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Abstract

Rare diseases are often investigated in case-control studies. For
the purpose of gene mapping, sampled case and control genotypes are
compared at a set of marker locations. Closely linked marker loci can
be handled by modeling the genealogy of the sample. We present such
a model, which splits the chromosomes into subpopulations. In this
way the model accounts for the ascertainment process, where cases
are typically over sampled. The model is used for multipoint gene
mapping by means of a LOD score. The LOD score copes with ar-
bitrary phenotypes and genetic models, allows for neutral mutations,
and adapts to marker allele frequencies. Under certain model approx-
imations we develop a permutation based test that is computationally
feasible, even when haplotype phase is unknown.

KEY WORDS: Association analysis; multipoint; unknown haplotype
phase; ascertainment; case-control study; coalescent; identical by de-
scent (IBD); sampling; SNP; LOD score;



1 Introduction

For the purpose of gene mapping on a fine scale, the use of population-based
association studies is popular. Due to the higher number of meioses, with
possible recombination, between the most recent common ancestor (MRCA)
and today’s apparently unrelated individuals, these studies yield higher res-
olution than is possible in family-based linkage studies.

Although early association studies tested for association between disease and
each marker separately, effort is nowadays put into finding efficient methods
that evaluate linkage disequilibrium (LD) over more than one locus within a
region. This article presents a LOD score for population based multipoint as-
sociation studies, which takes a retrospective sampling scheme into account.
The basis of the LOD score is to use a model for chromosome genealogies
that handles non-random ascertainment.

Early multipoint approaches to gene-mapping, such as Terwilliger (1995),
combined information from many markers, but did not include dependence
across markers in the analysis. Genuine multipoint likelihood methods such
as McPeek and Strahs (1999) and Service et al. (1999) condition on (possibly
unknown) ancestral haplotypes to calculate the probabilities that today’s
haplotypes are identical by descent (IBD) with the variant founder at the
disease locus.

In a region in LD, alleles at different loci are dependent. The genealogical
history of the population sample determines that dependence, and could thus
be used for mapping purposes. Griffiths and Marjoram (1997) constructed
the Ancestral Recombination Graph (ARG) to model how a population of
chromosome sequences are related to each other, through coalescence, re-
combination and mutations. The ARG extends the Wright-Fisher model for
coalescence to allow also for recombinations, which are of immediate interest,
as they break down LD.

Due to recombinations the genealogies differ between different chromosomal
positions. For each position the ARG defines a marginal genealogical tree.
This could be used for gene mapping, by searching for the chromosomal posi-
tion where the marginal tree can discriminate cases from controls, i.e. where
a majority of cases are on the same branch of the genealogical tree. Unfor-
tunately however, the ARG is not known, and of the infinitely many ARGs
compatible with genotype data, many have comparable likelihoods. Larribe
et al. (2002) use importance sampling in an ARG model as a method to
estimate disease locus, but the method is hampered by the computational
demand. In practice, only ARGs fulfilling simple approximations are com-
putationally tractable for mapping.

In the definition of the ARG by Griffiths and Marjoram (1997) (defined as



a process in time) or Wiuf and Hein (1999) (defined as a process along the
chromosomal region), the same model for coalescence, recombinations and
mutations are used for all chromosomes in the sample. However, in associ-
ation studies, there is an underlying hypothesis that cases are descendents
from one (or a few) founders carrying the mutation. The genealogy of the
cases is then qualitatively different from that of the controls. In a retrospec-
tive study, the sample is typically not a random sample from the population.
In general, the mutated allele is over-represented, although its exact propor-
tion is in general unknown.

This article presents an extension of the ARG, which, by separating the chro-
mosomes into two sub-populations of mutated and unmutated chromosomes
respectively, models the evolutionary process of the two types of chromosomes
differently. Zollner and von Haeseler (2000), later elaborated by Wang and
Rannala (2004, 2005), put forward a similar course of action, in introducing
an ARG with subpopulations. The focus of these models is on simulation,
and to examine the performance of single locus association tests for chro-
mosomes simulated under different scenarios. No multilocus gene-mapping
algorithm is developed.

Apart from catching the different genealogical behaviour of mutated and
unmutated chromosomes, an ARG with substructure also opens up for ap-
proximations that could be differently tailored for the two subpopulations.
Thus easier computations are facilitated, while still catching the important
features of mutated and unmutated chromosomes respectively. Although in
real studies the mutation status of the chromosomes is not known, the dis-
tribution of mutated chromosomes can easily be calculated conditional on
disease status. For genetic models with full penetrance and imprinting, dis-
ease status determines whether a chromosome is mutated or not. Otherwise
mutation status is treated as a hidden variable with known distribution con-
ditional on disease status. The retrospective ARG is therefore a useful model
under case-control sampling, where ascertainment is on disease status.

Our main result is to present how our retrospective ARG can be used to
calculate a likelihood and LOD score. Thus we connect the retrospective
ARG to a multipoint gene mapping algorithm. The basis of calculating the
likelihood is to use the retrospective ARG to model which regions that chro-
mosomes share identical by descent (IBD). The retrospective ARG is general,
but for computational reasons we suggest model simplifications and present
a special case for which the LOD score is computationally achievable. We
further show how exact p-values can be estimated by a permutation proce-
dure, which is computationally feasible for binary phenotypes. Just as in
Terwilliger (1995) and Service et al. (1999), the basis of the simplifications is
to assume star topology for cases. However, our setting is more general, as



the resulting retrospective likelihood handles more markers, arbitrary phe-
notypes and genetic models, allows for neutral mutations, and adapts to
marker allele frequencies. Further, unknown haplotype phase is handled at
almost no extra computational cost. This is a marked improvement com-
pared to Terwilliger (1995) and Service et al. (1999) since phased marker
haplotypes are seldomly observed. Instead, it is the unphased multilocus
diplotypes that are observed, and except for rarely collected data sets, phase
cannot be resolved unambiguously. Thus, in most haplotype based analy-
ses, the haplotypes constitute a covariate not fully observed. Not handling
the retrospective sampling scheme in the analysis, may then introduce bias,
see Thomas et al. (2003).

2 A LOD Score for Association Studies

The purpose of gene mapping is to test if a certain (small) chromosome
region harbours the disease locus 7 and /or estimate 7. The region of interest
is normalized as a unit interval [0,1] in terms of genetic or physical map
distance. The hypothesis testing problem of interest is

To investigate this, a subset of m individuals with phenotypes
Y = (V3,...,Y,,) is sampled. For each individual DNA is registered at a
number of markers with positions 0 < z; < ... < zxg < 1. Let
haw_1 = (how_11)5 | and hy, = (hoy )i, be the two homologous haplotypes
of Individual v and h = (h;)!, the collection of all n = 2m haplotypes.
In general, because of phase uncertainty, (hg,_1,ha,) is not known for v but
rather the unphased multilocus genotype g,. Write g = (g1, ..., gm) for the
collection of all unphased multilocus genotypes. Based on marker data g and
phenotypes Y we compute a test statistic Z(z) for the point wise test H
versus HY ' 7 = 2’ and reject Hy when Z(z) is large. Then
Zmax - Olga?%(l Z(x)

is a global test statistic for testing Hy versus H;, with large values of 7.«
leading to rejection of Hy. Alternatively, we may estimate the disease locus
as 7 = arg maxo<,<1 Z () and compute an associated confidence region.

