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Abstract

We demonstrate that a number of well-established multivariate regres-
sion methods for prediction are related, in that they are special cases of
basically one general procedure. We try a more general method based
on this procedure, with two metaparameters. In a simulation study,
based on a latent structure model, we compare this method to ridge re-
gression, multivariate PLSR and repeated univariate PLSR. For most
types of data sets studied, all methods do approximately equally well.
There are some cases where RR and LSRR yield larger errors than the
other methods, and we conclude that one-factor methods are not ad-
equate for situations where more than one latent variable are needed
to describe the data. Among those based on latent variables, none of
the methods tried is superior to the others in any obvious way.
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1 Introduction

1.1 Connections between regression methods

In regression, a substantial number of alternatives to the ordinary least squares

method (OLSR) have been developed with the aim of reducing the variance that

stems from near-collinearities among the explanatory variables. Well-known meth-

ods, at least for univariate response variables, are principal components regression

(PCR), partial least squares regression (PLSR), ridge regression (RR), and contin-

uum regression (CR); see Stone & Brooks (1990), Frank & Friedman (1993), Brown

(1993), Sundberg (1999), Kalivas (1999) or de Jong et al (2001) for reviews. Nat-

urally, different methods will yield different answers to a specific problem, and in

order to avoid unnecessary confusion, it is desirable to understand why results differ,

and to be able to explain why one alternative is likely to be preferable to another

one, in a given situation. In addition to simulation studies, a number of theoretical

results have been deduced that compare methods to each other. We know, for ex-

ample, that PLSR is a shrinkage regressor (de Jong, 1995; Goutis, 1996), and also

that PLSR yields larger correlation than PCR with the same number of factors (de

Jong, 1993a). In this context we may also mention the early work by James & Stein

(1961) concerning the inadmissibility of OLSR in some situations, and the proof by

Hoerl & Kennard (1970) that ridge regression with a ridge parameter small enough

will have smaller mean squared error than OLSR. Despite these and other results,

many questions in the field of method comparison remain open, particularly with

regard to the case of multivariate response variables.

One way to shed light on the relation between methods is to construct an indexed

class of regressors, {Bα ; α ∈ A}, where each Bα denotes a regression procedure

(cf. Eq. 1 below). A well-known example is Stone & Brook’s (1990) continuum

regression, CR, where Bα stands for a regressor defined as

Bα(X, y) ∝ arg max
|c|=1

{|c′X ′y| |Xc|α/(α−1)−1}.

The index set A is the interval [0, 1]. The set of regressors includes OLSR (α = 0),

PLSR (α = 1/2), and PCR (α = 1). Another example is ridge regression (RR):
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Bα(X, y) = bRR = (X ′X + αIp)−1X ′y, where A = [0,∞], and its modified form

LSRR (Björkström & Sundberg, 1999). There is a close connection between the two

constructions CR and RR (Sundberg, 1993; de Jong & Farebrother, 1994). Other

examples are continuum power regression, CPR (Wise & Ricker, 1993), and prin-

cipal covariates regression, PCovR (de Jong & Kiers, 1992), the latter particularly

designed for the case where the response is multivariate.

In addition to enabling comparisons, frameworks with a continuous “metapa-

rameter” α can open new methods for regression. By optimizing over α, i.e, using

the value that is best in the light of the available data, one may achieve a regression

method that is better than the traditional ones. However, the freedom introduced

by a continuous parameter implies a risk for overfitting.

In the present paper, we define a class of regression procedures indexed by a

two-dimensional metaparameter (αx , αy). In principle, this two-parametric set can

be used to define a new regression method by optimizing over A = R2. However, we

emphasize that we are not convinced about the superiority of this method as a tool

for multivariate prediction – rather, our simulations below indicate that SIMPLS

does at least as well. To say anything more conclusively about the prediction ability

requires more case studies than will be presented here. What we claim to have proved

is an optimality result: Under a natural definition of “best”, the best regressor can

be found within the quite limited class that we have defined.

Nowadays, many regression problems involve more than one response variable.

There is always the option to predict each of the responses without regard to the

others. However, there are good reasons for avoiding this. A gross error in the

training data may not be noticed unless the y-variables are analyzed simultane-

ously. See for example Breiman & Friedman (1997) for more arguments against

mere concatenation of univariate predictions. The number of multivariate regres-

sion methods proposed and available has increased, and the question arises if they

can also be tied together within a common framework by introducing metaparame-

ters. An early attempt at this was Brooks & Stone (1994) with their joint continuum

regression (JCR), being an extension of CR. Unfortunately, these authors concluded

that jointness seldom pays. Other approaches towards the same end have been taken
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by Breiman & Friedman (1997) with their “curds and whey” method, applying dif-

ferent shrinkage to different canonical coordinates, and by Burnham et al (1996),

building frameworks that include canonical correlation regression and reduced rank

regression. In the present paper, we suggest another way of bringing methods into a

common frame, by generalizing the one-dimensional pathway of ridge regressors to

a two-dimensional surface.

Our paper is organized as follows. After notations and terminology, we discuss

the concept of factors, or latent variables, implicit in several regression methods.

From a computational point of view, latent variables can be identified with linear

combinations of the x- or y-variables. In Section 2 we show that most regression

methods based on latent variables fall within a set that can be parameterized with

two real numbers. Some well-known methods are shown to be special cases. We

define a new regression method based on this principle, and in Sections 3 and 4 we

compare it empirically with other methods in terms of their predictive ability. This

spreads light also on the other methods.

1.2 Notation and terminology

Training data consist of n pairs, (xi , yi), 1 ≤ i ≤ n, where xi is a p-vector, xi ∈ Rp,

and yi is a q-vector, yi ∈ Rq. The task is to use training data to specify an algorithm

or function f such that f(x0) is likely to be a good predictor of y0, where (x0 , y0)

represents a new pair with known x0 but unknown y0. The training data are most

conveniently represented by a p-vector x̄ = Σxi/n and a q-vector ȳ = Σyi/n of

sample means, together with two matrices X (n×p) and Y (n×q) of centered data,

where each row corresponds to a pair (xi , yi). We restrict our search to functions

f(x0) that are linear in x0 for fixed X and Y , and centered at (x̄ , ȳ), that is, we can

write

f(x0) = ȳ + B(X, Y )′ (x0 − x̄) . (1)

We use the term method for a function B intended for use in equation (1). A method

is thus a matrix-valued function of two matrix arguments, B = B(X, Y ). For in-

stance, we speak of the “method of ordinary least-squares” B(X, Y ) = (X ′X)−1X ′Y .
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Alternatives to OLSR involve metaparameters. By a metaparameter we mean

any variable other than X and Y that has to be specified in order to evaluate the

function B(X, Y ). A metaparameter can be discrete, for example the number of

factors to include in PCR or PLSR, or continuous, such as the parameter in RR or

CR, and it may be vector-valued.

