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Abstract

Interaction between drug substances may yield excessive risk for
adverse drug reactions (ADRs) when two drugs are taken in combi-
nation. Collections of individual case safety reports (ICSR) related
to suspected ADR incidents in clinical practice have proven very use-
ful in post-marketing surveillance for pairwise drug ADR associations,
but have yet to reach their full potential for drug-drug interaction
surveillance. In this paper, we implement and evaluate a shrinkage
observed-to-expected ratio for exploratory analysis of suspected drug—
drug interaction in ICSR data, based on comparison with an additive
risk model. We argue that the limited success of previously proposed
methods for drug—drug interaction detection based on ICSR data may
be due to an underlying assumption that absence of interaction is
equivalent to having multiplicative risk factors. We provide empir-
ical examples of established drug drug interaction highlighted with
our proposed approach, that go undetected with logistic regression. A
database wide screen for suspected drug drug interaction in the en-
tire WHO database is carried out to demonstrate the feasibility of the
proposed approach. As always in the analysis of ICSRs, the clinical va-
lidity of hypotheses raised with the proposed method must be further
reviewed and evaluated by subject matter experts.

KEY WORDS: Adverse drug reaction, exploratory analysis, interac-
tion, shrinkage, surveillance.
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1 Background

Individual case safety reports (ICSR) on suspected adverse drug reaction
(ADR) incidents in clinical practice, otherwise known as spontaneous reports,
remain the main source of information to detect unknown adverse reactions
to drug substances that are already on the market (Rawlins 1988). While
randomized clinical trials (RCT) identify a safety profile of a medicinal prod-
uct before it is brought to market, some ADRs will first be detected in the
large numbers of patients exposed in real world clinical practice. This is par-
ticularly true of ADRs that are rare or that occur only after extended periods
of use. The Uppsala Monitoring Centre in Sweden maintains and analyses
the world’s largest collection of ICSRs (3.8 million reports from 1968 to 2006)
on behalf of the WHO Programme for International Drug Monitoring. The
pooling of ICSRs from different countries in an international database allows
public health and patient safety issues to be detected earlier after drug launch
than if based on only the analysis of national data sets (Olsson 1998).

ICSR data contains information only on those prescriptions of drugs that are
believed to have lead to ADRs. There is no information on the total num-
ber of patients prescribed a certain drug, so absolute incidence or reporting
rates are impossible to estimate. On account of their reliance on voluntary
reporting, collections of ICSRs are open to potential reporting biases, such
as the general under-reporting of known and less serious events and the rel-
ative over-reporting on drug ADR combinations following attention in the
scientific or public media. In addition, ICSRs entail problems with varying
data quality (Edwards et al. 1990), the possible presence of duplicate case
reports (Norén et al. 2005) and the vulnerability to intentional manipulation
through fraudulent reporting (Stephens 2004). Still, ICSRs remain well ac-
cepted as the best data source currently available for the early detection of
previously unsuspected ADRs.

The nature of ICSRs limits the strength of conclusions that can be drawn.
Collections of ICSRs are unsuitable for hypothesis testing, but provide an im-
portant basis for hypothesis generation with the primary aim of highlighting
potential public health or patient safety issues for further investigation (Bate
et al. 1998). For large collections of ICSRs, quantitative methods are indis-
pensable in screening the massive inflow of new reports (the WHO database
currently receives over 200,000 new ICSRs each year). Automated knowledge
discovery methods may also highlight interesting aspects of groups of ICSRs
that are not immediately apparent in manual review.

1.1 Drug-drug interaction surveillance

The proportion of ADRs that are due to drug drug interaction is thought
to be between six and thirty per cent (Pirmohamed and Orme 1998). For



example, two drugs may compete for the same biologic receptor with a result-
ing antagonistic effect. Alternatively, one drug may inhibit an enzyme that
metabolizes the other and thus cause ADRs due to an accidental overdose.
Similarly, enzyme induction may lead to lack of effect of a co-medication,
and this may also be considered as an ADR. A true drug-drug interaction
is one where the pharmacological outcome is not just the direct result of the
two drugs’ individual effects (Pirmohamed and Orme 1998), and our interest
is in effects that exceed that expected under simple independent action of
each drug.

The early detection of ADRs due to suspected drug-drug interaction is im-
portant both from an overall public health perspective and the individual
patient safety point of view. While many drug drug interactions can be
predicted based on pharmacological knowledge, ICSRs and other real world
observational data provide an important complement, in particular for the
detection of unpredictable drug—drug interaction. If previously unknown high
risk drug combinations can be identified, they can potentially be avoided in
the future, and if ADRs can be attributed to drug drug interaction rather
than to individual drugs, drugs that would have otherwise been withdrawn
can remain on the market with warnings concerning co-medication.