The test statistic Z(z) should be large when diseased individuals, or indi-
viduals with quantitative phenotypes indicating disease, tend to share DNA
around z more often than expected by chance. This is so since under HY, the
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mutated chromosome is segregated in close vicinity of z down to all mutated
chromosomes of the sample.
To this end, we define the retrospective likelihood

L(z; ) = Pa(glY) (1)

of genotype data given phenotypes, where P, is probability calculated under
HY. By conditioning on Y we don’t need to know the sampling mechanism,
as long as it is a function of Y only. This is an advantage, since the sampling
scheme is often unknown in practice, see e.g. Kraft and Thomas (2000).
All nuisance parameters that involve recombination, mutation, population
growth and penetrance of the disease are contained in £. Assuming & is
known or put to an apriori reasonable value, as test statistic we use the LOD
score

Z(x) =1 LR(z) =1 M 0<z<1 (2)

() = logyg ) = 1080 L(c0)’ ST =L

Here L(oco) denotes the retrospective likelihood under Hj, since then 7 is
regarded as unlinked to [0, 1], expressed formally as 7 = co. Hence Z(z) is
the tenth logarithm of the likelihood ratio LR(x) obtained when testing Hy
against HY.

To assess the statistical significance of an observed maximal LOD score
Zmax = Zmax, W€ use permutation testing. Given any permutation 7y of
{1,...,m}, let Zax, be the maximal LOD score based on a retrospective
likelihood P,(g|Y ), where Y, = (Y1), ..., Y,(m) is the phenotype vector
permuted according to . The p-value based on ) randomly chosen permu-

tations 71, ...,7q is then then o(zyax), Where
1 Q
afz) = é Z-](Zmax,% > 2) (3)
i=1

and (D) is the indicator function of the event D.

3 A Retrospective Recombination Graph

The likelihood that we propose handles dependence between and along the
chromosomes, by means of an ARG corrected for ascertainment. The ARG
models the genealogy from today’s generation back until the founder gener-
ation. That gives us the kinship relations of today’s chromosomes, and thus
a model for the dependencies. In order to compute the likelihood and LOD
score, we will sum over the genealogies consistent with data when = € [0, 1].



To this end, consider the evolvement of a diploid (human) population during
G non-overlapping generations consisting of N; haploids or N;/2 individuals
t generations ago, t = 0,1,...,G. The current size of the population is
N/2 = Ny/2 and G is the founder generation. A disease causing mutation
occurred t = G generations ago on one chromosome at an unknown locus 7
of the genome. The mutated material in close vicinity of 7 has spread until
present time so that N, chromosomes have the mutated and disease causing
allele B in Generation ¢, whereas the remaining Ny, = N; — Ny unmutated
chromosomes have the normal allele b. The current numbers of mutated and
unmutated chromosomes are Ny, = Ny and Ny = Ny respectively. For
instance, for an exponentially growing population,

N; = Nexp(—kt),
NMt = NMeXp(—/th),

(4)

where k > 0 and kp; = log(Nyr)/Gar quantify the rate of exponential growth
per generation.

We will assume that Ny, and Gy (and hence also N and G) are large. Then
the genealogy at z is conveniently approximated by a coalescence tree 7 (x)
Kingman (1982a,b). The coalescence tree varies with = due to recombina-
tions and the whole collection A = {7 (z); 0 < = < 1} is referred to as an
ancestral recombination graph (ARG), see e.g. Hudson (1983) and Griffiths
and Marjoram (1997).

Measuring time backwards and continuously in units of G, generations, we
let N(t) = Nyt Nu(t) = Nyry,e and Ny (t) = N(t) — Nag(t), be the sizes
of the total, mutated and unmutated populations of chromosomes on the new
time scale, 0 <t <T = G/Gy.

Figure 1 shows an ARG for n = 13 chromosomes. For a disease locus in
7 = 0.36, the lineages carrying the mutation are marked in dashed gray.
Following Griffiths and Marjoram (1997), we define the ARG as a process
in time rather than along the chromosome. We write it as a time homo-
geneous Markov process A = {A(t);0 < ¢t < T}, where A(t) describes the
ancestry across [0, 1] of the given sample of n chromosomes at time t. As ¢
increases, A(t) make jumps at discrete points in time due to coalescence or
recombination events.

Each vertex corresponds to a coalescent or recombination event and each edge
e is a line of descent between two such events. Whenever a recombination
event occurs, the recombination point x is marked with an arrow to the vertex
in the graph. The marginal coalescence tree 7 (2') at 2’ is obtained from A
by following all n lineages at time 0 and, whenever a recombination vertex
marked x is passed, take the left edge if 2’ < x and the right edge if 2’ > x.
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Figure 1: Ancestral recombination graph for n = 13 chromosomes. Lineages
carrying the mutation, positioned at 7 = 0.36, are displayed with dashed
gray lines. My = {7,...,11} is the sampled mutated chromosomes, whereas
the other 8 sampled chromosomes do not carry the mutation. The time-scale
on the right measures time backwards from today’s sample until the founder
generation.

To include ascertainment in the analysis the population is split into two
subpopulations M and U, which are the union of mutated and unmutated

chromosomes respectively, at all time points 0 < t < T. Write e é M to
indicate that the chromosome of lineage e at time ¢ is mutated. Notice that
all chromosomes of e belong to the same subpopulation, unless e contains
the mutated chromosome at time Ty = Gp;/Gp = 1. In that case we may

haveeéMforthMandeéUfort>TM.

The dynamics of the ARG under HY is described by a Wright-Fisher model
in reversed (and rescaled) time, with varying population size. That is, N(-),
Ny(+) and Ny (+) are considered fixed and non-stochastic. If the unmutated
population is large at all time points, two unmutated edges at time ¢ coalesce
at rate

MU(t):GM/NU(t), OStST,

accounting for that time is speeded up by a factor Gj;. Two mutated edges



coalesce at rate

ar (1) = { Galog(1/(1 = 1/Nu (1)), 0<t< Ty,

o0, t:TM

Since Ny (t) =0 for t > Ty, pp(t) is then undefined. We put pips(Thy) = o0
to describe formally that all remaining mutated edges have to coalesce at
time 7. Notice that pp(t) &= G /Ny (t) when Ny (t) is large. However, we
cannot use this approximation for ¢ close to Ty, since then Ny, (t) is small.
Instead we utilize that the probability of no coalescence per generation is
(1 —1/Np(2)), take the logarithm and change sign to get a rate, and finally
speed up the rate by a factor Gy,.

To describe the evolvement of the ARG in time, we let n(t) be the number of
lineages (edges) at time ¢, so that n = n(0) is the number of sampled chro-
mosomes. Each coalescence/recombination event decreases/increases n(t) by
one. Let ny(t) and ny(t) = n(t) — ny(t) be the number of mutated and
unmutated lineages at time ¢, with ny, = ny/(0) and ny = ny(0).

