ(15) (were appropriate) and the
maximal absolute value of the autocorrelations c(j)max = max1≤j≤15|c(j)|. Some
problems can be noticed in the reconstruction of the structure of the log(Ca2+)
time series using the time-dependent Gaussian approximating model. A very weak
serial autocorrelation exists among the cyclic component residuals {X̂t, 0 < t < n}
on the expense of a minor reduction of the autocorrelation of the trend compo-

nent residuals {ξ̂t, 0 < t < n}. Notice, the series of Ca2+ records were not used
explicitly in the synchronisation procedure.

The time-dependent Gaussian approximating model provides a nearly orthog-
onal decomposition of the total variation on the long and on the short timescale
variations in a similar way as hierarchical ANOVA type models do. The time-

averages of the zero-lag cross-correlations ρ(ξ̂(t), X̂t) are presented in Table 10 for
all combinations of time series (δ18O, logCa2+ and logSO2−

4 ) from the NGRIP
ice core and of distributions: Gaussian and heavy-tailed H1, H2, H3. They all
are small, and the decomposition is particulary successful in this respect under the
heavy-tailed distributional assumptions.

The reason for the orthogonality is a sharper scale separation under the time-
dependent Gaussian approximating models for which the X̂t coincide to a large

extent with the innovations v(t + 1) (equation (24)) at the same time as the ξ̂t
contains impact from a large number of the future innovations {v(s), t < s < n}.
Notice that the innovations {v(t), 0 < t < n} are nearly serially uncorrelated also
under the time-dependent Gaussian approximating model, (see Table 8).
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It is important to notice that such a perfect separation of scales, with nearly
orthogonal estimates for the long and the short timescale variations, is possible
mainly for time series nearly free from observational noise (σ2

ε ≈ 0), such as the
δ18O, log(Ca2+) and log(SO2−

4 ) time series. In case stronger observational noise,
comparable with other sources of the variation, would be present, the averaging
over several future innovations would be necessary for the estimation of the cyclic
model component residuals in order to reduce impact of the noise. It should be
mentioned that a linear non-Gaussian model with a heavy-tailed assumption on
the distribution for the model error component should be used with great care in
the treatment of noisy observations, such as, for example, the MS− series from the
NGRIP ice core. Weaker restrictions on the variations of the model component
residual may allow the observational noise to influence the estimate of the model
components and to make the predictions loss reliability.

5. Discussion on statistical modelling and Notes on the
Interpretation of time series model.

5.1. Discussion on the statistical modelling. A large collection of computa-
tionally efficient techniques for treatment of the time series models has been devel-
oped for linear Gaussian models. However geophysical time series often do not fit
linear Gaussian models. One may transform a non-Gaussian stochastic variable to
become more Gaussian-like and in this way one preserves the possibility to apply
the efficient computational algorithms. A scaling of a non-Gaussian variable by
a variance dependent on the magnitude of the variable is one approach that has
been applied in meteorology. The development of data assimilation schemes for hu-
midity is one example of research in this direction (Elias Holm, ECMWF, personal
communication).

A similar method has been applied in this paper treating some geological series
of measurements from the ice cores drilled at two different locations (NGRIP and
GISP2) in Greenland: δ18O (commonly used as a temperature proxy), log(Ca2+)
(Ca2+ is commonly used as a terrestrial dust proxy) and log(SO2−

4 ) (the sulfate
depositions). A linear Gaussian model with a time-dependent evolution of the co-
variance of the model state conditional on observations is derived in such a way
that the variance of innovations (a one-step-forward prediction error) becomes de-
pendent on the innovation size. A heavy-tailed distribution is used as a framework
to create the dependency.

