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Abstract
We propose a general framework for simulating the value of a �nancial portfolio over
time. The main idea is to let experts specify the long-term behaviour of the economy,
and use statistical models to generate the behaviour at intermediate time points.
First, a set of expert scenarios specifying the values of the dominant risk factors
at a few discrete time points is determined. Then, for each of these scenarios, a
continuous-time model is speci�ed that is consistent with the expert scenario.

As a working example we simulate the equity of a model bank mainly involved in
retail business activities such as lending to households and small corporates, deposit
services, brokerage, and di�erent types of payment services. We specify a continuous-
time model for the bank's daily revenues and costs given expert scenarios specifying
the long-term development of the macroeconomy, client volumes, margins and fees.
The ruin probability, i.e. the probability that the equity ever becomes negative, is
investigated in some depth. Inspired by the work of Jokivuolle and Peura [7], we also
show how the new capital adequacy rules (Basel II) can be included in our framework.
The Basel accord speci�es calculation rules for the eligible capital as well as for the
amount of risk (referred to as `Risk Weighted Assets') that the bank is exposed to.
We perform a joint simulation of the capital and the risk weighted assets in order to
investigate if the regulatory requirements are ful�lled in all the scenarios.
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Email: hakan@math.su.se. Phone: +46 70 368 33 52.

†Postal address: Group Risk Control, Swedbank, SE-105 34 Stockholm, Sweden. Email: andreas.
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1 Introduction
To ensure a stable global �nancial system, it is necessary that banks and other �nancial
institutions hold substantial capital bu�ers to protect against large unexpected losses.
Shareholders, investors and depositors need to be con�dent that the bank will not fall
in distress whatever the future state of the economy. Stress testing of the bank capital
is thus an important input to the capital adequacy process. In this work we present a
framework for investigating whether the bank is solid enough to survive also under stressed
economic conditions. The bank's result is a�ected by a large number of external factors,
such as market variables, macroeconomic factors, variables governing the behaviour of the
clients etc. A model of the joint time dynamics of all relevant variables would require the
estimation of a huge number of parameters. Here we take the important standpoint that it
is simply not feasible to perform this task. Instead, we assume that a number of prede�ned
master scenarios form the basis of the model. Each master scenario speci�es the long-term
behaviour of variables that have a great impact on the bank's result�external variables
as well as bank-speci�c quantities like client volumes and margins. Then, given a master
scenario we run a continuous-time statistical model of the bank's daily revenues and costs.
The set of master scenarios could contain historical scenarios as well as expert scenarios.
Besides reducing the estimation problem, this approach has the advantage of being easily
communicable to the management. Indeed, the model is intended to be an important tool
for the management in the process of determining the required capital level, and it could
also be used in the communication with regulators, rating agencies and the public. The
disadvantage with the approach is of course that no probability measure can be assigned
to the scenario set, hence a classical Value-at-Risk framework is not meaningful in this
context.

The following related questions are of fundamental importance:

(1) Solvency. Given today's capital and given a master scenario, what is the probability
that the capital will stay above zero between today and the speci�ed risk horizon?

(2) Capital estimation. How large capital is needed today to ensure that the bank sur-
vives with high probability, no matter what master scenario in the scenario set we
consider?

The �rst part of the paper will provide a quantitative framework for answering these
questions.

The modelling framework is quite general and may in principle be applied to any �nancial
institution. However, since a �nancial institution may be involved in a large variety of com-
plex business activities, it is impossible to provide an exhaustive set of relevant examples
in this text. Instead, for illustrative purposes we describe a simpli�ed model that could be
applied to a medium-sized retail bank with exclusively domestic business activities. We
assume that our model bank focuses on the following types of fundamental retail business:
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• Lending to households and small corporates;

• Deposit services;

• Asset fund management (equity funds);

• Di�erent types of payment services.

In addition, the residual market risk evolving from these business activities is managed
e�ciently by a Treasury function. A retail bank is typically not very much involved in
proprietary trading, hence we assume that no positions are taken for speculative purposes
only. Within this context we will discuss the questions (1) and (2) above.