ICSRs have a primarily structured format agreed internationally where the
information related to the observed ADR incident can be entered. One or
more drugs can be listed, at least one of which must be labelled as suspected
of having caused the observed ADR. Co-administered drugs that the reporter
considers to be unrelated to the observed ADR can be listed as such. The
reporter can also list sets of drugs as specifically suspected of having in-
teracted to cause the ADR. Other possibly useful information on reports
includes dosage, therapy start and end dates and their relation to the onset
date of the suspected ADR. There are also free text fields that may contain
relevant pieces of information.

Even though reporters can explicitly list sets of drugs as suspected of having
interacted, in many cases the drugs will be listed as co-suspected instead, or
suspicion will even be aportioned to just one of the drugs. In order not to
delay the early discovery of drug—drug interaction, surveillance should not
focus solely on those ICSRs where the drugs are explicitly listed as suspected
to interact. Similarly, there are free text fields that may in some instances
allow clinical experts to draw conclusions about potential drug drug inter-
action incidents based on single ICSRs, but as such information cannot be
expected to be available generally, it is likely to be more useful in clinical
review than for first pass screening purposes. In order to detect suspected
drug—drug interaction as early as possible, we focus on the total number of
reports on two drugs with a particular ADR, regardless of whether the two
drugs are listed as suspected or interactive.



1.2 Statistical interaction

For the purpose of determining whether a high absolute reporting rate is
indicative of interaction, statistical methodology is required. In statistical
inference, interaction is defined in terms of departure from an additive model
that accounts only for main effects. For example, an observed relative fre-
quency p of a certain outcome under simultaneous exposure to X; and X,
(indicator variables with observed values z; and x5 equal to either 0 or 1),
may be compared to the expected relative frequency under a no-interaction
logistic regression model:

log% = fo + i1 + Pos (1)

Alternatively, the observed incidence rate A may be compared to that ex-
pected under a no-interaction linear model:

A= Qo + 11 + oo (2)

Models (1) and (2) are clearly not equivalent, and since (1) is additive on the
logit scale, its risk factors approximately multiply (provided p is not large),
whereas (2) assumes additive incidence rates. The choice of baseline model
will determine the nature and interpretation of an estimated interaction term.
The two models define interaction as departure from their respective baseline
assumptions, and sometimes, even the direction of estimated interaction may
vary between models. Consider the potential interaction between two drugs
with respect to a particular ADR. If, in the absence of the second drug, the
risk for the ADR is 0.03 among patients exposed to the first drug vs 0.01
among patients not exposed to the first drug and that with the second drug
co-prescribed, the corresponding risks are 0.10 and 0.05. Then the observed
risk ratio for the first drug is higher in presence of the second drug (3.0 vs 2.0)
whereas the risk difference is lower (+0.02 vs +0.05). The choice between
a baseline model with additive or multiplicative risk factors thus determines
the direction of the estimated interaction term.

Clearly, departure from a given statistical model does not automatically cor-
respond to interesting interaction: the appropriate statistical baseline model
depends on the subject matter question of interest. However, Rothman et al.
(1980) argue that from both public health and individual patient safety per-
spectives, absolute differences in risk are more important than relative ones,
and advise that interaction should ordinarily be defined in terms of departure
from a model with additive risk factors. From a public health perspective,
interaction relative to an additive risk model indicates whether the absolute
number of cases in a population depends on to what extent two different risk
factors co-occur. From an individual patient safety point of view, it indicates
whether, for a given patient, the increase in absolute risk due to one risk fac-
tor is modified by the presence of the other. Interaction defined as departure



from a baseline model with additive risk factors thus provides a solid ba-
sis both for public health policy making and individual decisions (Rothman
et al. 1980).

For the purpose of ADR surveillance, the additive risk baseline model has
the advantage of estimating each drug’s separate effect based on an absolute
rather than a relative difference in relative reporting rates. In contrast, for a
baseline model with multiplicative risk factors, if the relative reporting rate
of the ADR is near 0 on reports that list neither of the two drugs of interest,
even very modest relative reporting rates of the ADR for either drug on its
own may yield considerable expected relative reporting rates of the ADR
given co-prescription of the two drugs (because the ADR might still be many
times more often reported given either drug than in the absence of both
drugs). Moreover, when the background relative reporting rate of the ADR is
very low, missing information on one of two interacting drugs will yield over-
estimated relative reporting rates for sole use of either drug. This will distort
interaction estimates regardless of whether they are based on departure from
baseline models with additive or multiplicative risk. However, in combination
with very low background relative reporting rates, a more severe impact can
be expected for baseline models with multiplicative risk.

1.3 Earlier work

Several methods have been proposed for quantitative drug—drug interaction
detection in ICSR. data sets. Most of the previously proposed methods have
been based on departure from baseline models where risk factors essentially
multiply. This is not surprising, given the general availability of such methods
in standard software. Both van Puijenbroek et al. (1999) and van Puijen-
broek et al. (2000) present interaction analyses based on logistic regression.
DuMouchel and Pregibon (2001) propose an approach to interaction detec-
tion based on departure from a log-linear model. The higher order measure
of disproportionality proposed in Norén et al. (2006) is also based on a no
interaction model where risk factors multiply. In contrast, the methods for
interaction detection proposed in Almenoff et al. (2003) and Yang and Fram
(2004) compare the relative reporting rate of the ADR given co-prescription
of two drugs, to the highest relative reporting rate of the ADR given sole
prescription of either drug. Thus, they make no distinction between inter-
action and simple independent action, and are not appropriate for detecting
drug—drug interaction as defined in the context of this paper.