Assume that recombinations occur with probability r per chromosome and
generation. Since the chromosome region of interest is typically very small,
so is r. For this reason, we use the rescaled recombination rate

p:GMT

rather than r. Given that a recombination occurs, it has density 7 on [0, 1],
where 7 = 1 is uniform on [0, 1] if genetic distance along the chromosome
is used. However, 7(+) often varies when physical distance is used, to reflect
varying recombination rate or recombination hot-spots.

In our definition of an ascertainment corrected ARG, we formalize the con-
straints that subpopulations M and U put on segregation by subdividing
jumps of the ARG at time ¢ into four categories:

1. Coalescence between two mutated edges at rate (””;(t)) par(t). Given
t
such an event, choose uniformly a pair e;,eq € M to coalesce among

all ("”g(t)) possible. For the coalesced edge e we put e é M so that

na(t+) = ny(t—) — 1 and ny(t+) = ny(t—).
2. Coalescence between two unmutated edges at rate ("Uz(t)),uU(t). Given

t
such an event, choose uniformly a pair e;,es € U among all ("UQ(t))
t
possible. For the coalesced edge e we put e € U so that ny(t+) =
ny(t—) — 1 and np(t+) = na(t—).

8



3. A mutated chromosome recombines at rate np/(t)p. Given such an

t
event, choose uniformly e € M among all ny,(t) mutated edges and
recombination point x ~ w. Let e; and e, be the two parental lines of e
which have passed on material [0,z) and [z, 1] respectively to e. Then

Pler & Mle & M) = { 11’“)’ voT

and
¢ ¢ 1, T <T,
P(ey € Mlee M) = { o), z>7

where p(t) = Ny (t)/N(t) is the proportion of mutated chromosomes

in the population at time ¢t. Hence ny(t+) = ny(t—) + 1, ny(t+) =

ny (t—) with probability p(t) and ny (t+) = na(t—), ny(t+) = ny(t—)+
1 with probability 1 — p(¢).

4. An unmutated chromosome recombines at rate ny(t)p. Given such an

t
event, choose uniformly e € U among all ny(t) unmutated edges and
recombination point x ~ w. Let e; and e; be the two parental lines of e
which have passed on material [0,z) and [z, 1] respectively to e. Then

Pley € Mle € U) = { g(t)’ ii:

and
¢ ¢ 0, T <T,
P(es € Mle e U) = { p(t), z>7

Hence np(t+) = ny(t—) + 1, ny(t4+) = ny(t—) with probability p(¢)
and nys (t4) = ny(t—), nu(t+) = ny(t—) + 1 with probability 1 — p(t).

The initial state of A(0) of the ARG is determined by the set of n,, mutated
sampled chromosomes, which we denote by

My={i;1<i<nandie M}.

The further evolvement of A under HY up to time T is fully determined
by the four kinds of transition events described above. At time t = T =
G/Gyy, let €, ... €, denote the edges of A, numbered from left to right.
We think of these edges as n’ founder chromosomes whose genetic material
is segregated/gene dropped down to the present generation, and possibly
mutated. Let b} = (h},..., R)x) denote the haplotype of the j*" founder

chromosome and h’ = (h},...,h!,) the collection of all founder haplotypes.
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The distribution of A under Hj is equivalent to putting Nj/(-) = 0 above,
ie. My =0, p(t) =0 and ny(t) = 0.

Mutations that are selectively neutral and have no influence on the phenotype
can be positioned along the edges of the ARG as follows: Assume mutation
probability wu; per generation and chromosome at locus z; and put 6, =
Garug. Then mutations are positioned along the edges of 7 (z1),...,7 (xk)
according to K independent Poisson processes with intensities 61, ...,0k. In
addition, the state space of alleles and transition probabilities between alleles
must be defined at each marker locus.

4 Retrospective Likelihood

In order to give an expression for the retrospective likelihood (1), we think
of h obtained by segregating haplotypes h’ of the founder generation at all
marker loci according to A, superimposed by neutral mutations. This we
write as

L(z)= > P(glh)P(h|A K)P (|0 )Py(AM,)P(M,]Y).  (5)
h,h/ A M,

The term P,(A|Mj) is the probability of the ARG with initial condition M,
and . .
P(g‘h) = H P<gvyh2v—17h2v) = H 1{gv~(h2v,1,h2v)}7
v=1 v=1

where g, ~ (hgy_1,ho,) means that the genotypes of v at all K loci are
consistent with the corresponding haplotype vectors.

The term P(M|Y') in (5) only depends on genetic model parameters of the
disease. Define penetrance parameters

Vyj = P(Y,|v has j disease alleles B),

v=1...,m, 7 =0,1,2, and let p; be the probability that a randomly
sampled genotype at time 0 has j B-alleles. Conditional on Y, the mutation
status indicators (2v — 1 € M, 2v € M), are independent pairs of binary
random variables, so that

POLIY) = [T POV, 0 {20 — 1,20}%,) 0

v=1

10



with
P(20—16M5,2UEMS|K,) = wvzpz/sv
P(QU —1 ¢ M, 2v € Msnfv) = wvlpl/(QSv) (7)
P2u—1€ M, 20 ¢ MY,) = twpr/(25,)
P(QU —1 g—f M572U g—f Ms’Y;)) = wUOPO/SU

and S, = Yy0po+ Y1 p1+U2pe. In general we have the constraint p,+0.5p; =
p, where p = p(0) = Ny /N is the disease allele frequency. Under Hardy-
Weinberg equilibrium py = (1 — p)?, p1 = 2p(1 — p) and py = p*.

Let f denote frequencies of founder haplotypes defined over marker loci

x1,...,2x. Assuming founder haplotypes are independent we get
P(h'|n') = [] f(R)). (8)
j=1

Let A(T) be the state of the ARG at time T'. It carries information about
which founders that have segregated chromosome segments down to the
sample. The information that A(7T) carries about segregation at marker
loci z1,...,xx can be represented as a decomposition of Q = {1,...,n} x
{1,..., K} into n' disjoint sets Dy, ..., Dy, where (i,k) € D; iff ¢/ is an-
cestral to i at locus zj. Figure 2 displays the decomposition {Dj};?'zl cor-
responding to the ARG of Figure 1. Identical by descent (IBD) relative to
the founder population is defined so that all alleles hy, (i, k) € D; are IBD.
Further, let E; be the projection of D; onto {1,..., K}, i.e. the set of k
such that e;- is ancestral to at least one chromosome ¢ at locus x;. Write
hc = {hix, (i,k) € C} for any subset C' C 2. Then

P(RIA K = [T TT Plho, T (o). Ky, ©)

7j=1 kEEj

where Dj; = D; N ({1,...,n} x {k}) is the ™ column of D;. Notice that
7 (xy) consists of a number of disjoint subtrees. Each such subtree has a root
at € for some j such that k € E; and leaves at all i such that (i,k) € Djy.
The term P(hp,, |7 (x4),h},) in (9) depends on neutral mutations at locus
xy along the subtree of 7 (zy) with root €.