The term “regression method” is often used vaguely, ignoring specification of how

to set the metaparameter. For our present discussion, it is necessary to maintain

a distinction between methods and “procedures”: A procedure describes how to

obtain the matrix B, given X and Y and given the value for any metaparameter

involved. A procedure may be denoted Bα(X, Y ) or B(X, Y ;α) where α denotes

the metaparameter. A procedure with a metaparameter gives rise to a method only

when it is specified how to choose the metaparameter. A “selector function” yields

α as a function of the training data:

α = αbest(X, Y ) (2)

The expression

B(X, Y ) = B(X, Y ; αbest(X, Y )). (3)

depends only on X and Y and thus defines a method. We use the index “best” in

equation (2), since the rule for αbest(X, Y ) normally is based on optimizing some

function of X, Y , with respect to α. The most usual choice is cross-validation based

on leaving out one observation at a time (Stone, 1974):

αbest(X, Y ) = argminα PRESS(α) = Σn
i=1|yi − ŷ\i|2, (4)

where

ŷ\i = ȳ\i + B(X\i , Y\i ;α)′ (xi − x̄\i).

Index \i means that observation i was excluded from the training data. Other

functions αbest(X, Y ) also occur. For example, in RR the rule can be based on the

ridge trace.
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Each coordinate of the vector x is called an x-variable or explanatory variable, each

coordinate of y is called a y-variable or response variable. We can form new ex-

planatory variables by taking linear combinations of the given ones. We denote

them Σjcjxj = x′c (= c′x), where the p-vector c is said to be a coefficient vector.

Similarly, new response variables can be formed as Σkdkyk = y′d.

1.3 Factor-based methods

A similarity between many methods is that the function B of equation (1) is con-

structed in an iterative manner, by deriving so-called “factors”, or “components”.

Canonical Correlation Regression (CCR), PLSR and PCR are a few examples of this

kind. In the multivariate case, the procedure is as follows. A first linear combination

of x-variables and a first linear combination of y-variables are selected, denote them

x′c1 and y′d1, such that the latter is well predicted by the former. The criterion by

which the pair is optimal specifies the procedure. Further pairs (x′c2, y′d2), (x′c3,

y′d3), ... are then found, all optimal under additional constraints, which typically

demand that each new predictor x′cl be uncorrelated with all the previous ones,

x′c1, ... x′cl−1. Correlation refers to the training data, of course, so the constraint

is equivalent to the two n-vectors Xci and Xcj being orthogonal whenever i 6= j.

The procedure is repeated until some stopping criterion is met, yielding a set of

(say) a ≤ p mutually uncorrelated regressors. Note that throughout the iterative

procedure, there is no requirement of orthogonality between the vectors Y dl, or even

of linear independence, between them. Only in special cases are the variables Y dl

uncorrelated, for example in CCR.

When a pairs have been determined, ordinary multivariate least squares regres-

sion is used to construct a predictor for y. In terms of linear algebra, one constructs

an n× a matrix

T = XC (5)

from the p× a matrix C of columns c1, . . . , ca, and analogously an n× a matrix

U = Y D. (6)

The predictor (1) is constructed by OLSR of U on T , that is, one computes B∗ =
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(T ′T )−1T ′U , and transforms back to the original variables, obtaining

B = CB∗D
+, (7)

where D+ is the Moore-Penrose inverse of D.

The number a of factors to use is not specified within this construction. We

regard a as a metaparameter, and note that the procedure described becomes a

method only jointly with some stopping rule for a.

2 A procedure with two continuous metaparameters

2.1 Variance as criterion for selection

There are many ways to define what makes a pair (x′c, y′d) optimal. Firstly, and

most obviously, the correlation between y′d and x′c is a relevant measure. Secondly,

it also seems reasonable that the sample variance of y′d should be considered (i.e, the

norm of the vector Y d). If a certain linear combination y′d is nearly constant over

the training data, the best predictor of y0
′d might be to use this constant regardless

of x0. Thirdly, one should also consider the variance of the linear combination x′c

(i.e, the norm of the vector Xc). The arguments for avoiding regressors with small

sample variance are well-known and need not be repeated here.

Many succesful regression methods are based on the three criteria listed above.

For example, PLSR as well as PCR are based on discarding components with small

|Xc| or |Y d|. The methods give different results because the three criteria R2, |Xc|

and |Y d| are given different importance in the process of factor selection.

Consider any regression method for which the first factor is determined by max-

imizing some function F (R2, |Xc|2, |Y d|2) for c and d on the unit spheres Sp ⊂ Rp

and Sq ⊂ Rq respectively. Formally, for the first factor:

(c1, d1) = arg max{F (R2, |Xc|2, |Y d|2); |c| = |d| = 1} (8)

It is natural that the function F should be monotone in all its three arguments.

Given this, the maximum of (8) will be found on a two-dimensional surface on

Sp × Sq, as the following proposition states.
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Proposition 1 Let F : R3 → R be a function that is monotone in all three argu-

ments. Then, the p-vector c and q-vector d defined as

(c, d) = arg max{F (R2, |Xc|2, |Y d|2); |c| = |d| = 1}

will be eigenvectors of the matrices Mx and My respectively, where

Mx(αx, αy) = ((1− αx)X ′X + αxIp)−1X ′Y ((1− αy)Y ′Y + αyIq)−1Y ′X , (9)

My(αx, αy) = ((1− αy)Y ′Y + αyIq)−1Y ′X((1− αx)X ′X + αxIp)−1X ′Y (10)

for some numbers αx and αy (depending on the criterion function F )

Proof: Using Proposition 2.1 from Björkström & Sundberg (1999), we can argue

as follows from formula (8): First, suppose d is fixed. Then the solution c will be

proportional to a “ridge regressor” with Y d as response variable:

c ∝ ((1− αx)X ′X + αxIp)−1X ′Y d, (11)

for some number αx. Analogously, by symmetry, when c is fixed we get

d ∝ ((1− αy)Y ′Y + αyIq)−1Y ′Xc, (12)

for some αy. Eliminating d between equations (11) and (12), we see that

c ∝ ((1− αx)X ′X + αxIp)−1X ′Y ((1− αy)Y ′Y + αyIq)−1Y ′X c.

Similarly, eliminating c between equations (12) and (11), we see that

d ∝ ((1− αy)Y ′Y + αyIq)−1Y ′X((1− αx)X ′X + αxIp)−1X ′Y d.