After a diagnostic check and an investigation of the variation decomposition
had been carried out, it could be concluded that the t-distribution was the only
one from the four initially tried heavy-tailed distributions which can be used as a
reference for deriving the time-dependent Gaussian approximating model to capture
the variability of the δ18O, log(Ca2+) and log(SO2−

4 ) time series from each ice
core. The mixture of two normal densities fails in the variation decomposition,
allowing the long timescale variation to influence the estimate of the short timescale
variation. The Cauchy distribution fails already in the fitting of the statistical
model. It scales the innovations too severely and makes initially heavy-tailed, non-
Gaussian, innovations become light-tailed, non-Gaussian, ones. The general error
distribution provides a variation decomposition which does not differ much from
the one obtained under the Gaussian assumptions.

Figure 22 shows the estimated long timescale variation µ̂(t) together with the

systematic part Zα̂(t) = µ̂(t)+ ψ̂(t) for the δ18O, the log(Ca2+) and the log(SO2−
4 )

series from the NGRIP and GISP2 ice cores when the Student- t distribution was
used to derive the time-dependent Gaussian model. One should take into account
that the estimated variation decomposition is biased in the beginning and at the
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Figure 22. The estimated long (µ̂(t)) and short (ψ̂(t)) timescale
variation of the δ18O (the temperature proxy, upper plot), log(Ca2)
(the terrestrial dust proxy, middle plot) and log(SO2−

4 )) (the non-
sea salt sulfate, lower plot) time series from the NGRIP (solid
thick curves) and from the GISP2 (dashed thick curve fot the
trend and solid thin curve for the short timescale variation) ice
core under the time-dependent Gaussian model, derived from the
Student- t distributional assumptions (H1 with ν = 4) on Xt,X ∗t .

end of the time period. Both future and past innovations, lagging up to ≈ 30 time
steps (1 time step = 200 years), influence the estimation of the trend.

One of the main contributions of this paper is that we show that the linear
Gaussian model with a time-varying variance can be used for treatment of essen-
tially non-linear time series. All six time series represent systems which has two
different regimes of behaviour: the relatively smooth background signal, originating
from continuous processes on Earth, and the abrupt deviations from the background
signal, which can originate from some momentary external or internal forcing, such
as volcanoe eruptions. The advantage of analysing the time series via a Gaussian
linear model is that the Kalman filter and the Kalman smoother recursions can be
used as efficient computational tools to perform the variation decomposition and
to estimate parameters.

Even though geological series are modelled in our paper, the investigations are
carried out from the perspective of data assimilation and they touch essential sub-
jects of data assimilation. From the model perspective the splitting of observations
into these two different regimes corresponds to the splitting of observations into
those that the model is able to predict (the background signal) and those that the
model is not able to predict (the “alternative” regime).
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Figure 23. Upper part: The estimated long timescale vari-
ation µ̂(t) for δ18O (solid curve), log(Ca2+) (dashed curve)
and log(SO2−

4 ) (dash-dotted curve) from NGRIP (to the left)
and GISP2 (to the right). Lower part: The time-averaged

estimated cross-correlations ψ̂(t) for ρ̂τ (δ18O), log(Ca2+))
(solid curve), ρ̂τ (δ18O, log(SO2−

4 )) (dashed curve) and
ρ̂τ (log(Ca2+), log(SO2−

4 )) (dash-dotted curve) from NGRIP
(to the left) and GISP2 (to the right). The short timescale
variation is estimated under the H1 distributional assumptions on
Xt,X ∗t .

The background signal is modelled through a time-invariant dynamical propa-
gator. A non-stationary random walk process with second-order requirements on
smoothness is used to model the trend, and a stationary cyclic (wave) process is
used for modelling the short timescale variation of the background signal. The
abrupt deviations from the background signal are modelled via a stochastic forcing
of the dynamical model for the short timescale variation. The stochastic forcing is
Gaussian with zero mean and a time-dependent variance. To describe the depen-
dency of the variance on time we introduce a concept of a local variance function.
The local variance function is iteratively estimated from the data and is derived
from the density of the t-distribution. The on-line estimation of the conditional
variance of the model state, given observations, to improve efficiency of the data
assimilation procedure is a well-known approach in the meteorological community
(Dee, 1995).