5 Model Simplifications

The retrospective likelihood (5) is general, but involves summation over all
ARGs consistent with data. Due to the large space of possible ARGs the
computation is very computer intensive, and has to be carried out by Monte

11
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Figure 2: IBD regions for the ARG of Figure 1. The mutated region Dj,
is displayed in gray. The location of the disease mutation 7 = 0.36, as well
as 11 marker positions, x; = 0, 1 = 0.1,..., x1; = 1 are displayed with
vertical lines.

Carlo. Still, a feasible algorithm would require development of efficient sam-
pling algorithms of A given g and Y, which avoids genealogies that are not
consistent with data. As an alternative to Monte Carlo, we will in this sec-
tion instead consider approximations and model simplifications that make
the exact computation feasible. We assume:

i. The mutated population is a small fraction of the total population at
all time points, i.e. maxo<i<r,, p(t) < 1. In particular this implies a
rare disease allele p < 1. As a consequence, new mutated edges are
never created in the ARG when going backwards in time and nj(-) is
non-increasing.

ii. No coalescence of unmutated chromosomes, since GG, is too small in
comparison to the size of the unmutated population. The formal crite-
vion is [ py(t)dt < 1.

12



iii. Star topology of the subtree of 7 (7) with ny, mutated edges. This
corresponds to pp(t) < 1 for ¢ € [0,Ty — €] and some small € > 0.
Hence all ny; mutated lines at locus 7 coalesce simultaneously at time
Ty

iv. Founder population at time of disease mutation, i.e. T = T),. This
is in order to simplify analysis and implies that one of the n’ founder

haplotypes is the mutated disease chromosome, so that n,,(7) = 1 and
TLU(T) =n' -1

v. There is linkage equilibrium (LE) in the founder population, i.e. f(h}) =
e, fe(Ply), 5 =1,...,n', with f; denoting founder allele frequency
at locus xy.

vi. All markers are bi-allelic SNPs with mutations occurring along all edges
of T (zy) according to a Markov process in continuous time with inten-

sity matrix
—0r O
O —Ok )

Conditions i-iv are further discussed in the appendix for the exponential
growth model (4). Figure 3 shows an ARG with 8 chromosomes, satisfying
the approximations. The subpopulations corresponding to a disease locus at
7 = 0.36 are displayed.

Since no lineages coalesce before time 1" = T}, the decomposition {Dj};-‘/:1
of € into disjoint IBD regions carries all necessary information of A for
computing L(z), whenever i-vi hold. Thus

P(h|A,h') = P(h|Dy,..., Dy, h') = P(hp,|h}) 11 P(hp,|h)) (10)

J#30

Figure 4 shows {D;}"_, for the ARG of Figure 3, where the disease mutation
is located at 7 = 0.36. There is one IBD region D;, of mutated chromosomes
and the remaining n’ — 1 regions D; contain unmutated chromosomes. Since
there are no coalescence events of the ARG when t € [0,T),] along lineages
starting at ¢ ¢ M;, none of the regions D;, j # jo extends over more than one
single row (i,-) = {i} x {1,..., K'}. However, ¢ may have several ancestors in
the founder generation due to recombination events, so that each (i,-) may
contain several D).

13



Founder chromosomes
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Figure 3: Ancestral recombination graph for n = 8 chromosomes from
n’ = 16 founders. Mutated lineages are displayed with dashed lines.
M ={4,...,7}, whereas the other 4 sampled chromosomes are unmutated.

The time-scale on the right measures time backwards from today’s sample
until the founder generation.

In the sequel, we simplify notation by omitting index j,, writing
D = D;
o= h = (h;ol,..., oK)

Using (10) and summing over h/(—jo) = {n}; j # jo}, 1Dy; j # Jjo} and M,
the likelihood (5) becomes

L(z)= > P(glh)P(h|D,})f(h)P:(D[Y). (11)
)

The region D of mutated chromosomes can be defined as follows: Assume
HY, with zy, < 2 < 2,41 for some kg = 0,1,2,..., K. (We put g = —o0
and zx 1 = 0o to make ky well defined even when = < z7 or © > xk.) For
each i € M, consider the i-lineage of 7 (z) from ¢ = 0 back to t = Tyy,.
It is a union of several edges along the ARG. Each junction between two
such edges corresponds to a recombination event. Let X, and X" be the
recombination points to the left and right of x that are closest to z. (If there
are no recombination points to the left of  we put X, = —oo and similarly
X" = oo if there are no recombination points to the right of z.) Then

D = {(i,k) € Q, i € M, and either x;, > X; for k < ko
or zp < X, for k > ko + 1}.

Thus P,(D|Y) = Yu, Po(D|Ms)P(M|Y'), the conditional probability of
the mutated IBD region D given phenotypes, involves the genetic model

(12)
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Figure 4: IBD regions for the ARG of Figure 3, i.e. with model approxima-
tions. The mutated region D;, is displayed in gray. Note that no other IBD
regions extend over more that one line. The location of the disease mutation
7 = 0.36, as well as 11 marker positions, z; =0, z; = 0.1,..., x1; = 1 are
displayed with vertical lines.

through P(M,]Y) in (6), and the disease locus parameter z and the recom-
bination parameters p and 7(-) through P,(D|M;) in (12) and (A.2). The
term f(h’) depends on founder haplotype frequencies and P(h|D, h’) involves
both founder haplotype frequencies and mutation rate parameters.

Conditions v-vi imply

P(hID,W)= T[] Phaltip)- TI  fulhir) (13)
(i,k)eD (i,k)eQ\D
where st )
o —=h' ik j
P(hag|Byy,) = (1 — qp) "o gy 70 (14)

qr = (1 — exp(—26%))/2 = 0y, is the probability that a founder allele at time
t = 1 mutates an odd number of times down to ¢ = 0 and

fk(a) - (1_Qk)fk(a)+Qkfk(1_a)7 a=0,1, (15)
is the allele frequency of a at locus x; in today’s generation. If 6 is small,

fela) =~ fil(a).
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6 LOD Score Computation and Approximation

Based on (11)-(15), we will compute the likelihood ratio LR(x) and the asso-
ciated LOD score (2). The first step is to calculate the likelihood (11) when
x = 00. Since Py(D =0|Y) = 1, we get

L(c0) Sn P(g1R) T wyea fr(hir) (16)

= ng-Iuryea fulhir),

where ng = [{h; h ~ g}| is the number of haplotype configurations consistent
with genotype data, i.e. the number of h such that P(glh) = 1. In the last
step of (16) we used that [](; y)eq fr(hir) is the same for any h ~ g.

Taking the ratio of (11) and (16) we get

LR(x) = 3 LR(K, D)f()P(D|Y), (17)

where LR(K', D) = P(g|h',D)/ (ng [T wen fk(hlk)) is the likelihood ratio
obtained when conditioning on missing data (h’, D). It turns out that a very
explicit expression for LR(A/, D) can be obtained. To this end, introduce
H C ) as the the set of heterozygous sites (i, k), i.e.