No database wide screens for drug drug interaction in ICSR data sets have
been published and there are no reports in the literature suggesting that
any of the proposed interaction detection methods have been implemented
for routine ADR surveillance. Nor are we aware of any examples of early
warnings on drug—drug interaction produced by any of these methods. Du-
Mouchel and Pregibon (2001) present no empirical results for ADR data.
and the empirical examples presented in the other papers tend to be on iso-



lated examples where the relative reporting rates for the ADR given sole
prescription of either drug do not deviate considerably from the baseline rel-
ative reporting rate for the ADR in the absence of both drugs: 0 and 0.006
versus a background relative reporting rate of 0.005 in van Puijenbroek et al.
(1999), 0.04 and 0.03 versus a background relative reporting rate of 0.03 in
van Puijenbroek et al. (2000), and finally 0.004 and 0.002 versus a back-
ground relative reporting rate of 0.002 in Norén et al. (2006) (for further
details, see Table 1 in Section 3). For these examples where the relative re-
porting rates given sole prescription of either drug are so close in magnitude
to the background relative reporting rate in the absence of both drugs, the
estimated separate effect of each drug will be very small and the choice of
baseline model less critical.

1.4 Aim of this paper

The aim of this paper is to propose a disproportionality measure for ex-
ploratory analysis of suspected drug drug interaction in ICSR data, starting
from a baseline model with additive risk.

2 Method

In order to screen for disproportional reporting indicative of suspected drug—
drug interaction in ICSR data, we formulate a model for the expected inci-
dence of suspected ADRs in a population of interest and translate this to the
context of the database. We compare the observed relative reporting rate
f11 of an ADR given the co-prescription of two drugs in the database to its
expected value E[f1;] estimated from the relative reporting rates of the ADR
given sole reporting of each drug, under the baseline assumption that the two
drugs do not interact.

In the choice of absolute or relative difference between fi; and E[fi1] as the
basis for our measure of disproportionality, we consider the relative difference
to be the more relevant measure, based on the view that for an interaction ef-
fect to be of interest it should represent a substantial proportion of the ADR
incidents under consideration. As equivalent with the relative difference, we
take as measure an observed-to-expected ratio analogous to that used in pair-
wise disproportionality analysis of ICSR data (Norén et al. 2006, DuMouchel
and Pregibon 2001):

fi1
E[fu]

While E|fi1] is not known, it can be estimated, and f;; can be compared to
this estimate.

(3)



2.1 Population model

We first model the occurrence in the population of the adverse event A of in-
terest. New prescriptions occur under a certain average intensity that varies
depending on the set of prescribed drugs. In connection with a given prescrip-
tion, there is a certain risk (probability), dependent on the set of prescribed
drugs, that the adverse event of interest (A) occurs and is reported as a
suspected ADR. First, denote by aq the background risk for A due to for ex-
ample progression of the underlying disease or a coincidental adverse event
only temporally associated with the medical treatment. Next, consider two
drugs D; and D,, prescribed alone or in conjunction, or not at all. The total
risk pgo for A in individuals who are prescribed neither D; or Dy is just the
background risk:

Poo = G (4)

Let a; denote the risk for A attributable to Dy, and let oy denote the risk
for A attributable to Dy. Under the assumption that the background risk of
A, and the risks due to D; and D, are all mutually independent, the total
risk pig for A in individuals treated with D; in the absence of D, is:

pro=1—(1—ag)(l —a1)
:Oéo—i‘Oél—Oéo'Oél (5)

Similarly, the total risk pg; for A in individuals treated with D, in the absence
of Dy is:

por = 1= (1 —ag)(1l - a) (6)

The total risk py; for A in individuals under combined treatment of D; and
D2 is:

pn=1-(1—ap)(l —a)(l—a) (7)
Given that both the background risk, ag, and the attributable risk from Dy,

a1, can be assumed to be small for any ADR A, their product, ag - a; <<
ag ,ay. Thus, the following approximation of (5)is valid:

P10 = ap + o (8)

Similarly:
Po1 = O + Q2 (9)
P11~ g+ ag + (10)

The absence of reliable information on the total number of different types of
prescriptions as well as the degree of under-reporting, makes it difficult to
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Figure 1: Venn diagram for the risks of A and A’, in different subsets of the
drug taking population.