Thus, c and d are eigenvectors of the matrices (9) and (10), which proves the propo-

sition.

The structure of the matrices Mx(αx, αy) and My(αx, αy) perhaps stands out clearer

if we note that when c is an eigenvector of Mx(αx, αy), then Xc will be an eigenvector

of the matrix

Hx(αx) Hy(αy)
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where Hx(αx) = X((1 − αx)X ′X + αxIp)−1X ′ and Hy(αy) = Y ((1 − αy)Y ′Y +

αyIq)−1Y ′. The two matrices Hx(αx) and Hy(αy) are ridge type versions of the usual

“hat matrix”, well known in linear regression. Analogously, Y d is an eigenvector of

Hy(αy) Hx(αx).

A number of multivariate regression methods are in fact tantamount to maxi-

mizing a function like F in formula (8), at least as far as the first factor is concerned.

Some examples are:

• Canonical correlation regression (CCR), where F = R2 (αx = αy = 0)

• Partial least squares regression (PLSR), where

F = R2 |Xc|2 |Y d|2 = (c′X ′Y d)2 = covariance squared,

• Principal components regression (PCR), where F = |Xc|2 .

• Reduced rank regression (RRR), in the terminology of Burnham et al (1996),

and Brooks & Stone (1994; in a footnote). This procedure uses F = R2 |Y d|2.

Note that this is not standard usage of the term reduced rank regression.

In the next few sections we provide more examples. To that end, we need a result,

the proof of which is given in Appendix A: When the function F in equation (8) is

a product of powers of its arguments, i.e, when we can write

F (R2, |Xc|2, |Y d|2) = |Xc|2ax |Y d|2ay R2b, (13)

for nonnegative numbers ax, ay, and b, then the resulting two parameters αx and

αy satisfy the two equations

αx =
ax|Xc|2

ax (|Xc|2 − 1) + b
. (14)

αy =
ay|Y d|2

ay (|Y d|2 − 1) + b
. (15)

Note that (14) and (15) are not explicit formulas for αx and αy, but involve c and d,

which are themselves functions of αx and αy. Nevertheless, the equations are useful,

as we see in the next section.
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2.2 Joint continuum regression (JCR)

In our notation, the first factor in Brooks & Stone’s (1994) JCR is obtained by

finding linear combinations of explanatory variables Xc and response variables Y d

that maximize (cf. equation (1) in their paper):

F = |Xc|2α/(1−α) |Y d|2 R2, (16)

subject to |c| = |d| = 1. Inserting the exponents ay = b = 1 from (16) into (14) and

(15) we find αy = 1, and that αx varies with the JCR parameter α according to:

αx =
α |Xc|2

α (|Xc|2 − 2) + 1
. (17)

Thus, by setting α = 0 we get the RRR method proposed by Burnham et al (1996).

Setting α = 1/2 gives αx = 1, and F simplifies to the squared covariance. This is

equivalent with first factor PLSR. The limiting case α = 1 gives αx = |Xc|2/(|Xc|2−

1). To see that this agrees with first-factor PCR, insert this αx and αy = 1 in the

definition (9) of Mx(αx, αy) and get Mx(αx, αy) = (X ′X − |Xc|2Ip)−1A. Here, A is

a temporary symbol for the remaining factors in (9). We see that if c is close to u1,

the largest eigenvector of X ′X, then |Xc|2 ≈ λ1, the largest eigenvalue of X ′X. The

matrix (X ′X − |Xc|2Ip) will be close to singular, and its inverse (X ′X − |Xc|2Ip)−1

will be dominated by one large column vector almost proportional to u1. Thus, any

vector c will yield approximately Mx(αx, αy)c ∝ (X ′X−|Xc|2Ip)−1Ac ∝ u1, so that

the largest eigenvector of Mx(αx, αy) is u1. This is first factor PCR.

Close to the end of their paper, Brooks & Stone mention an alternative to their JCR,

namely, to maximize R2 |Xc|2α/(1−α), i.e. fixing αy = 0 instead of αy = 1. This

trajectory of methods thus includes canonical correlation regression (CCR), but not

PLSR, except for the first factor.

2.3 Total least squares

Total least squares is a way to find an approximate solution to a system of lin-

ear equations Ax ≈ b by perturbing not only the right hand side b (as in the

standard least squares approximation), but also the coefficient matrix A. The mul-

tidimensional problem (the case where b is a matrix with more than one column)
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is described in van Huffel and Vanderwalle (1991). In regression applications, Total

Least Squares Regression (TLSR) means that X and Y are approximated by X̂ and

Ŷ such that Ŷ = X̂ BTLS for some (p × q)-matrix BTLS. The approximations are

chosen so that the Frobenius norm | [X Y ] − [X̂ Ŷ ] |F is minimal. In Appendix B we

show that BTLS = −CD−1 where the columns of C and D are eigenvectors of (9)

and (10). Thus, although TLSR is not based on identification of latent variables, it

still is related to the procedures we define in equation (8) and Proposition 1.

2.4 A factor-based procedure with two continuous parameters (2PAR)

2.4.1 Subsequent factors

It was shown in Section 2.1 that if we restrict our consideration to the first factor

(a = 1), then the set of methods obtained for varying αx and αy in equation (9)

include all the optimal ones, as judged by any function of correlation and variances.

However, regressors based on a single factor may be useful when Y is univariate

(RR, LSRR) but they are not likely to be when the column span of Y is more

than one-dimensional. We must therefore allow procedures which include successive

pairs of eigenvectors of the matrices (9) and (10). Admittedly, for some important

methods, including the NIPALS and SIMPLS versions of multivariate PLSR, this

is not how later factors are defined. On the other hand, CCR and RRR do define

later factors this way. There is also a version of multivariate PLSR called un-deflated

PLS (UDPLS), suggested by Burnham et al (1996), where subsequent factors are

identified in accordance with the procedure we now suggest. Therefore, there is

some interest in exploring how well this class of methods compares with other types,

notably the other multivariate PLS versions.

2.4.2 Definition of the method 2PAR

Consider the method obtained when the function B(X, Y ) of equation (1) is con-

structed as follows:

• Apply the procedure described in equations (5), (6) and (7), using as coefficient

vectors the first eigenvectors of the matrices (9) and (10), respectively.
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• Determine the number of factors, as well as the two parameters αx and αy by

cross-validation.

Because of the two continuous metaparameters involved, we call this method “the

two-parametric method” (2PAR). We next compare its predictive ability to that of

some other methods, under various conditions.

3 Comparison of methods

3.1 Methods to be compared

To assess how the 2PAR method performs in competition with other regression

methods, we undertake a study based on simulated data from a latent variable

regression model. We compare the following six methods:

1a: Ridge regression, RR, separately for each response variable.