H = Uf:l UT:l Hyp,

where H,;, is empty if g, is homozygous (hoy—1x = hoyr) and H, =
{(2v — 1,k), (2v,k)} if gy is heterozygous (hoy—1x # howi). The expres-
sion for LR(A/, D) is obtained by taking the ratio of the right-hand sides
of (13) and (16) and summing over all h ~ g. This sum involves switch-
ing alleles independently of all heterozygous genotypes, i.e. switching alleles
within each nonempty H,;, yielding ng = 21172 terms. The contribution
to LR(A/, D) is independent for all genotypes g, and depends on zygos-
ity of g, as well as how {(2v — 1,k),(2v,k)} intersects with D. Let Hj
consist of those heterozygous sites that belong to the £™ column of D but
the homologous site (i.e., the member of the same H,;) does not. Then
the k™ column of D has nyy + nwo + nxr elements, where ngg = |Hyl,
Nk = |{l, (Z,/{Z) eD \ Hk7hik = 0}| and ng; = |{Z, (l,k) eD \ Hk:;hik = 1}|
and

LR(W, D) =TI, (PR £i(0))™ (PR fi(1)) ™

- (0.5P(0R)0)/ fi(0) + 0.5P (LIRS ) / fe(1) ™) .
(18)
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Figure 5: An example of marker haplotypes for the sample in Figure 3 and 4,
to illustrate H, the set of heterozygous sites, and Hy, the intersection between
D = D,, and column k in H. The mutated region D is displayed in gray (note
that a mutation seems to have taken place at marker 3 in chromosome 5).
The set of heterozygous sites, H, is the union of the marked boxes. For each
marker 1 < k < K, the set Hy consists of those chromosomes at heterozygous
sites that belong to the ™ column of D, but where the homologous site does
not. Thus in this example H; = 0, Hy = {7}, H3 = {7}, Hy = {4,7},
H; = {47577}a Hg = {5}7 H; = {47577}a Hy = {4}7 Hy = Q); Hyp = {5}7
Hy; = {5}. Further it follows that ngg = 1, ngy = 1 and ng; = 2, etc.
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which are computer intensive, but much less so than (17).

6.1 Conditioning on Founder Haplotypes

In this approach we sum out D in (17) and write

LR(z) = > LR(z; /) f(R), (19)

hl

where LR(x;h') = P.(g|h,Y)/ (ng ke fk(hzk)) is the likelihood ratio
when conditioning on missing data h'. Let R, = D N ({2v — 1,20} x
{1,..., K}) denote the set of mutated sites (i, k) for Individual v. Then
(17)-(18) imply

LR(z; /') = [[ S_LR(K, Ry) Po(R,|Y,) (20)

v=1 Ry

where LR(h'; R,) is the likelihood ratio obtained when conditioning on hid-
den data (K, R,), i.e. replacing D by R, in (18). The crucial point is that
conditionally on A’ and Y, the rows of g are independent and hence LR can
be written as a product of m terms. It is shown in the appendix that each
term of the outer product can be calculated with O(K') operations, using a
recursive Hidden Markov Model (HMM) algorithm. Hence the total com-
plexity is O(mK2F) for evaluating LR(z). This is a marked improvement
over direct summation over A" and D, but still un-feasible for large K. For
large K, we may use a sliding window of [ < K marker loci. The window
width [ is chosen to make the computational complexity O(mi2'K) feasible.
To obtain p-values for the test, a permutation algorithm was proposed in
(3). In general permutation tests are very computationally intensive, which
constrict their practical applicability for tests that are already computa-
tionally demanding, such as ours. In the general setting, the test quantity
must be calculated for each of the () random permutations, which would
give computational complexity O(mK25Q). Since Q must be large, typi-
cally tens or hundreds of thousands, this is not feasible. However, in the
case of binary phenotypes, we propose a procedure for the permutation test-
ing which reduce the computational demand. The algorithm exploits that
>r, LR(W, R,) P (Ry|Y,() is the same for all permutations where Y, ) = 1,
and similarly for all permutations where Y.,y = 0. Thus, for each individual v
the HMM must only be calculated twice, to obtain > r LR(F/, R,)Py(R,|Y, =
1) and Y- p, LR(K, R,)P,(R,|Y, = 0) respectively.

To obtain p-values the summation over A’ and multiplication over v in (19)
and (20) must be carried out for each of the ) permutations. The total
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complexity is thus O(m2K (2K + @Q)). Since typically Q >> K the total
complexity including permutation testing is O(m2XQ).

To estimate Z,,,,, LOD score is calculated at several positions z;, i =
1,..., N, within the interval [0, 1], and Z,., = max;_  n, Z(Z;). As
LOD score is calculated separately at each position, the total complexity
is O(m2KQN,).

6.2 Conditioning on IBD Regions

In this approach we sum out A’ in (17) and write

LR(z) = Y LR(D)P,(D|Y), (21)

where LR(D) = P(g|D)/ (ng [T wea fk(hzk)) is the likelihood ratio obtained
when conditioning on missing data D. This yields

LR(D) = T, (@i ((1 - gk)/fk(o))nko(Qk/fk~(1))nklfk<0)
HHE (gi/ Fr(0))"0 (1 = o) /fu(1))™ fi(1))

where a, = 05(1 - ~qk)/fk(0) + 0.5qx/fe(1) and similarly
by = 0.5qx/ fx(0) + 0.5(1 — qx)/ fir(1).
In the appendix, we describe a HMM algorithm for evaluating (21) with

complexity O(K2*™). This is un-feasible for all but very small m, so we
propose using a pseudo likelihood

(22)

PL(z) = [] L(z; V), (23)
Vey

where L(z;V) is the retrospective likelihood using only individuals from
V. C {1,...,m} and V a given collection of subsets V. The pseudo like-
lihood ratio and pseudo LOD score obtained from (23) are

PLR(z) = [] LR(z;V)

Vev
and )
P2(s) = hyloguy(PLR(2)
= pivevZ(@ V).
For instance, if V contains all subsets of {1,...,m} of size mg, we get com-

putational complexity O(Km™22™0)  which, for values of m of practical
interest, is feasible for mg at most 2.
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When a permutation test is used to calculate the p-values the procedure
would in general require O(Km™22™(Q) operations for the PLOD score.
For mg = 2 this is O(Km?2'Q) = O(Km?Q). However, for binary pheno-
types an effective algorithm can be developed, just as for the LOD score.
The basis of this algorithm is that LR(x;V) = > p, LR(Dy)P,(Dy|Yy) is
constant for all permutations with the same Y. Here Dy is notation for
which markers that are inherited IBD (from the mutated founder) for the
individuals within subset V. As )V consists of subsets of size 2, Y can
take only four possible values, Yy = (00), Yy = (0 1), Yy = (1 0) or
Yy = (1 1). Thus LR(z; V') must be calculated for each of these four cases,
and for each permutation only the multiplication over all subsets in V re-
mains. The complexity is thus O(m?(4K2* + Q)). Since typically Q > 20K
the complexity becomes O(m?Q). To estimate PZy.., PLOD score is cal-
culated at several positions Z;, i = 1,..., N, within the interval [0, 1], and
PZmax = max;—1__n, PZ(Z;). As the PLOD score is calculated separately at
each position, the total complexity is O(m2?QN,).