link (4), (8), (9) and (10) directly to observed relative reporting rates in the
database. In order to obtain a database reference related to the total number
of prescriptions for different sets of drugs, let A" denote the occurrence of at
least one of a (potentially large) group of ADRs excluding A (and in its
absence so that A and A’ are mutually exclusive events). Let o denote the
background risk for A’. If ADRs with an attributable risk from either D; or
Dy can be excluded from A’, the total risk for A’ will be af for all possible
combinations of D; and Dsy:

Poo =
Pro = g
Por =
p/n = a6 (11)

However, the identification of an appropriate set of unrelated ADR. terms for
a given pair of drugs requires expert clinical judgment, which cannot easily
be automated for routine screening purposes. Common practice in pairwise
disproportionality analysis of ADR surveillance data is therefore to include
all ADRs other than A in A’ for first pass screening purposes. We propose
the same approach be used for interaction screening, since (11) will hold
approximately unless D; or D, considerably alters the overall risk for any
suspected ADR in association with the prescription. Should this be the case,
restriction of A’ to a more narrow set of ADRs will resolve the problem.

2.2 Database relative reporting rates

In order to obtain an estimator for the observed-to-expected ratio of the
relative reporting rate in the database of A given D; and Dy co-prescribed,



based on the population model in Section 2.1, let ny1; denote the number of
reports on A listing both Dy and D», let n19; denote the number of reports on
A listing Dy but not Ds, let ng;; denote the number of reports on A listing
Dy but not D; etc. Similarly, let n;.. denote the total number of reports
on Di, n.;. the total number of reports on Dy and n..; the total number of
reports on A etc. Let:

o1
Joo = ——
1noo-
n1o01
Jfio=—
n10.
No11
Jor=——
Nno1.
ni1
fii=— (12)
nit.

denote the corresponding observed relative reporting rates for A.

We will now construct an estimator for the expected relative reporting rate of
A under combined use of Dy and Dy (f11) based on the relative reporting rates
of A given prescription of at most one of Dy and Dy (foo, fi10 and fo1). This
will be the denominator of our observed-to-expected ratio in (3). In order
not to let potential interaction contaminate the estimation of the expected
relative reporting rate, we base it exclusively on fyo, fio and fo;. Ignor-
ing potential reporting biases, denote by r the probability that a suspected
ADR incident is characterized as such by a health professional, reported to a
pharmacovigilance center and eventually forwarded to the WHO programme
(the impact of violations of this assumption of equal reporting rates is fur-
ther discussed in Section 4). The expected value for the background relative
reporting rate of A in the absence of both D; and D, is:

E[foo] = E[E[foo | noo]]

gl
QT+ T

%)

= 13
Qo + o (13)
Similarly:
oo + oy
E =~ 14
[fu] = S (1)
o+ «
Elfn] = ———— (15)

Oé0+0é2+0é6
Oéo+061+042
ap + o1 + as + o




After re-expression of (16) in terms of (13 15):

ap + a1 + o

Bl ] =
[fll] 060+Oél +Oég+0éé

&
ap + o+ az +

-1 1

- aoaJrE)m 4 ao;%az _ g_g 41

1

=1- E[f10] + Elfo1] _ _E[foo] +1 (17)

1—-E[f10] 1—-E[fo1] 1—E[foo]

Thus, as estimator of E[f};], we may use:

1
gn=1- f10 fo1 foo +1

1-fio 1-fo1 1—foo

However, in order to avoid possible misleading influence of negative a; or ay
estimates, we modify g7 as follows:

1

foo f1o foo fo1 _ _foo
max (1*f00’ 1*f10) + max (1*f00’ 1*f01) 1—foo +1

g =1- (18)

When fi9 < foo (indicating no risk for A attributable to D), this yields the
most sensible estimator g1 = max(foo, fo1), and vice versa when fo < foo.

2.3 A shrunk interaction measure

To form a measure for the interaction seen in a data set we first consider:

Qo = log, Ju (19)

g1

In spite of the very large data sets, the events involved in ADR surveillance
should be rare, so g;; tends to be very small, and as a consequence () is sen-
sitive to spurious associations. This is a well known phenomenon in screening
ICSR data sets for single drug ADR excessive reporting rates, where the con-
tingency tables are often extremely unbalanced. In that context, shrinkage
has proven an effective approach to reduce the sensitivity to random fluctua-
tions in measures of disproportionality, based on small amounts of data. Two
of the most extensively used pairwise measures of disproportionality for [CSR.
data are indeed shrinkage measures: the Information Component (IC') (Bate
et al. 1998) and the Empirical Bayes Geometric Mean (EBGM) (DuMouchel

10



and Pregibon 2001). Both of them are based on the pairwise observed-to-
expected ratio of the relative reporting rate for an ADR together with a
certain drug.