There is a large body of literature covering the market risk and credit risk of �nancial
portfolios. For instance, the Value-at-Risk framework for market risk is discussed e.g. in
Jorion [8] and in Dowd [4], and credit risk models are introduced in Bluhm et al [3]. Stress
testing in the context of the Basel II framework is discussed in several BIS working papers,
see e.g. [2]. However, we are not aware of any previous work that aims at describing a
consistent mathematical methodology, taking a uni�ed view on a bank's risk and capital
adequacy assessment.

We turn to discuss the new capital adequacy framework that will have a great impact on the
future capital strategies of the banks. The main purpose of the �rst Basel accord of 1988
was to provide a framework for the calculation of a minimum capital requirement for the
banks. Banks with large volumes of risky assets were assigned large capital requirements.
National supervisors all over the world soon adopted the Basel proposal and created legis-
lation to be followed by the �nancial institutions in the respective countries. The original
Basel accord only covered credit risk, but was complemented in the late nineties with a
market risk amendment.

Over the years it has become clear that the very crude calculation rules for the credit
risk capital requirement need to be replaced by a more risk sensitive framework. For
instance, all corporate loans of a given size are considered equally risky under the �rst
Basel accord, hence from a regulatory perspective the bank feels no incentive to steer
its lending activities towards more creditworthy counterparties of the corporate segment.
With such considerations in mind, the Basel committee decided to develop a new set of
capital adequacy rules, henceforth referred to as Basel II. In many countries of the world,
these rules will become legally binding in 2007. The new Basel accord is built on three
so-called Pillars :

• Pillar 1: Minimum capital requirements for credit risk, market risk and operational
risk. For each of these risk types, the bank needs to choose one out of several levels
of sophistication. Selecting a more advanced calculation model requires additional
investments from the bank's side, but tends to lead to lower capital requirements.
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• Pillar 2: Supervisory review process. The bank needs to demonstrate that a sound
internal capital adequacy process is in place, and that risks not covered under Pillar
1 are appropriately monitored and managed.

• Pillar 3: Market discipline. The bank is required to provide detailed information to
the public on its risk pro�le, risk management and capital strategies.

We have no ambition to cover the entire Basel II framework in this work. The interested
reader should consult e.g. [1] to get the full picture.

The �nal part of this document outlines a framework for the joint simulation of the bank's
capital and the so-called Risk Weighted Assets, which we now de�ne. Under Pillar 1 of Basel
II, risk weights are calculated for all assets of the bank using supervisory functions that
are designed so that risky assets are assigned large risk weights, and vice versa. The Risk
Weighted Assets (RWA) for credit risk is simply the sum of these risk weights. In addition,
RWA for market risk and operational risk are calculated using supervisory formulas. The
bank's total RWA is the sum of these three components (credit risk, market risk, and
operational risk). Finally, the capital ratio is de�ned as the ratio of the bank capital and
the total RWA. The regulation requires the capital ratio of the �nancial institution to stay
above a certain minimum capital ratio.

We argued above that it is crucial that the probability of getting a negative capital is
virtually zero. However, it is well known that rating agencies, investors and depositors
react negatively already when the capital approaches the minimum capital requirement
from above. Hence, the bank management typically announces a slightly higher target
capital ratio than the required minimum capital ratio for the business. Here we wish to
answer the following questions:

(1') Capital adequacy. Given today's capital and given a master scenario, what is the
probability that the capital ratio will stay above a target ratio speci�ed by the man-
agement between today and the speci�ed risk horizon?

(2') Capital estimation. How large capital is needed today in order to ensure that the
capital ratio stays above the target ratio with high probability, no matter what master
scenario in the scenario set we consider?

The methodology is inspired by the work of Jokivuolle and Peura [7]. The model can be
used as a tool in the internal capital adequacy process. Furthermore, we believe that the
results obtained using the model could serve as an important input to the Pillar 2 process.

The document is organized as follows. A detailed description of the modelling framework
is given in Section 2. In Section 3 we discuss how to simulate the dominant parts of the
pro�t and loss account of an idealized bank. Furthermore, ruin probabilities are simulated.
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Section 4 outlines the Basel II regulatory framework together with the simulation model
of the capital ratio. Then the result of a very small case study is reported. In Section
5, possible extensions are discussed. Conclusions are given in Section 6. An Appendix
concludes the document.