6.3 Software

The algorithms for simulation and calculation of the LOD and PLOD scores
have been coded in Matlab. The algorithms, with inbuilt documentation, are
available after request from the authors.

7 Simulation study

To evaluate the performance of the proposed LOD and PLOD scores, a small
simulation study is presented.

As previously pointed out, the retrospective ARG is a powerful tool for simu-
lation of case-control samples. For a prescribed number of cases and controls,
the mutational status for each of a person’s two alleles at the disease locus
is simulated conditional on the person’s disease status, according to (6). By
simulation of the four different events 1-4 on Page 8, superimposed by neu-
tral mutations, the marker alleles are obtained. The following simulations
are obtained under the simplifications (i)—(vi) in Section 5.

As an example of a commonly used genetic model, we account for simula-
tions with multiplicative penetrance and binary phenotype. With genotype
relative risk ratio A, we have 1 /¢y = 15 /1); = A, where 1); is the probability
that an individual with j disease alleles becomes affected. (Then ,; = v,
for all cases (Y, = 1) and ¢,; = 1 — ¢); for the controls (Y, = 0).) Fur-
ther HW equilibrium was assumed, i.e. genotype frequencies py = (1 — p)?,
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p1 = 2p(1 — p) and p, = p?. The markers were equispaced in the interval
[0,1] (with x; = 0,..., 25 = 1), with minor marker allele frequency f, = 0.5
at all markers £ = 1,..., K. From the founder generation until today, the
marker mutation rate was ¢ = ¢ = 0.001 and recombination rate in the
interval was p = 1.5. In all simulations the disease locus was positioned at
7 = 0.36, which was not a marker position. All parameter values can be
chosen arbitrarily, although their values affect the power to detect associa-
tion. Considering mutations that arose typically some hundred generations
ago, the mutation rate 0.001 per marker is unrealistically high for SNPs, but
still does not undermine the performance of our LOD score. On the other
hand, the marker allele frequencies f; = 0.5 are unrealistical to our favour.
The accompanying decrease in sample size, that is made possible, is welcome
for the computer demanding studies of power that we present here. However
it does not change the fundamental behaviour of the LOD score, compared
to arbitrary marker allele frequencies. We further test our algorithms for
parameter values that do not fulfil all conditions of the approximation. In
particular, the disease allele frequency is too high in the first simulation, and
in that way more similar to what is assumed in real studies. (To pick up as-
sociations for diseases with weak penetrance would need unrealistically large
samples if the disease allele frequency was very low.)

Each simulated data set was analyzed with the LOD score (19) and/or PLOD
score (23), the latter with subsets of mg = 2 individuals. (For some data sets
either of the methods was un-feasible due to the computational demand). To
evaluate the performance, the p-value of the test statistic Z,,,, was found by
permutation testing (3).

7.1 LOD score and PLOD score

In three independent samples of 200 cases and 200 controls at K = 5 markers,
the disease allele frequency was p = 0.2, relative risk ratio A = 3, and
prevalence 0.001. Figure 6 displays the LOD and PLOD scores of the three
data sets, each calculated at N, = 20 equidistant locations interior of [0, 1].
To be able to detect associations with a p-value as small as 10, 100000
permutations were performed.

For the LOD score, the association is very clearly picked up by Z,,.., and
further it is clear that the largest Z(x) is found close to the true maximum
7 = 0.36. Although the shape of the PLOD score curve is similar to that of
LOD score, with its maximum close to 7 = 0.36, the p-values are considerably
lower for PLOD. The p-value calculations further show that permutation
testing is necessary, since the asymptotic y*-approximation (in which case
LOD=3 corresponds to p-value 0.0002, which is commonly used to establish
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linkage) is not valid neither for LOD nor PLOD .

%=3.0, p=0.2 2=3.0, p=0.2 2=3.0, p=0.2
80 60 60
o
sE N\
TN A 0.01 \
BEE ol /1 Ll s\
8'% 05 7 \ 0.01

40 40

Lob, z
{23
o
~
//
IS
&
~]
//
So
S

35

40 30 30

o o5 1 0o o5 1 0o o5 1
X X X
4=3.0, p=0.2 4=3.0, p=0.2 4=3.0, p=0.2
0.06 0.03 0.04
0.0001
o0 Boge B - 0.001
0.01 - 0.01
n 004 01 002 / \\ 0.001 / I\ 01
g 003 03 001 ol [ | N\
! ! 05
g JI
2 01
002 001 / \\
/ 05
0.01 \
0 0 0
0o 05 1 0o 05 1 0o 05 1

Figure 6: LOD and PLOD score calculated for three simulated data sets,
at N, = 20 positions along [0, 1]. The genetic model is multiplicative pen-
etrance with relative risk 3, disease allele frequency 0.2, marker allele fre-
quency f(1) = 0.5 and mutation probability ¢, = 0.001 & = 1,...,5. 200
cases and 200 controls were simulated and analyzed. Within columns, LOD
and PLOD are calculated for the same data set, and quantiles are estimated
with the same random permutations. The horizontal lines show the criti-
cal limits for Z,,,, for different significance levels a (displayed on the right
y-axes). Marker positions are indicated with dotted, vertical lines, and the
true disease location 7 = 0.36 with a solid vertical line.

7.2 Power calculations

To estimate the power of the tests we have performed tests for multiple
simulated data sets. The results are plotted as a Receiver Operating Char-
acteristic (ROC), i.e. power vs. significance level, see e.g. Bradley (1996).
For each of N independent simulations from the genetic model, a p-value
Q;, 1 =1,..., N, is estimated from the results of () random permutations as
in (3). The power 3 as a function of a could then be estimated by Monte
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The ROC displayed in Figure 7 is an estimation based on 100 simulated
data sets with K = 10 markers for 200 cases and 200 controls. The model
parameters were A = 2, p = 0.1 and prevalence 0.001. Each p-value was
estimated from () = 10000 permutations, and thus p-values larger than 1-10~3
could be estimated accurately. Simulated datasets also admit calculation of
the golden standard likelihood. For chromosome ¢ let M; = 1 if i € M,
and 0 otherwise. By (6) and (7) we get Lgoua = [, P(May—1, Ms,|Ys).
The p-values are then obtained by the permutation procedure. To cut down
computation time for the ROC, while not altering the test performance, Z(x)
and PZ(z) were only calculated for z = 0.2,0.3,...,0.6, i.e. Zyax and PZp
were based on (P)LOD score at N, = 5 non-marker positions around 7. As
the LOD score has a steeper ROC for small « it has better performance than
the PLOD score. Despite the relatively weak model, both tests turn out
positively in a comparison with the baseline f(«) = «, corresponding to a
test that cannot discriminate between Hy and H;. Neither of the tests match
the golden standard.

To reach the golden standard, a denser set of markers should be needed. As
the computational demand for the LOD score grows fast with the number of
included markers K, it is not feasible for, say K larger than 20. As datasets
with many markers are believed to be needed to unravel the genetic cause
of complex diseases, the PLOD score approximation is suggested. Even for
large K, the computation of PLOD score is still affordable, helping to perform
tests for data sets with more markers, if the number of included individuals
is not too large.