Another important contribution of this paper is that we discuss the properties
and the mechanism of the local smoothing, which lies behind the total variation
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Table 11. The parameter estimates, the transformed parameter
(the log-transform for σξ, σψ and λc and logit transform for ρ) esti-
mates and the standard errors (stderr) of the transformed param-
eters estimates under the time-dependent Gaussian model derived
from the H1 distributional assumptions on the Xt,X ∗t for the δ18O,
the log(Ca2+) and the log(SO2−

4 ) series from each ice core. The
estimated degree of freedom ν = 4 for each 6 series of observations.
In the horizontal subsections of this table upper rows correspond
to the NGRIP ice core and lower rows correspond to the GISP2
ice core.

substance σ̂ξ σ̂ψ ρ̂ λ̂c

δ18O
0.009 -4.69 (0.44) 1.35 0.30 (0.49) 0.88 1.96 (0.20) 0.13 -2.10 (0.27)
0.010 -4.59 (0.38) 1.20 0.18 (0.71) 0.81 1.45(0.17) 0.08 -2.60(0.44)

log(Ca2+)
0.006 -5.11(0.29) 0.69 -0.37 (0.74) 0.90 2.18 (0.17) 0.12 -2.16 (0.33)
0.006 -5.19 (0.36) 0.78 -0.24 (0.69) 0.90 2.16(0.19) 0.10 -2.26 (0.39)

log(SO2−
4 )

0.003 -5.72 (0.41) 0.53 -0.64 (1.02) 0.85 1.74 (0.25) 0.13 -2.01 (0.51)
0.003 -5.93 (0.81) 0.45 -0.80 (0.48) 0.82 1.52 (0.27) 0.12 -2.14 (1.35)

decomposition and which originates from the time-dependent Gaussian approxima-
tion of the non-Gaussian state space model. Under the approximating model, the
time fluctuations of the local variance function dominate the dynamics of the con-
ditional variance of the cyclic model component. The local variance function works
as a local, time-dependent, measure of the uncertainty about the dynamical devel-
opment of the model and it controls the influence of newly coming observations on
the estimates of the different model state components. These estimates are given
an impact from coming observations relative to the local (in time) estimate of the
uncertainty about their dynamical development. The larger the relative uncertainty
of the particular component about its dynamical development, the stronger will the
impact be of the new coming observation just on this component. Discussing the
mechanism of the local smoothing we stress the core properties of data assimilation.
The data assimilation by linear Gaussian models always contributes to reduction of
the uncertainty and the data assimilation is based on the relative (but not absolute)
measure of the uncertainty.

The local variance function which we use in our paper as the way to assign
the time-dependent (as opposite to the time-invariant) conditional variance of the
model state, given observations, has a number of advantages. The local variance
function is derived in such a way that the nearly deterministic dependency between
innovations and the cyclic component residuals is established. This dependency
allows us to transform the inability of model to predict observations, expressed
in the space of observations through innovations, into the uncertainty about the
dynamical development of the short and long timescale variations, expressed in
the space of model states through the cyclic component residual. We should stress
that the exceptional property of the δ18O, log(Ca2+) and log(SO2−

4 ) series of being
almost free from observational noise makes the relationship between the innovations
and the cyclic component residuals very close to a linear deterministic one and
makes the method so illustrative.

As we have shown the estimated long µ̂(t) and short ψ̂(t) timescale variations
are nearly mutually uncorrelated. The auto-correlated trend component residuals
contain the specific structure of the long timescale variation. The cyclic component
residuals, i.e. the ones corresponding to the short timescale variation, are nearly
mutually uncorrelated. The specific structure of the short timescale variations
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is absorbed into the dynamical propagator and is statistically summarized in the
estimate of the wave frequency λc and the “damping factor” ρ.

More extensional study should be performed in order to understand if the total
variation of non-linear time series can always be decomposed into nearly mutually
uncorrelated the long and the short timescale variation components in presence
of observational noise. The deficiency of our study is certainly the over-simplistic
dynamical and statistical models, which are chosen to describe variability of these
geological time series. The multivariate analysis has not been carried out either.
But again we would like to stress that the core of the study is not to model the
geological series, but to outline and investigate certain problems of data assimilation
working with non-Gaussian systems, the influence of the model error specification
on the estimate of the model state being one of them.