1b: “Least-squares ridge regression”, LSRR (Björkström & Sundberg, 1999),

i.e. RR is scaled so that the residual sum of squares is minimized. We do not

include more than the first of several possible factors.

2: Univariate PLSR, that is PLSR applied to each response variable separately.

3a: Multivariate PLSR, using the NIPALS (PLS2) algorithm.

3b: Multivariate PLSR, using de Jong’s (1993b) “Statistically Inspired Mod-

ification” (SIMPLS).

4: The two-parametric method 2PAR described in Section 2.4.

Among these methods, three involve continuous metaparameters (1a, 1b and 4).

Four of them are based on iteratively determined factors (2, 3a, 3b and 4). Three

of them have potential to exploit covariance between the y-variables (3a, 3b and 4),

the others are mere concatenations of univariate methods. All six are of the form

described in equation (3), based on different procedures B, but all with selector

function (4) based on “leave-one-out” cross-validation. A more detailed account of

the metaparameters and the computational procedures is given in Appendix C.
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3.2 Types of data, 24-design

We want to compare the methods under different circumstances with regard to

near-collinearity and observation errors, both in X and in Y . In order to vary these

conditions in a systematic way, we employ the general latent variable multivariate

regression model (LVMR) of Burnham et al. (1999). The i:th observation in a data

set is generated as

xi
′ = ti

′ P + σx ei
′ (18)

yi
′ = ti

′ Q + σy fi
′ (19)

where (ti′, ei
′, fi

′)′ has an (a+p+q)-dimensional Gaussian N(0, I) distribution, and

the outcomes are independent for i = 1, . . . , n. The two matrices P and Q and

the two standard deviations σx and σy give rise to four factors that are varied in a

systematic way:

• “Factor P” denotes the condition number of P , which is substantially larger

in some data sets than in others.

• “Factor Q” concerns the orientation of the a-dimensional eigenvectors of Q

relative to those of P . As mentined in Appendix D, this is likely to affect the

quality of the predictions.

• “Factor E” is the size of σx in (18).

• “Factor F” is the size of σy in (19).

The factor levels can be combined arbitrarily, yielding 24 = 16 types of data.

More details about the levels are provided in Appendix D, but generally Low is more

favourable for prediction than High.

3.2.1 Size of the data sets

Our data sets have p = 5 explanatory variables and q = 3 response variables, The

model has a = 3 latent variables. Each data set has 308 observations, of which the

first n = 8 are used as training data and the remaining n0 = 300 for validation. As
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measure of the prediction errors, we use the root mean squared error of prediction,

RMSEP =
√

PRESS/n0 where PRESS is Σn0
i=1|yi − ŷi|2.

3.2.2 Variance reduction

We construct 100 data sets, “replicates”, for each of the sixteen data types. However,

instead of producing 1600 unrelated data sets, we simulate 100 triplets of matrices

( T, E, F ), and create one data set of each type with each triplet, by inserting

different combinations of P , Q, σx and σy in the equations

X = T P + σx E (20)

Y = T Q + σy F . (21)

It is reasonable to assume that data sets created with the same random numbers

will be more similar than two arbitrary sets. In the following analysis of variance,

we will speak of a “triplet effect” to explain the part of the variation that can be

ascribed to differences between the 100 outcomes of ( T, E, F ).

4 Results

4.1 Some immediate observations

Each of the 1600 data sets is regarded as an experimental unit. The six regression

methods are applied to each unit and we regard the response as a six-dimensional

vector of more or less correlated RMSEP-values. In Figures 1 and 2 we indicate

by box plots the general magnitude and spread of the responses for two of the 16

data types. Figure 1 shows the case where all four factors are at their “low” levels.

This combination of levels was designed to yield relatively favourable conditions for

prediction: X and Y are well-conditioned matrices, and the error terms E and F

are small. Figure 1 indicates only little difference between the methods. For a quick

assessment of the general quality of the predictions, note that the term σyf
′ in (19)

is unpredictable by any method, so an RMSEP-value of about |σy f ′| =
√

q σy may

serve as a lower bound on what can best be achieved. We have q = 3 and none of

the six medians exceeds twice
√

3 σy.
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Figure 1: Box-plots for RMSEP when all factor levels are low (i = 1). Regression
methods, from left to right: RR, LSRR, PLSR1, NIPALS, SIMPLS, 2PAR. The
solid line shows

√
3σy. One unit on the vertical axis is 10−4.

In Figure 2, the condition number of P is changed to its high level, while the other

three factors remain low. All six methods do not respond equally to this change.

In Figure 2, univariate PLSR, NIPALS, SIMPLS and 2PAR yield prediction errors

that are roughly a factor of 10 larger than what can be ascribed to the term σyf
′

alone. RR and LSRR are even worse, and clearly inferior to the other methods.

Comparing graphs like Figures 1 and 2 for all the 16 data types, one can readily

observe the following:

• RR and LSRR behave quite similarly. When the condition number for

P is low, RR and LSRR are as good as all other methods, but when it is

high, these methods are not as good as the others. In particular, they are

worse when the level of factor E is low. Also, LSRR performs slightly better

than RR.
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Figure 2: Box-plots for RMSEP when cond(P) is high and the other three factors
are low (i = 2) . Regression methods, from left to right: RR, LSRR, univariate
PLSR, NIPALS, SIMPLS, 2PAR. The solid line shows

√
3σy. Note the change of

scale from Figure 1.

• NIPALS and SIMPLS are particularly similar. Comparing the two

multivariate forms of PLSR, we note (as already pointed out by de Jong,

1993b), that they mostly give very similar results. Only for five of the 16 data

types is the correlation in RMSEP between NIPALS and SIMPLS less than

1.0000 (to four decimal places). The five data types are

Level of Corr.
factor NIPALS

i P-Q-E-F SIMPLS
1 L-L-L-L 0.83
2 H-L-L-L 0.88
3 L-H-L-L 0.81
9 L-L-L-H 0.99
11 L-H-L-H 0.99

• Skew distribution of RMSEP. We note that most of the RMSEP distribu-

16



tions are skew, with all outliers found on the upper side.

In Figures 1 and 2, data are shown for each method separately, but the methods

have sources of variation in common: Data type and dataset (triplet). For example,

the outliers in any of Figures 1 and 2 do largely represent the same datasets for all

methods. Because of the skewness, and since the effects of data type and data set

are more likely to be multiplicative than additive, we prefer to continue the analysis

with the natural logarithms of the RMSEP:s. Note that on the log (or ln) scale,

PRESS, MSEP and RMSEP are equivalent.