As a last example, Figure 8 displays the ROC for PLOD score from 100
runs with ¢ = 10000 permutations for the same genetic model as in Fig-
ure 7 (p = 0.1, A = 2 and prevalence 0.001). The data set now consists of
K = 25 markers for 200 cases and 200 controls. PZ,.. is calculated from
PZ at the same 5 positions in the vicinity of 7, as in Figure 7. The LOD
score is not computationally tractable, but to use all 25 markers is possible
with the PLOD score approximation. Comparison with Figure 7 shows that
the performance of PLOD score has improved, but that it still gives worse
results than LOD-score did with K = 10 markers. In other simulations with
higher disease allele frequency p = 0.2 the quality of PLOD calculated from
K = 10 markers almost matched that of LOD score with K = 10. For situ-
ations where calculation of LOD-score is not feasible, PLOD-score could be
a potentially useful approximation.
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Figure 7: ROC calculated from N = 100 p-values, each calculated from
(Q = 10000 permutations. Genetic model is multiplicative with relative risk
A = 2, disease allele frequency 0.1, K = 10, p = 1.5, marker allele frequency
fx(1) = 0.5 and mutation probability g, = 0.001 & = 1,...,10. 200 cases
and 200 controls were simulated and analyzed.

7.3 Time consumption

Table 1 contains the mean computation times for the accounted LOD and
PLOD scores. Computations were performed on one of the processors of a
fast computer, a AMD Athlon(tm) 64 X2 Dual Core Processor 5000+ with
2.6GHz processor and total memory 2GB.

The computation times include permutation testing, and although highly de-
pendent on the computer used, they demonstrate that the tests are feasible
even for quite large data sets with many markers. If implementation was
done in a program language such as c++ instead of Matlab, we believe that
the computation times could be considerably lower. Comparing the empir-
ical results to the theoretical complexity calculations of Section 6.2 and 6.1
give quite large deviations. We believe this is mainly an artefact of mem-
ory constraints, which prevent us from proper vectorization of the code for
the permutation test of the PLOD score. Also this would be avoided in a
programming language that is effective for heavy computations.
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Figure 8: ROC calculated from N = 100 p-values, each calculated from
Q = 10000 permutations. Genetic model is multiplicative with relative risk
A = 2, disease allele frequency 0.1, K = 25, p = 1.5, marker allele frequency
frx(1) = 0.5 and mutation probability g, = 0.001 & = 1,...,25. 200 cases
and 200 controls were simulated and analyzed.

& Discussion

For gene-mapping studies, ARGs have been used as a model framework of
chromosome evolvement of a sample, thus assigning probabilities to different
scenarios of the relatedness of the sample chromosomes. In this article we
extend the ARG, to better describe the genealogy of a retrospective sample of
chromosomes. To achieve this, we define two subpopulations, of mutated and
unmutated chromosomes respectively, which have different recombination or
coalescence rates. Specifically, the rates of coalescence and recombination
change in time, depending on the number of mutated/unmutated chromo-
somes in the population at a certain time. As a model for chromosome
samples, the retrospective ARG is general, as it handles arbitrary genetic
models, adapts to marker allele frequencies and copes with neutral muta-
tions. The model can allow for varying population size N(t) and disease
allele frequency p(t) through the parameters Ny /N, k and k. Stochastic
disease allele frequency p(t) can be handled viewing p(-) as a hidden variable
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parameters time (s)
m K N, Q LOD | PLOD | Figure
400 5 20 100000 || 150 | 61000 | Figure 6
400 10 5 10000 1000 | 1600 | Figure 7
400 25 5 10000 — 1800 | Figure 8

Table 1: Mean computation times for different sample sizes. The mean
computation times for LOD and PLOD are measured in seconds.

of the ARG which is repeatedly simulated according to a population genetic
model and then, conditionally on p(-) the ARG is simulated as described in
Section 4.

The main contribution of the article is that we show how a retrospective
ARG can be used to calculate likelihood and LOD score, i.e. we use the
retrospective ARG directly for multipoint gene-mapping.

For the purpose of simulation from an ARG (with slight approximations)
there are various software available, see e.g. Hudson (2002) and Marjoram
and Wall (2006). The simulations include recombinations and neutral mu-
tations, and can be modified to adapt to varying recombination or mutation
rates. Thus, there are good methods to generate random samples from a
population. However, these algorithms provide no good way to obtain the
kind of highly non-random samples that are used for case-control association
studies, linkage-disequilibrium mapping studies and other gene-mapping pur-
poses. We therefore believe one important application of our retrospective
ARG is simulation of haplotype data h conditional on Y. This can be
achieved by first simulating M, conditional on Y, then A conditional on Mj,
h' conditional on n’ with specified founder haplotype frequencies, and finally
h conditional on A and A’. In this way we mimic a non-random sample
where chromosomes carrying a disease mutation tend to be more closely re-
lated than chromosomes not carrying the disease, and thus also more closely
related than the population as a whole. Ascertainment corrected simulation
has earlier been proposed by Zollner and von Haeseler (2000) and recently by
Wang and Rannala (2004, 2005), whose models show large similarities with
the one we propose. Just as in this paper, the model of Wang and Rannala
(2005) handles incomplete penetrance and genotype data. However, they
use discrete generations, and account for varying or stochastic disease allele
frequency. Varying population size N(¢) and disease allele frequency p(t) is
incorporated also in our model, and are controlled by parameters x, x); and
Ny /N for a model of exponential growth. That the disease locus of Zollner
and von Haeseler (2000) and Wang and Rannala (2004, 2005) is assumed to
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be on the same side of all markers, is probably easy to generalize to the case
we use, with markers on both sides of the disease locus. Further the SNP
locations are simulated as part of the procedure, whereas ours appear at pre-
determined positions. This simpler approach allows researchers interested in
a specified region to choose the marker locations among the SNP locations
in the human genome, which are nowadays easily available, e.g. from the
HapMap project (The International HapMap Consortium, 2003).

A deficit with our model is that the nuisance parameters £, including the
recombination rate r, number of generations since the mutation G, and
since founder generation G, is not part of the estimation procedure, but must
be set by the modeller. In many real life situations these parameters are not
known, and must in this case be estimated before the analysis is performed.
Thus, the most important extension of our method would possibly be to
include estimation of the nuisance parameters.