In order to construct a similar shrinkage measure from (19), we re-express
the observed and expected relative reporting rates fi; and gq; in terms of the
observed and expected counts nq1; and Fy11 = g11 - 1.

f11 n111/n11~ ni11

Ji = 20
g1 By /na. Ein (20
and propose the €2 shrinkage measure:
nin + o
Q) =logy —— 21
ga Fii + o (21)

Here, « is a tuning parameter determining shrinkage strength (higher o gives
stronger shrinkage and vice versa). For a = 0, we obtain €y. The impact of
« is equivalent to that of a additional expected reports on the ADR under
joint prescription of the two drugs and lack of interaction, and an exactly
matching increase in the observed count. Unlike in shrinkage regression,
where tuning parameters can be selected on the basis of cross-validation
estimates for classifier performance, there is no objective basis for choosing a
particular value for « in disproportionality analysis. Empirical studies of the
WHO database have indicated that o = 0.5 provides just enough shrinkage
to avoid the highlighting of case series consisting of less than 3 reports, and
all subsequent {2 estimates presented in this paper are based on this value

for the tuning parameter. However, other a-values may be more appropriate
for ICSR data sets very different from the WHO database.

The €2 shrinkage measure can be motivated both from frequentist and Bayesian
perspectives. In the frequentist perspective, {2 is biased towards 0 relative
to €, but with better variance properties. As ni;; and Fjq; increase, the
difference between €2 and €2y approaches (. From the Bayesian perspective, {2
can be viewed as the logarithm of the posterior mean of an unknown rate of
incidence p under the natural assumption that niy; is Po(u- Eyqp)-distributed
with log, 1 = Q and a gamma prior distribution (or random effects model in
a likelihood-based analysis) for u: G(a, a), with expected value 1. The choice
of prior is made mainly for mathematical convenience, since due to conju-
gacy the posterior distribution for p will also be gamma (but with parameters

niito : niito
ninn + o and Eip + o, expected value 4 and variance (ElllJra)Q).

With the Bayesian approach, exact credibility interval limits for p can be
found numerically as solutions to the following equation, for appropriate
posterior quantiles fi4:

/#q (Ell_‘l(l -+ a—)i_nul)—i—aumquale(n111+a)u du = q (22)
0 N T &

11



Specifically, the logarithm of the solutions to (22) for ¢ = 0.025 and ¢ = 0.975,
respectively, provide the upper and lower limits of a two-sided 95% credibility
interval for €: 9025 and 9975.

In the frequentist approach, for large ni;; and Ejqq, Q differs little from
2y and a Poisson (or binomial) confidence interval can be used. A crude
estimator of the precision of €}y based on the Poisson model is:

Var(Qy) = Var (log2 2111 >
111

~ Var(logy ni11)
Var(logniiy)
~ log(2)?
- Var(ni)
nii log(2)?
1
ni11 log(2)?

Q

(23)

where, in the first approximation, any randomness in F;;; has been assumed
negligible.

3 Results

We carried out two investigations to study the usefulness of the proposed
disproportionality measure €2 for drug—drug interaction detection. First, we
compared €2 to a third order log odds ratio with respect to the ability to de-
tect five examples of drug drug interaction in ICSR data. Three of these were
based on previously published studies of drug drug interaction in ICSR data
and two were examples of established drug-drug interaction based on WHO
data. Second, we screened the entire WHO database for three-way dispro-
portional reporting rates, to see whether the combinations of two drugs and
one ADR with Qg5 > 0 tend to be of clinical interest. This study also gave
an indication as to the feasibility of using {2po5 > 0 as a threshold for clinical
review in screening ICSR data sets for suspected drug—drug interaction.

3.1 Case studies

We used data from three previously published studies of drug-drug interac-
tion in ICSR data: delayed bleeding from concomitant use of itraconazole
and oral contraceptives in van Puijenbroek et al. (1999), cardiac events from
concomitant use of diuretics and NSAIDs in van Puijenbroek et al. (2000) and

12



ventricular fibrillation from concomitant use of terfenadine and ketoconazole
in Norén et al. (2006). In addition, we considered two new examples of es-
tablished drug drug interaction with excessive relative reporting rates in the
WHO database: “drug level increased” from concomitant use of digoxin and
clarithromycin and rhabdomyolysis from concomitant use of cerivastatin and
gemfibrozil. These examples were selected because an unpublished investi-
gation based on the higher order IC' for three-way disproportional reporting
rates proposed in Norén et al. (2006), surprisingly indicated negative inter-
action for these two examples, despite the fact that they are well established
examples of drug—drug interaction. In fact, co-prescription together with
gemfibrozil was contraindicated for cerivastatin even as it was introduced on
the market, and there are over a thousand case reports in the WHO database
on rhabdomyolysis for concomitant use of cerivastatin and gemfibrozil. More-
over, as large a proportion as 75% of all case reports on cerivastatin together
with gemfibrozil list rhabdomyolysis as (one of) the suspected ADR. This
is to be compared with relative reporting rates of 0.1% in the absence of
both cerivastatin and gemfibrozil, 4% for sole gemfibrozil use and 27% for
sole cerivastatin use. Clearly, an interaction detection method which fails
to highlight such reporting patterns as indicative of suspected drug drug
interaction will be of limited use in ADR surveillance.