4.2 Analysis of variance of ln(RMSEP)

For each combination {ij} of the factors data type i, i = 1, . . . , 16 and triplet

j, j = 1, . . . , 100, let Zij be the six-dimensional column vector consisting of the

ln(RMSEP)-values for the six methods. We express these data additively in terms

of factor effects:

Zij = µ̃ + α̃i + β̃j + ε̃ij (22)

where the terms can be interpreted in a standard ANOVA manner: For each com-

ponent, µ̃ is the population average, α̃i is the effect of data type i, β̃j is an effect of

triplet j, and all these terms are estimated so that the residuals ε̃ij are as small as

possible (their sum of squares is minimized).

The population average µ̃ and the data-type effects α̃i are regarded as unknown

parameters to be estimated. On the other hand, since the triplets are generated at

random, β̃j and the residuals ε̃ij are considered as random vectors.

Since our main purpose is to compare methods, we write each term on the right

hand side of (22) as its mean value over the six methods, plus a deviation. Using

superscript k to denote the k:th component of a vector, and overbar to denote

average over the six methods, we get (k = 1, . . . , 6):
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µ̃(k) = µ + µ(k)

α̃
(i)
i = αi + αi

(k)

β̃
(k)
j = βj + βj

(k)

ε̃
(k)
ij = εij + εij

(k)

 (23)

(Alternatively, the first line of (23) could have been written µ̃ = µ16 + µ, where

16 = (1, 1, 1, 1, 1, 1)′, and analogously for the other lines). The variables εij are

iid, and the vectors εij have degenerate covariance matrices. Since for example

the covariance between NIPALS and SIMPLS is different for different data types,

it seems appropriate to let the variances Var(ε̃ij) depend on i. Consequently, the

variances Var(εij) = σi
2 and the matrices Var(εij) = Σi will also vary with i.

It is straightforward to estimate all the entries in (22) and (23) in terms of the

data Zij
(k). Appendix E gives the expressions. The following discussion builds on

the results.

4.2.1 Global mean and effects of data type

The average over all data types, methods, and replicates yields a µ estimate of −5.02.

The estimated deviations vector µ is given by

Method k = RR LSRR PLS1 NIPALS SIMPLS 2PAR
µ(k)estimate 0.30 0.14 −0.08 −0.11 −0.11 −0.14

The two extremes, RR and 2PAR, differ by 0.44 units. Since the response variable

is the logarithm of RMSEP this means that the prediction errors with RR exceed

those with 2PAR by a factor of e0.44, or roughly 60 %. However, this is on average

over all types of data. Adding the estimated effects of data type, we obtain µ̃ + α̃i,

i = 1, . . . , 16, see Table 1. We observe that for most types of data sets, all six

methods perform almost equally well. The range αmax − αmin is never wider than

0.20, except for the types of data where factor P is high and factor E is low (rows 2,

4, 10 and 12). This means that the choice of method is important only when matrix

P is ill-conditioned and the errors in the X-variables are small.

Trivially, different types of data are differently predictable. It is of some interest

to see in what ways different methods are sensitive to different aspects of the data. To

that end, the 24-structure of the sixteen data types can equivalently be represented
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Level of Method |
factor average |

i P-Q-E-F (µ̄ + ᾱi) | RR LSRR PLS1 NIPALS SIMPLS 2PAR | range
1 L-L-L-L −7.98 | −0.00 −0.01 0.00 0.04 −0.02 −0.01 | 0.06
2 H-L-L-L −5.85 | 1.16 0.60 −0.39 −0.44 −0.46 −0.48 | 1.64
3 L-H-L-L −7.48 | −0.01 −0.01 0.00 0.02 0.00 0.00 | 0.03
4 H-H-L-L −3.83 | 1.36 0.74 −0.52 −0.52 −0.51 −0.55 | 1.91
5 L-L-H-L −6.09 | −0.03 −0.03 0.06 0.02 0.02 −0.02 | 0.09
6 H-L-H-L −3.97 | 0.07 0.00 0.03 −0.02 −0.02 −0.06 | 0.13
7 L-H-H-L −5.31 | −0.04 −0.04 0.04 0.02 0.02 −0.01 | 0.08
8 H-H-H-L −2.00 | 0.12 0.02 −0.03 −0.03 −0.03 −0.06 | 0.18
9 L-L-L-H −5.93 | −0.01 −0.02 0.04 0.01 0.00 −0.02 | 0.06
10 H-L-L-H −5.43 | 0.80 0.35 −0.23 −0.30 −0.30 −0.32 | 1.12
11 L-H-L-H −5.91 | −0.02 −0.02 0.04 0.01 0.01 −0.02 | 0.06
12 H-H-L-H −3.81 | 1.33 0.73 −0.50 −0.52 −0.52 −0.54 | 1.87
13 L-L-H-H −5.65 | −0.04 −0.04 0.09 0.01 0.01 −0.03 | 0.13
14 H-L-H-H −3.96 | 0.07 0.00 0.04 −0.02 −0.02 −0.06 | 0.13
15 L-H-H-H −5.16 | −0.04 −0.04 0.07 0.01 0.01 −0.01 | 0.11
16 H-H-H-H −2.00 | 0.12 0.02 −0.03 −0.03 −0.03 −0.06 | 0.18

Table 1: Averages, and deviations from average, by data type. The entries in the
leftmost column are the estimated method averages, µ + αi. The other six columns
give µ(k)+αi

(k) (eq. 23) for method k, k = 1, . . . , 6. The last column is the difference
between the largest and smallest deviation.

by main effects and interaction effects, see Table 2. (We define the effect of a factor

to be the average increase observed in ln(RMSEP) when the factor is changed from

low to high, and all other factors are unchanged.) From Table 2, we observe the

following:

• On the whole, the two “ridge-type” methods (RR and LSRR) behave similarly,

and the other four (the “factor-based” methods) are almost mutually identical,

nowhere differing more than 0.04. This is seen from the pattern of positive

and negative signs and the actual values in the four rightmost columns.

• For all methods, the most important factor is the condition number of P .

When it increases from 3 to 34, the RMSEP goes up by a factor of e2.33 ≈ 10.