Reconstruction of the data generating mechanism is the unconditional inference.
Under it, the observed time series of geological measurements is interpreted as one
realisation of a stochastic process. The selection of the non-Gaussian model (12) to
describe the variation of the δ18O, log(Ca2+) and log(SO2−

4 ) time series is largely
based on convenience. The decomposition of the total variation of a time series into
the long and the short timescale variations is a conditional inference. Of cource,
the statistical conditional inference is also based on subjective assumptions about
the data generating mechanism.

The time-dependent Gaussian approximating model (19) is valid under the

conditional environment only. The local variance function σ2
k(X̂t) is a function of

observations themselves. Furthermore, the time-dependent Gaussian model (19) is
just an approximation of the original model (12). But working in the conditional
environment, these two essentially different statistical models provide the same
solution for decomposing the total variation into the different timescales.

5.2. Notes on the Interpretation of the time series models. The statistical
comparison of the δ18O, log(Ca2+) and log(SO2−

4 ) series is summarised in Figure
22, Figure 23 and Table 11. Figure 22 compares the same chemical measurements
from the NGRIP and GISP2 ice cores. Figure 23 compares the different chemical
measurements within each ice core. For the basic parameters, being the variances
of the model error components σ̂ξ and σ̂ψ, the “damping” factor ρ̂ and the spectral
frequency of the cyclic process λc, Table 11 shows the estimate of the original and
the transformed parameters (the log-transform for σξ, σψ and λc and the logit
transform for ρ) together with the standard errors of the transformed parameters
in parentheses.

The standard errors of the estimates of the parameters are quite large. The
too simplistic dynamical and statistical models can provoke the loss of precision
in the estimation of the parameters. Still more important is the fact that the
estimated variance of the (transformed) parameters estimates is just more or less
crude approximation to the true uncertainty. In fact the estimated variance is a
diagonal of the inverse of the Hessian (a “curvature”) of the corresponding likelihood
at the point of the estimates of parameters (argmax of the likelihood). Therefore,
the estimated values of the parameters should be taken with care.

Each of four transformed parameters log σξ, log σψ, logitρ and log λc could be
classified according to two factors, namely ice core (NGRIP or GISP2) and mea-
sured substance (δ18O, logCa2+ and logSO2−

4 ). An ANOVA-type analysis (the
analysis of variance) of this two-factor design is performed as a crude statistical
test for significant differences between the estimates of the parameters fitted to
these six different time series. Performing this ANOVA-type analysis the standard
errors are used to get crude variance estimates. The influence of these two factors
on all four responses (the estimates of the corresponding transformed parameters)
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is assumed to be additive. For each parameter the mean square of interaction be-
tween these two factors is much smaller than the standard error squared. Very
small observed values of the mean squared interaction in comparison to the stan-
dard error squared can indicate that the standard error are unrealistically large.
However, because of small degree of freedom with six realisations of each response
only, we still prefer to stay with standard error as a crude precision estimate.

Based on the current precision of the transformed parameters estimates, the
qualitative conclusions are as follows. There is no indication found in data that
these parameters are different between the NGRIP and GISP ice cores. Most
of transformed parameters ( log σξ, log σψ and logitρ, but not log λ) show a sta-
tistically significant (or very close to it) difference between substances. Finally,
considering logratio between variances, namely log σψ − log σξ, there is no substan-
tial variation in it at all, and thus there is no indication of neither ice core nor
substance effect on the logratio.