Table 1 lists relevant data for all five examples considered in this investiga-
tion. Database counts (ni11, nq1., etc) for the first three case studies were
taken directly from the corresponding publications. Data for the two new
case studies was extracted from the WHO database as of 2004-12-31. For
comparison, interaction terms (third order log-odds ratios) from a logistic
regression model fitted directly to the database are provided for all five case
studies (the estimates for the first two case studies correspond to those quoted
in van Puijenbroek et al. (1999) and van Puijenbroek et al. (2000), respec-
tively). Additionally, Q2 and Qg5 values calculated according to the approach
presented in Section 2.3 are provided for all five case studies.

The € measure of disproportionality indicates positive interaction for all
five examples in Table 1. Disregarding shrinkage, each unit increase in 2
corresponds to a doubling of the observed-to-expected ratio. An Q of 1 thus
indicates that there are (at least — because of the shrinkage) twice as many
reports on the ADR given the two drugs co-prescribed as we would expect,
based on each drug’s separate risk profile. However, as for any shrinkage
measure, it is important not to over-interpret the specific value of €0 as it
may depend strongly on the choice of tuning parameter . €2 never exceeds
the log observed-to-expected ratio, but if either ny;; or Ej1; are small, the
choice of o will determine to what extent €2 is shrunk towards 0. As is clear
from a comparison with €y in Table 1, shrinkage has little impact on €2 in the
second, fourth and fifth examples. As for the first and third examples where
there are just 5 or 10 reports on the ADR given the two drugs of interest,
the difference between Q2 and €2 is substantial.

An analysis based on logistic regression (odds ratios) indicates positive inter-
action for the examples in van Puijenbroek et al. (1999) and van Puijenbroek

13



Drug 1 Itraconazole DiureticsTerfenadine Digoxin  Gemfibrozil

Drug 2 Oral Con- NSAIDs KetoconazoleClarithro- Cerivastatin
traceptives mycin

ADR Delayed Cardiac Ventricular Drug Rhabdo-
bleeding events fibrillation level in- myolysis

creased

n111 10 25 5 35 1084

n11. 23 278 27 85 1431

n1.1 10 78 63 1193 1304

n.11 19 67 11 245 3022

ny. 39 1775 6083 10650 6756

n. 1489 1613 5071 12390 9181

n.q 39 305 3695 10781 6321

n... 5503 9822 3.2+ 106 3.2-10¢  3.2-10°

Joo 0.0050 0.028  0.0011 0.0030 0.001

J10 0 0.035  0.0096 0.11 0.04

for 0.0061 0.031  0.0012 0.017 0.25

fi1 0.43 0.090 0.19 0.41 0.76

g1 0.0061 0.039  0.0096 0.12 0.27

log,(OR)  +o0 +1.23  +4.50 -0.03 -2.24

Qo +6.15 +1.20  +4.27 +1.77 +1.47

Q +4.03 +1.16  +2.86 +1.72 +1.47

Qoos +3.00 +0.54  +1.33 +1.20 +1.38

Table 1: Empirical data for three case studies of suspected drug drug in-
teraction in ICSR data from the literature (van Puijenbroek et al. 1999, van
Puijenbroek et al. 2000, Norén et al. 2006) together with data from the WHO
database for two examples of established drug—drug interaction.
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et al. (2000) (as already known from the original publications), as well as for
that in Norén et al. (2006). In contrast, it fails to highlight examples 4 and
5 as indicative of suspected drug drug interaction.

3.2 A database screen

As a complement to the investigation in Section 3.1 of whether disproportion-
ality analysis based on ) will highlight established examples of drug—drug
interaction, we carried out a database wide screen for disproportional re-
porting in the entire WHO database. The aim of this investigation was to
study to what extent the drug drug ADR combinations with Qg5 > 0 in
the WHO database correspond to clinically interesting suspected drug-drug
interaction.

The presence of duplicate case reports is an important data quality problem
that complicates knowledge discovery in ADR surveillance. In order to avoid
problems with case report duplication in the analysis presented below, we
pre-processed our extract from the WHO database (as of 2004-12-31) by
completely removing any suspected duplicates highlighted by the duplicate
detection algorithm described in Norén et al. (2005). Complete removal of
all suspected duplicates is of course overly cautious in the sense that at least
one report in each group of suspected duplicates should be retained in the
database, but for the purpose of general method evaulation it should have
minimal impact on the results. In the future, we intend to implement a more
sophisticated approach to account for suspected duplication through report
weighting.