This varies from e2.33−0.25 ≈ 8 for 2PAR to e2.33+0.66 ≈ 20 for RR.
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Factor Methods Individual method effect deviations
effect average RR LSRR PLS1 NIPALS SIMPLS 2PAR

P 2.33 0.66 0.33 -0.24 -0.25 -0.24 -0.25
Q 1.17 0.10 0.07 -0.07 -0.04 -0.03 -0.03
E 1.51 -0.55 -0.31 0.23 0.21 0.22 0.20
F 0.58 -0.05 -0.04 0.04 0.01 0.02 0.02

PQ 0.72 0.11 0.07 -0.06 -0.04 -0.04 -0.04
PE 0.24 -0.52 -0.29 0.18 0.21 0.20 0.21
PF -0.47 -0.05 -0.03 0.00 0.03 0.02 0.03
QE 0.13 -0.08 -0.06 0.03 0.04 0.03 0.04
QF -0.15 0.04 0.03 -0.02 -0.02 -0.02 -0.02
EF -0.43 0.05 0.04 -0.03 -0.02 -0.03 -0.02

PQE -0.06 -0.08 -0.06 0.04 0.03 0.04 0.03
PQF 0.05 0.04 0.03 -0.02 -0.02 -0.02 -0.02
PEF 0.32 0.05 0.03 -0.02 -0.02 -0.02 -0.02
QEF 0.07 -0.04 -0.03 0.02 0.02 0.02 0.02

PQEF 0.03 -0.04 -0.03 0.02 0.02 0.02 0.02

Table 2: Main and interaction effects of the four factors (cf. App. D). The Methods
average column represents the factorial effects on average over all methods. The last
six columns give the deviations from this average for each of the six methods.

• Also for all methods, factors Q and E are the most important ones after P. For

factor-based methods, errors in x-variables (factor E) is more harmful than

an unfavourable ordering of the latent variables (factor Q), while the converse

holds for the ridge-type methods.

• For all methods, the fourth most important effect is the interaction between

factors P and Q. The joint effect of High level in these factors is worse than

the sum of main effects. The fifth is factor F (size of errors in the y-variables).

• Factor F interacts negatively with the other three factors. More precisely, once

one or more of the factors P, E or Q are at high level (and thus deteriorate

the conditions for prediction), the additional damage caused by large errors in

the y-variables (Factor F = High) is minor.

• The individual methods deviations are seen to be substantial only for effects P,

E and PE. Furthermore, the near equality of effect rows P, -E and -PE shows
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that the methods essentially differ precisely for the combination P = High,

E = Low. Under these conditions, corresponding to rows (i-values) 2, 4, 10,

12 in Table 1, RR and LSRR perform worse than the others, as noted already

in Section 4.1, in connection with Figure 2.

4.2.2 Matrix triplet effects

We regard the terms β̃j in (22) as independent outcomes of a six-dimensional

random vector. The methods averages βj , j = 1, . . . , 100, as defined in (23) form

a somewhat right-skewed set of numbers, although not more so than to make a

Gaussian model reasonable. Their mean is zero by construction, and the standard

deviation is 0.26, which means that βj contributes to the right hand side in (22) by

roughly the same amount as, for example, an interaction effect between two of the

systematic factors (cf. section 4.2.1). The estimated standard deviations of βj
(k)

are:

Component βj RR LSRR PLS1 NIPALS SIMPLS 2PAR
std estimate 0.26 0.13 0.16 0.08 0.07 0.07 0.07

The off-diagonal terms in V̂ar(βj) correspond to the following correlation coefficients:

RR LSRR PLS1 NIPALS SIMPLS 2PAR
RR 1.00 0.75 −0.87 −0.89 −0.88 −0.78
LSRR 1.00 −0.91 −0.93 −0.93 −0.77
PLS1 1.00 0.94 0.91 0.70
NIPALS 1.00 1.00 0.70
SIMPLS 1.00 0.72
2PAR 1.00

Again we see a tendency for the two ridge-type methods to be similar, and different

from the four factor-based methods, those in the latter group also being mutually

similar. All correlations between methods in different groups are negative. A typical

βj
(k) is approximately half of a typical βj . Since we are interested in comparing

different regression methods on the same data, we note that for a fixed j and two

different k-values, the standard deviaton of the difference is SD ( βj
(k1) − βj

(k2)) ≈

0.1.
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4.2.3 Residuals

The residuals ε̃ij in (22) represent lack of additivity and therefore also tell to what

extent the model can predict which method will be best. As mentioned in connection

with the decomposition (23), we allow the variance matrices Var(ε̃ij) to be different

for different combinations of the factors P, Q, E and F. Consequently, the variances of

the method averages, Var(εij) = σi
2 will vary with data type, i, as will the variance

matrices for the deviations Var(εij) = Σi. They are estimated together with the

variances for the triplet effects, as sketched in Appendix F. Examples of results are

shown in Table 3. We see that all σ̂i are between 0.11 and 0.22, so the term εij is

comparable to β̄i (since σ̂β = 0.26, cf. Section 4.2.2). Of more interest, however, are

the variances for and correlations between the method deviations εij , because they

tell to what extent we can say that one method is better than another. In Table 3

we show the estimated standard deviations of εij and of the six components of εij ,

together with the NIPALS/SIMPLS correlation. The table confirms the observation

made in section 4.1, that the data types can be grouped in two categories: One

for which NIPALS and SIMPLS yield substantially different predictions, one where

those two methods agree almost perfectly. The first category turns out to consist of

the data types where factor E = Low and at most one of the other factors is at level

High (index i = 1, 2, 3 and 9). The other category consists of the remaining 12 data

types. However, those two categories are not systematically different with regard to

any other element in the covariance or correlation matrices.

In principle, Table 3 could be expanded to the right, with all possible pairwise

correlations. However, the entries do not vary with the levels of P, Q, E or F in any

regular way.

Because of the random terms βj and εij in (22), it is by no means certain that the

method with the most favorable systematic terms will yield the smallest prediction

error for a given data set. Therefore we supplement the previous tables with Table 4

which shows for how many of the 100 data sets a method “wins” (ı.e. yields smaller

RMSEP than the others. It is interesting to note that a ridge-type method is “best”

in roughly half of the simulations, except for the data types where P = High and
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Data type Corr.
i P-Q-E-F SD(εij) RR LSRR PLS1 NIPALS SIMPLS 2PAR NIP / SIM
1 L-L-L-L 0.16 0.16 0.19 0.10 0.16 0.10 0.10 0.31
2 H-L-L-L 0.15 0.25 0.40 0.20 0.16 0.18 0.15 0.79
3 L-H-L-L 0.11 0.16 0.15 0.11 0.11 0.11 0.12 0.16
4 H-H-L-L 0.22 0.32 0.51 0.20 0.20 0.20 0.19 1.00
5 L-L-H-L 0.21 0.16 0.18 0.16 0.09 0.09 0.09 1.00
6 H-L-H-L 0.12 0.08 0.12 0.14 0.08 0.08 0.07 1.00
7 L-H-H-L 0.16 0.16 0.18 0.09 0.09 0.10 0.11 1.00
8 H-H-H-L 0.19 0.18 0.19 0.09 0.10 0.10 0.10 1.00
9 L-L-L-H 0.18 0.16 0.18 0.14 0.10 0.10 0.09 0.87
10 H-L-L-H 0.15 0.23 0.28 0.16 0.13 0.13 0.14 1.00
11 L-H-L-H 0.17 0.16 0.18 0.12 0.10 0.09 0.09 0.94
12 H-H-L-H 0.21 0.31 0.50 0.19 0.20 0.19 0.18 1.00
13 L-L-H-H 0.17 0.18 0.20 0.19 0.12 0.12 0.09 1.00
14 H-L-H-H 0.11 0.08 0.12 0.14 0.08 0.08 0.07 1.00
15 L-H-H-H 0.13 0.15 0.17 0.13 0.09 0.09 0.10 1.00
16 H-H-H-H 0.19 0.18 0.19 0.09 0.10 0.10 0.09 1.00