The short timescale variations are remarkably similar for all 6 time series. The
measurements of δ18O are lower for the NGRIP ice core than for the GISP2 ice
core. This is consistent with the fact that the NGRIP ice core was drilled north of
the GISP2 location. The essential differences in the behaviour of the time series
are absorbed into the estimated long timescale variation µ̂(t). The long timescale
variation of the δ18O from NGRIP seems to lag (statistically insignificantly) the
one from GISP2. The difference in lag becomes smaller and the difference in
absolute value increases going back in time. For making any conclusion about
systematic differences of the climate at these two locations where these two ice cores
were drilled out, many factors must be taken into account, such as, for example,
the terrain differences at these two locations, the differences in the processing of
measurements during these two projects and the procedure of synchronisation.

The measurements of log(SO2−
4 ) are in a strong inverse correspondence with

the measurements of δ18O for both ice cores. Smaller amount of precipitation
during periods with lower temperature in high latitudes and stronger winds due
to stronger spatial temperature gradients can contribute to increase, with de-
creased temperature, the concentration of the impurities deposited in the snow
and ice, and thus making the inverse relationship between log(SO2−

4 ) and δ180
clear. The short timescale variations of the log(Ca2+) and the log(SO2−

4 ) series
are remarkably similar to each other in structure and strongly cross-correlated
between substances for each ice cores and between ice cores for each substance.
The time-averaged zero-lag cross-correlation between the short timescale variations
ρ0(log(Ca2+), log(SO2−

4 )) = 0.96 on theNGRIP ice core and ρ0(log(Ca2+), log(SO2−
4 )) =

0.94 on the GISP2 ice core. At the same time, the difference in the long timescale
variation between the log(Ca2+) and log(SO2−

4 ) decreases with increasing depth
on the NGRIP ice core and it increases with increasing depth the GISP2 ice core.
Because the measurements of the Ca2+ are considered as a terrestrial dust proxy,
the dissimilarity in the estimated trend behaviour may indicate that the contribu-
tion from the marine biological sources (through the oxidation of dimethylsulfide)
to the deposition of the SO2−

4 were different at these two locations before 50-60 ky
B.P.

We have not carried out any further statistical analysis of the MS− time series
from the NGRIP and the GISP2 ice cores, for example, neither a comparison
between the MS− time series from these two ice cores nor between the MS− and
the δ18O, log(Ca2+) and log(SO2−

4 ) time series within each ice core. The fact
that the linear time-invariant Gaussian model can capture the main variability of
the MS− time series from the GISP2 ice core looks reasonable and in agreement
with the data processing. The averaging of the high-resolution data over 200 years
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periods, provided that strong deviations from the background signal are absent, can
make the time series closer to a Gaussian one. The MS− measurements represent
solely the result of marine biological activity. It would be unreasonable to expect
a clear linear dependence between the MS− and δ18O measurements and thus
no strong cross-correlations between the MS− and the δ18O time series should
be expected. Certainly, a non-linear dependence, which does not result in a high
cross-correlation, exists between the series.

The behaviour of the MS− time series from the NGRIP ice core is completely
different from the behaviour of the other time series analysed in the paper. The
MS− time series from NGRIP contains a large observational noise. Deeper inves-
tigations of, in the first hand, the data processing mechanism, the spatial variability
of the impurities deposited in the snow and ice and the post-depositional processes
going on in the ice/snow, should be performed in order to understand the reason
for the difference in behaviour between the MS− time series from the NGRIP and
the GISP2 ice cores.

5.3. Conclusions. The research carried out in this paper is a case study of geo-
logical time series. At the same time conclusions of this study are quite general
and are extendable to other areas of geophysics.
• Non-linear time series can be approximated by linear Gaussian models with (par-
tially) locally estimated parameters.
• The Kalman filter and Kalman smoother recursions can be used as en effi-
cient computational algorithm to estimate parameters fitted to non-linear and non-
Gaussian time series.
• A relative measure of uncertainty is a core of data assimilation by linear Gaussian
models. The data assimilation by linear Gaussian models always contributes to re-
duction of uncertainty with the strongest impact on largest uncertainty component.
• The density of heavy-tailed distributions can be used for an on-line estimation
of innovation variance. Simple diagnostic check helps to select the heavy-tailed
distribution that fits time series.
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