In practice, computational complexity is an important issue for simulation,
but even more for likelihood calculation. The reason is that the number
of ARGs compatible with sample data is enormous for most study designs.
Without model approximations, as in Section 5, exact likelihood computation
(5) is not feasible, because of the daunting summation over h, h’, A and M.
The direct Monte Carlo approach would be to generate random replicates
of (h,h', A, M,) conditional on Y as described in the previous paragraph.
However, this is not a feasible approach in general since the integrand P(g|h)
would be zero with very large probability. A remedy is to use importance
sampling, i.e. to sample (h, h’, A, M,) from another distribution that mimics
the conditional distribution given (g,Y’). Fearnhead and Donnelly (2001,
2002) have considered importance sampling conditional on g in the context
of estimating recombination rates r. An interesting topic would be to extend
their algorithms to our retrospective context of disease locus estimation

To give an example of a computationally feasible LOD score based on the
retrospective ARG we introduce model approximations. The resulting model,
based on star topology for cases and independence for controls, is a severe
simplification compared to the original. This approximation has earlier been
considered for calculation of LOD score by e.g. Terwilliger (1995) and Service
et al. (1999). Compared to these however, our resulting LOD score is an
important generalization since it handles more markers and unknown phase.
Further, for binary phenotypes, we can obtain p-values by a computationally
feasible permutation algorithm.

Of the approximations, assumption vi, that mutations occur according to a
Markov process, is not essential for the method, but is included for conve-
nience. Further, for the LOD score calculations it is implicitly assumed that
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T#xk, k=1,..., K. Although computations will not collapse if LOD score
is calculated at marker loci, there will in general be a discrepancy between
disease allele frequency and marker allele frequency that will hamper the re-
sults. More precisely, even for calculations at a marker locus, the procedure
does not require that exactly the chromosomes with disease mutation should
have a certain allele.

As a computationally more tractable alternative to ARG methods, haplotype-
clustering methods have been suggested (e.g. Molitor et al. (2003), Durrant
et al. (2004) and Waldron et al. (2006)). There a clustering, based on a
chosen haplotype similarity measure, form a cladogram which, compared to
the ARG, is a coarse approximation of population evolution. The suggested
similarity metrics have been simple, quite ad hoc, and based on identity by
state (IBS), e.g. the largest shared region between two chromosomes around
a putative disease locus, possibly normalized for varying allele frequencies.
The retrospective ARG models which regions that the sample chromosomes
share IBD. By utilizing this for two chromosomes at a time, the model hold
promise for calculating an IBD-based similarity metric, which incorporates
disease status, copes with neutral mutations and adapts to allele frequencies.
We hope that this can bridge the gap between haplotype similarity methods
and ARG-based methods, and plan to explore this in a forthcoming paper.

Appendix
Regularity conditions on exponential growth model imposed by i-

iv. For the exponential growth model (4), Conditions i-iv imply (recall that
Ty =1)

p(t) = (Nu/N)exp(Gu(r — ra)t)
= (Na/N)"™=H1/N(Tw))",
s (dt = (exp(GukTy) — 1)/ (Nk)
MM(t) Gu log(l —exp(/iMGM(t— 1)))_1

IA

G log(l — exp(—rp Gae)) L,

where the two approximations of the middle approximation requires Ny, > 1
and Ny (t) < N(t) at all time points 0 < ¢ < T);, and the last inequality
applies for all 0 <t < T);. Hence for conditions i-iv to hold it suffices that

Ny < N,
N(Ty) > max(k1,1),
Guexp(—eryGy) < 1

28



In words, the disease allele frequency p = Ny, /N should be small, the founder
population large, and either G, or k), large. O

HMM algorithm for computing likelihood ratio (20) and (21). Con-
sider a subset [ of {1,...,n} andlet R=DnN(I x {1,..., K}) be the set of
mutated markers (i, k) for chromosomes i € I and Cj, = C,, the k'™ column
of R, k=1,..., K. Under the assumption that 7 = x, we will devise a HMM
algorithm for computing

K
5= (L@ (A1)
k=1
where Yy = {YV,, v e V}, V ={v;1 <v <m,IN{2v—1,2v} # 0} and
Ur(Cy) = Ur(Ck; g) a given function. We will apply this when i) S equals the
v term of the outer product in (20) (with I = {2v—1,2v}, V = {v} and Uy
the k™ term of (18), with R, in place of D) and ii) when S = LR(x) is the
likelihood ratio, expanded as in (21) (with I = {1,...,n}, V. ={1,...,m},
Yy =Y and Uy the k™ term of (22)). With obvious modifications of Y and
g, (A.1) also applies to calculating the relevant terms of the pseudo likelihood
ratio PLR(z).

To begin with, we establish a Markov property of {Cy}. Because of (12), the
columns of R to the left and right of the (assumed) disease locus, {Ci}i_y,
and {Cj}, 11, evolve as two Markov chains with state space all subsets of
I. The two chains are independent conditional on their starting values, which
depend on C, := M;NI. As the chains progress, C} is non-increasing in both
directions, with Lineage ¢ € I lost at x; when there are recombination events
at X; (X;") just to the right (left) of x;, affecting i.

Since recombinations occur as independent Poisson processes with rate pm(+)
along different mutated ¢-lineages from ¢t = 0 to t = T, = 1, it is easy to see
that {X; }ieam, and {XT }icps, are independent random variables with

P.(X; <2'lie M;) = exp(—p[in(y)dy), 0 <2’ <z

P (X" >2'|i € M) = exp (—p I W(y)dy) , x <2 <. (A.2)

Let F~ and F'* denote the distribution functions of X;  and X", and put

r = (F‘(xk)—F‘(xk_l))/F_(xk), 1§]€§k30,

e = (FT(zpa1) — F(x) /(1 — Ft (), ko+1<k <K,
Ty = F_(.CE) - F_<xko)7

ri = FH(wgg) — F(2).

In words, when k < kg, r,, is the probability of a recombination between z;_;
and x;, given that no recombination has occurred between z;, and x. r; is
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the probability of a recombination event between zy, and z for a mutated
lineage i € M,. The interpretation of r, for k& > ko + 1 and ;" is similar.
This gives rise to transition probabilities

P(Ck_l = C,‘Ck = ) = 7"‘0| = ‘(1 )lcl‘, k= 1, ceey k’o,

P(Ck+1 C‘Ck— ) T‘Cl ‘C‘(l )lcl‘, k=ky+1,...,K,
Py(Chy = C'C, =C) = (r;)/O17 (1 )<,

Py(Crorn = C'C, = C) = (r))I7191(1 =)<,

provided C" C C' (otherwise the transition probabilities are zero). Define

SK(C) = EI(HéC:I U(C)|Cr=C), 0<k <k,
’ E(I5,UC)|Ck=C), ky+1<k<K+1.

and «
S(C) = E.(ITUi(C)|C. = O).
=1
Then, the recursive algorithm for computing S can be formulated in terms
of Si(C), S(C) and the transition probabilities as follows: Start with initial
conditions

So(C) = 1,
Sk+(C) = 1,

Then, define recursively for all C' C [

vC C 1.

Sk<C> = ZC’QC Sk—l(Cl)Uk<C>P<Ck—l - C/|Ck - C), k= 17 R k07
Sp(C) = Xece Sk (CUR(C)P(Cryr = C'[C, = C), k

The final two steps are

S(C) = (Zerce Sr(C)P(Cr, = C'IC, = C))
: (ZC/QC Sko+1(C") P(Chyr = C'|Cy = C)) , VO C I
S = e S(C)P(C, = C|Y ).

In the last step we use (7) to evaluate P(C, = C|Yv). The total complexity
of the algorithm is O(K2/'), where 2/l is the state space size. O
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