Table 3: Estimated standard deviations for the residual terms for all sixteen types
of data sets. Column 3 shows estimated standard deviations, of εij , columns 4 - 9
for each component of εij . Column 10 shows the correlation coefficient between
εij

(NIPALS) and εij
(SIMPLS).

E = Low.

5 Conclusions

In this paper we have demonstrated connections between various methods for con-

struction of predictors for use in multivariate linear regression when explanatory

and/or response variables are near-collinear. We have extended several conventional

methods, in the form of a method with two continuous meta-parameters, and with

the number of factors as an additional parameter. A method comparison has been

carried out based on data with n = 8, dim(x) = 5 and dim(y) = 3, simulated in

accordance with a latent variable multivariate multiple regression model. Within

this framework, defined in (18) and (19), different types of data can be simulated.

Six methods were compared, evaluating a PRESS-based performance measure by

a test set. We conclude that for most data types the choice of method does not
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Data type |
i P-Q-E-F | RR LSRR PLS1 PLSR 2PAR
1 L-L-L-L | 25 28 14 18 15
2 H-L-L-L | 0 3 29 31 37
3 L-H-L-L | 27 20 17 17 19
4 H-H-L-L | 0 4 29 30 37
5 L-L-H-L | 27 27 10 23 13
6 H-L-H-L | 8 26 19 18 29
7 L-H-H-L | 22 24 8 20 26
8 H-H-H-L | 13 29 14 23 21
9 L-L-L-H | 23 29 14 20 14

10 H-L-L-H | 0 5 31 27 37
11 L-H-L-H | 25 21 19 9 26
12 H-H-L-H | 0 4 41 21 34
13 L-L-H-H | 25 27 14 18 16
14 H-L-H-H | 9 24 21 17 29
15 L-H-H-H | 23 28 13 15 21
16 H-H-H-H | 13 29 20 21 17

Table 4: Number of simulations where the method “wins”. Each row sums to 100.
Columns for NIPALS and SIMPLS have been merged in column PLSR, because of
the similarity between those two methods

affect the quality of the predictions. In the cases where method is important, factor-

based methods predict better than one-factor ridge-type methods. Concatenation

of univariate PLSR leads to somewhat larger errors than “genuinely” multivariate

methods (SIMPLS, NIPALS 2PAR). On average over 100 replicates, 2PAR turns

out best (if only marginally) in 8 of the 16 data types. In no case does 2PAR rank

worse than third. When 2PAR is surpassed, the better methods are almost always

RR and/or LSRR. Only for one of the data types is 2PAR second to another factor-

based method. However, because of the amount of computation involved and in the

light of Table 4, the improvement does not appear high enough to motivate a general

recommendation of the method.
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Appendices

A Interpretation of the two parameters

In Section 2.1 we stated without proof how the two “ridge parameters” αx and αy

depend on the coefficients of the function F of equation (8) when F is a product

of powers of its arguments, These results, formulas (14) and (15), are derived here.

Thus, assume

F (R2, |Xc|2, |Y d|2) = |Xc|2ax |Y d|2ay R2b, (24)
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with ax, ay and b all nonnegative. We maximize F subject to the two constraints

|c|2 = 1 and |d|2 = 1. Lagrange’s method implies that at the required point, ∇ log F

is in the span of ∇|c|2 and ∇|d|2. We have

log F = ax log |Xc|2 + ay log |Y d|2 + b log R2.

With K = c′X ′Y d = covariance, we can write R2 = K2/(|Xc||Y d|)2 and

log F = (ax − b) log |Xc|2 + (ay − b) log |Y d|2 + b log K2.

Thus,

∇ log F =
ax − b

|Xc|2
∇|Xc|2 +

ay − b

|Y d|2
∇|Y d|2 +

b

K2
∇K2.

Evaluating the gradients and introducing Lagrangian multipliers we get

ax − b

|Xc|2

(
2X ′Xc

0

)
+

ay − b

|Y d|2

(
0

2Y ′Y d

)
+

2b

K

(
X ′Y d
Y ′Xc

)
= 2κ1

(
c
0

)
+2κ2

(
0
d

)
(25)

The upper part reads

2
ax − b

|Xc|2
X ′Xc +

2b

K
X ′Y d = 2κ1c.

Multiplying this equation by c′ and using |c| = 1 gives κ1 = ax. We thus have

ax − b

|Xc|2

(
X ′X − ax|Xc|2

ax − b
Ip

)
c ∝ X ′Y d.

Comparison with equation (11) now demonstrates that

αx/(1− αx) = −ax|Xc|2/(ax − b),

that is we get the following expression for the first “ridge parameter” as function of

the exponents ax, ay and b:

αx =
ax|Xc|2

ax (|Xc|2 − 1) + b
. (26)

By analogy, the other parameter satisfies

αy =
ay|Y d|2

ay (|Y d|2 − 1) + b
. (27)

In CCR, we use the exponents ax = ay = 0, b = 1. In PLSR we use ax = ay = b = 1,

and in RRR we use ax = 0, ay = b = 1.
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B Connection between 2PAR and TLSR

We show here that BTLS = −C D−1. Since the column vectors of C and D are

eigenvectors of (9) and (10), this expression illustrates that TLSR is closely related

with 2PAR.

The equation Ŷ = X̂ BTLS can be written

[X̂ Ŷ ]

(
BTLS

−Iq

)
= 0 (28)

which shows that the concatenated matrix [X̂ Ŷ ] must have a null space of dimen-

sion at least q. If the null space dimension of [X Y ] is less than q, one needs to

replace some of the smallest singular values of [X Y ] by zeros. Any right singular

vector of [X̂ Ŷ ] can be written (c′ d′)′ where c is a p-vector and d is a q-vector.

The collection of all the q singular vectors corresponding to singular value 0 can be

written as a (p + q) × q matrix (C ′ D′)′, and we have

[X̂ Ŷ ]

(
C
D

)
= 0.