All in all, 14,927 cases of three-way disproportional relative reporting rates
with 95 > 0 were highlighted in the database wide screen. Table 2 displays
10 of the drug drug ADR triplets with the highest 20 estimated g5 values
in the entire screen. Excluded from the list are 10 drug drug ADR triplets
that are due to a series of 25 case reports on strabismus together with gentam-
icin, lidocaine, hyaluronidase, cefazolin and bupivacaine, that fell just below
the threshold to be highlighted as suspected duplicates. Further follow up of
the three drug-drug-ADR triplets involving cerivastatin and gemfibrozil in
Table 2 revealed another potential data quality problem related to a series of
some 600 very similar case reports that were originally submitted to a phar-
maceutical company by a law firm. While these reports do refer to different
patients, they should not be considered as independent pieces of information
due to their common origin. Their identification is interesting in its own
right. In large ICSR data sets, some data quality issues are unavoidable, and
do not negate the value of the proposed method, even though data quality
is an important issue in the general use of ICSR systems. That some of
the very highest disproportional reporting rates correspond to data quality
problems matches experience from pairwise disproportionality analysis. Nev-
ertheless, some of the drug-drug-ADR triplets highlighted in Table 2 are of
potential clinical interest. Specifically, the disproportional reporting of med-
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Drug 1 Drug 2 ADR ni1 g1 Q  Qpas

Cerivastatin Gemfibrozil Neurological 659 0.31 0.0029 6.63 6.52
disorder

Cerivastatin Gemfibrozil Heart 123 0.06 0.0004 6.46 6.19
block

Celecoxib  Citalopram Drug 51 0.72 0.0046 5.96 5.53
abuse

Cisplatin Carboplatin Medication 118 0.55 0.0084 5.69 5.42
error

Diphtheria, Haemophilus Hypotonic 141 0.033 0.0006 5.49 5.25

pertussis, B vaccine  hypore-

tetanus, sponsive

poliomyelit episode

Amoxicillin - Cefaclor Tooth dis- 46  0.41 0.0037 5.68 5.23
order

Nefazodone Quetiapine Medication 68  0.73 0.0118 5.42 5.06
error

Metroni- Vancomycin Resistance 21  0.18 0.0006 5.25 4.57

dazole

Cerivastatin Gemfibrozil Depression 721 0.34 0.0137 4.63 4.52

Doneperzil ~ Rabeprazole Drug 27 0.26  0.0035 5.00 4.40
abuse

Table 2: 10 drug drug ADR combinations with among the 20 highest (g5
values in the database wide screen
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Drug 1 Drug 2 ADR ni fi g1 Q  Qoos
Oxycodone Quetiapine Suicide at- 5 045 0.13 1.53 0.00
tempt
Cisapride  Clarithro-  Dyspnoea 7 010 0.04 1.26 0.00
mycin
Diphteria Haemophilus Face 6 004 0.02 1.09 0.00
and B vaccine  oedema
tetanus
toxoids
Furosemide Amoxicillin  Epidermal 4 0.06 0.01 1.74 0.00
necrolysis
Risperidone Valproic Condition 17 0.10 0.06 0.77 0.00
acid aggravated
BCG vac- Interferon  Back pain 3 0.08 0.009 2.05 0.00
cine alfa-2b
Carba- Thiamine  Fever 3 0.60 0.07 2.05 0.00
mazepine
Ticlopidine Acetyl- Death 18 0.06 0.03 0.74 0.00
salicylic
acid
Haloperidol Trifluo- Dyskinesia 7 023 0.09 1.26 0.00
perazine
Phenytoin ~ Gabapentin Hypo- 3 0.02 0.002 2.05 0.00
thyroidism

Table 3: 10 drug-drug-ADR combinations with (95 values just above 0
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ication error for concomitant use of cisplatin and carboplatin may indicate
a potential patient safety issue. Similarly, the hypotonic, hyporesponsive
episodes reported for concomitant administration of two vaccines are in chil-
dren usually very scary experiences both for the child and its parents. If the
interaction is confirmed, some such cases can be avoided by policy changes
to vaccine programmes.

The early warning system for pairwise disproportional reporting in the WHO
database focuses on relative reporting rates that have just recently crossed a
threshold for clinical review Bate et al. (1998). To illustrate what a similar
approach to drug-drug interaction screening may generate, we examined the
10 drug drug ADR combinations whose g5 values exceeded 0 with the
smallest margin, in our database screen. These are listed in Table 3. Despite
the lower relative reporting rates compared to those in Table 2, some of these
drug—drug—ADR triplets are also of potential clinical interest. Specifically,
ticlopidine and acetylsalicylic acid are anti-platelet drugs that are sometimes
co-prescribed for improved potency, and if their co-prescription induces safety
problems, this should be accounted for in their clinical management. As for
the disproportional reporting of condition aggravated for concomitant use of
risperidone and valproic acid, a possible interaction between these two drugs
has been discussed in the medical literature (van Wattum 2000).

Some of the examples in Tables 2 and 3 have no obvious pharmacological
basis. As such they represent important signals requiring confirmation or
explanation. Our aim here is to demonstrate that the proposed measure of
disproportionality may generate interesting leads with respect to suspected
drug-drug interaction. No clinical assessment has yet been made to exclude
spurious associations, confounding by co-medication or underlying disease,
and further review of the examples is needed.