Multiplication by D−1 and comparison with (28) shows that BTLS = −C D−1.

Further, any singular vector of [X Y ] is an eigenvector of

(
X ′

Y ′

)
[X Y ]. Thus

there exists a number λ such that

(
X ′

Y ′

)
[X Y ]

(
c
d

)
= λ

(
c
d

)
From this, it is straightforward to conclude that c and d are eigenvectors of matrices

of the types (9) and (10). The parameters αx and αy will both equal λ/(λ − 1), a

number that can be negative.

C Metaparameters and evaluation of the selector func-
tion

For methods 1a and 1b, the metaparameter is a q-vector of ridge constants (one

for each response variable). For univariate and multivariate PLSR, the metaparam-

eter is the number of factors, i.e., an integer between 1 and p. In the univariate
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case (Method 2) we determine this number for each response variable separately, so

the parameter is a vector of q integers. For method 4, the metaparameter is the

triplet (αx, αy, a), where a is the number of factors. For all methods, the function

αbest(X, Y ) is based on leave-one-out cross-validation. We evaluate the function

αbest (equation 4) by trial and error: A large number of candidate α-values are

tried, and the one that yields the smallest PRESS-value is chosen.

• For the ridge parameter α in RR and LSRR, we test 101 α-values, corre-

sponding to α = e−i/10, i = 0, . . . , 100. The candidates thus range from

α = e−10 ≈ 4.5 x 10−5 to α = e0 = 1. The two limiting values α = 0

and α = 1 correspond to OLSR and one-factor PLSR, respectively.

• In the three forms of PLSR, (2, 3a and 3b), the number a of factors constitutes

the metaparameter. The possible values are the integers 1, 2, . . . p, and the

choice a = p yields the OLSR regressor. In case 2, we permitted a to be

different for the three response variables.

• For 2PAR (Method 4 above), the metaparameter consists of two continuous

parameters αx and αy, and an integer a denoting the number of factors. The

latter is one of the integers 1, . . . ,min(p, q). As for αx and αy, we try 300 pairs

of values, 100 along each edge of the triangle shown in Figure 3. The set of

combinations thus has min(p, q) × 300 elements.

D Levels of the systematic factors

Since we want to compare the six methods under several different circumstances with

regard to near-collinearity, error sizes, etc, we vary the parameters so they represent

different types of data. We define sixteen types by letting four factors vary on two

levels each (a “low” and a “high” level):

• Factor P: The matrix P is set to be

P =

 1 0 0 0 0
0 2−w 0 0 0
0 0 3−w 0 0

 (29)
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Figure 3: Possible combinations of αx and αy to be explored for the two-parametric
method. The corners of the triangle correspond to CCR ((αx, αy) = (0, 0)) , PLSR
((αx, αy) = (1, 1)), and RRR ((αx, αy) = (0, 1)). The edge from PLS to RRR
corresponds to Brooks & Stone JCR. TLS is not among the methods we compare,
but it is based on regresssors corresponding to points on the dashed line.

where w = 1 for half of the data sets (“low” level), and w = 4 for the other

half. Hence, the condition number for P differs by a factor of 33 between the

low and high cases.

• Factor Q: The matrix Q is given by

Q =

 1 0 0
0 0.5 0
0 0 0.1

 (30)

(called its low level) in half of the simulations, and

Q =

 0.1 0 0
0 0.5 0
0 0 1

 (31)
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(called high level) in the other half. The motivation for this is as follows.

Because of the structure (29) of the matrix P , the latent variable t1 exerts

greatest influence on the x-variables, t2 second largest and t3 least. It seems

then that the possibility to predict y from x would be best if the response vari-

ables were also affected primarily by t1 and to lesser extents by the other two

latent variables. By contrast, the worst situation would be if the y-variables

were controlled mainly by t3. Our two choices of Q thus probably represent

two extreme situations.

• Factor E: In the term σx e′ in (18), the standard deviation σx is taken to be

10−4 in the low case and 10−3 in the high case.

• Factor F: In the term σy f ′ in (19), the standard deviation σy is also taken

to be 10−4 in the low case and 10−3 in the high case.

E Effect estimators

Define 6-vectors Zi. = (1/100)ΣjZij , Z .j = (1/16)ΣiZij , and Z .. = (1/1600)ΣijZij .

The following table then shows how to estimate the effects (eq. 23) in terms of the

data:

Term Estimator Comment
1 µ̃ Z ..

2 α̃i Zi. − Z ..

3 β̃j Z .j − Z ..

4 ε̃ij Zij − Zi. − Z.j + Z ..

5 µ (1/6)Σ6
k=1Z ..

(k)

6 αi (1/6)Σ6
k=1α̃

(k)
i α̃i from row 2

7 βj (1/6)Σ6
k=1β̃

(k)
j β̃j from row 3

8 εij (1/6)Σ6
k=1ε̃

(k)
ij ε̃ij from row 4

The vectors without tilde are then estimated componentwise. For each k = 1, . . . , 6:

Term Estimator Comment
9 µ(k) µ̃(k) − µ rows 1 and 5 used
10 αi

(k) α̃
(k)
i − αi rows 2 and 6 used

11 βj
(k) β̃

(k)
j − βj rows 3 and 7 used

12 εij
(k) ε̃

(k)
ij − εij rows 4 and 8 used
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F Variance matrix estimators

With 16 data types and 100 triplets we obtain:

E[Σij(Z.j − Z..) (Z.j − Z..)′ ] = (100− 1)
(
16 Var(β̃j) + V̄

)
(32)

where V̄ is the average of the Var(ε̃ij), i = 1, . . . , t. In order to estimate each Var(ε̃ij)

separately, we use the estimated residuals (Zij − Zi. − Z.j + Z..) together with the

expression, valid for each fixed i,

E[Σj(Zij − Zi. − Z.j + Z..) (Zij − Zi. − Z.j + Z..)′ ] =

= (100− 1)
(
(1− 2

16
)Var(ε̃ij) +

1
16

V̄
)

(33)

By letting the observed sums of squares and products estimate their expected values,

we derive a system of linear equations from (33). Solving this system gives an

estimate of Var(ε̃ij), for each i, and with the aid of (32) we calculate an estimate

of Var(β̃j) also. Since βj = Q β̃j , where Q is a matrix corresponding to column-

centering, we obtain an unbiased estimate of Var(βj) by V̂ar(βj) = Q V̂ar(β̃j) Q′.

Further, the variance matrices for ε̃ij can be estimated from (32) and (33), as can

the variances Var(εij) and the matrices Var(εij) = Var(Qε̃ij), i = 1, . . . , 16.
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