4 Discussion

We have introduced a new three-way disproportionality measure for drug
drug interaction, that unlike previously proposed such measures is based on
a model with additive risk for the occurrence of ADRs under concomitant use
of non interacting drugs. We have showed how an observed-to-expected ratio
measure of disproportionality for ADR relative reporting rates, based on this
model, can be estimated and used to screen for drug drug interaction in
ICSR data. In addition, we have provided empirical examples of established
drug-drug interaction with considerable relative reporting rates in the WHO
database that go undetected with other methods such as logistic regression,
but can be detected with our approach.

Disproportionality analysis of [CSR data can be seen as a form of case-control

study, in which reports on other drugs in the same database are considered as
controls for the reporting of the drug of interest. However, by modelling the

18



additive risk explicitly instead of implementing a logistic regression model,
we avoid the potential problems associated with estimating departure from
additivity based on a model with essentially multiplicative risk discussed
in Skrondal (2003). We use a deliberately rather simple shrinkage for the
measure of disproportionality in Section 2.3, much less sophisticated than the
complex set of priors for the I/C' in Norén et al. (2006) and the gamma prior
distribution with two components and five fitted parameters used to shrink
the EBGM (DuMouchel and Pregibon 2001). The main advantage of this is
transparency. Clinical review is a critical step in the knowledge discovery pro-
cess and reliance on complex statistical methods limits the ability of subject
matter experts to interpret and question the relevance of observed dispro-
portional relative reporting rates. For the same reason, we advise against
isolated presentation of 2. Sets of observed and expected relative reporting
rates fi1 (as well as perhaps foo, fi0 and fo1) and g1; give subject matter
experts a more clear indication why a particular series of case reports has
been highlighted for clinical review.

Some of our model assumptions may potentially be violated. While most
of these assumptions apply to disproportionality analysis of ICSR data in
general, our model formulation makes them explicit. For example the as-
sumption of equal reporting rates r for all drugs, ADRs and combinations
thereof in Section 2.2 will sometimes not hold. One can show that (16) is
still a valid estimator for the expected relative reporting rate under reporting
biases that affect individual drug substances and ADRs separately. However,
as in any analysis of ICSRs, the impact of reporting biases that affect specific
drug-ADR pairs or drug-drug pairs is more difficult to comment on in gen-
eral terms. This emphasizes why this and other knowledge discovery methods
for ICSRs are tools for hypothesis generation rather than testing. The pos-
sibility that an observed disproportional reporting rate is due to complex
reporting biases should always be considered in the strengthening and refine-
ment of generated hypotheses. Another violable model assumption is that
of a constant risk of the reference set of ADRs A’ for all combinations of D,
and Dy in (11) of Section 2.1. In reality, interaction between D; and Dy may
increase the overall risk for ADRs other than A. If so, 2 will under-estimate
the disproportionality of the observed relative reporting rate much like
the phenomenon referred to as masking in pairwise disproportionality anal-
ysis of ICSR data sets, where excessive reporting on a specific ADR for a
certain drug masks less extreme disproportional reporting of the same ADR
given other drugs (Evans 2004). As stated above, this can be remedied by
restricting A’ to a more limited set of ADRs.

The discovery in Section 3.2 of a cluster of ICSRs provided by the same law
firm illustrates the importance of further analysis of observed disproportional
reporting rates. While suspicions based on ICSRs remain tentative even
after clinical review, clusters of ICSRs with a reasonable spread in space and
time, cleaned from case report duplication and other reporting biases, provide
stronger indication. Possible confounders should also, as far as possible, be
ruled out as alternative explanations. The quality and amount of information
on highlighted ICSRs is very important in the clinical review. Suspected

19



ADR incidents are often originally described in pieces of free text, only later
encoded in terms of standard ADR terminologies. If this conversion is not
satisfactory, it may distort any subsequent analysis. The two references to
Drug abuse in Table 2, may be examples of this. The term Drug abuse has
diverse possible interpretations, and careful review of the original reports
listing drug abuse for celecoxib together with citalopram indicates that they
actually refer to instances of medication error, where the two drugs have not
been taken together but one has mistakenly been dispensed instead of the
other, on account of their similar commercial names (Celebrex and Celexa).
While not a drug-drug interaction per se, we consider it beneficial that our
method highlights this interesting association between two drugs and one

ADR.

The work presented here shall need to be complemented in the future by
applied method development with the aim of presenting a routine frame-
work for drug-drug interaction surveillance in the WHO database. Impor-
tant challenges include the definition of effective triage strategies to focus
efforts in drug drug interaction surveillance on the most important issues
for follow-up, similar to those developed for pairwise drug ADR dispropor-
tionality analysis by Stahl et al. (2004). Clearly, strategies to incorporate
increased pharmacological knowledge such as that related to pharmacoge-
netics may also improve the potential for effective drug drug interaction de-
tection (Strandell et al. 2005). A framework for hypothesis strengthening
and refinement related to highlighted case series must also be developed and
implemented.
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