2 Modelling framework
We are given a portfolio of �nancial contracts, and we wish to estimate how much the
value of the portfolio may decrease from today, t = 0, to some speci�ed risk horizon,
t = T . Within the concept of Value-at-Risk, a risk calculation is typically performed as
follows. Movements of relevant risk drivers are simulated using some statistical model. In
each simulated scenario, the change in portfolio value is calculated. Finally, the desired
left quantile is extracted from the simulated distribution of changes in portfolio value.

It is certainly feasible to adopt such an approach if a limited number of risk drivers are
associated with the portfolio and if we only consider a short risk horizon, i.e. a few days. A
model of the time dynamics of the risk drivers may be readily de�ned, and its parameters
will be reasonably stable over time. This is usually the situation when the portfolio contains
products traded on a liquid market. However, imagine that we pose the same question
when the portfolio contains all the transactions of the entire bank and the risk horizon
is a number of years. Then the set of risk drivers includes interest rates, currency rates,
stock quotes, GDP, in�ation, unemployment �gures, client volumes, margins and fees etc,
and it is neither practical nor desirable to set up a complicated stochastic model with
a huge number of parameters where all of these variables are simulated over a long time
period. Such a model runs the risk of becoming a `black box' whose output is impossible to
interpret clearly. Instead, we believe that the bank management appreciates a transparent
model where speci�c expert scenarios, henceforth referred to as master scenarios, may be
de�ned and the impact of these scenarios on the business may be clearly monitored.

Here follows a high-level description of the proposed model. The quantity of interest is
henceforth simply referred to as the value process, the value of the bank portfolio being
a prominent example. Assume that a set of risk drivers, called risk factors, of the value
process has been identi�ed. The model is built by performing the following steps:

• De�ne a small number of master scenarios for the long-term movement of the dom-
inant risk factors, i.e. given their values at time t = 0, specify their values at time
t = T , and possibly at a number of intermediate time points.

• Given such a master scenario, specify the joint time dynamics between t = 0 and
t = T of all risk factors. Possible dependencies should be captured by the model.
Then, for each trajectory, calculate the value process at each time point (given the
value at time t = 0).
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• For each scenario, calculate summary statistics such as the expectation and appro-
priate quantiles of the value process.

Among the advantages of the approach we �nd that the model is easily communicated to
the management. The main drawback of the approach is that no attempts are made to
assign a probability measure on the set of master scenarios. Hence classical Value-at-Risk
cannot be calculated.

We turn to give a more detailed description of the modelling framework.

2.1 Set of risk factors
We work in continuous time, measured in years. The risk factors may be of two types:

• Environmental variables;

• Bank-speci�c variables.

Additional noise variables are sometimes required in order to obtain a fully functional
stochastic model1, but these variables will not be regarded as true risk factors. Interest
rates, stock prices, FX rates and traditional macro variables are examples of environmen-
tal variables, while typical bank-speci�c variables may be client volumes, margins and
fees. Environmental variables and bank-speci�c variables are assumed to exist as random
processes for all t, 0 ≤ t ≤ T . Together with the noise variables, these objects de�ne
the sample space Ω. Also, a σ-�eld of events on Ω needs to be de�ned along with a �l-
tration describing the information available at di�erent time points. However, in order
to keep the presentation on an elementary level we have decided not to be very rigorous
regarding these matters. Denote the multivariate process of environmental variables and
bank-speci�c variables by S = {S(t), 0 ≤ t ≤ T}.

2.2 Set of master scenarios and time dynamics
Recall that T denotes the risk horizon. De�ne intermediate time points τ1, τ2, . . . , τK ,
where 0 < τ1 < τ2 < · · · < τK = T . A master scenario s is de�ned by putting restrictions
on some (or all) of the risk factors at these intermediate time points. Such a restriction on
S(τk) is represented as the event As

k; of course, As
k = Ω means no restriction. In this way

quite general master scenarios may be created. Moreover, we will soon have additional use
of the concept of intermediate time points.

1For example, the calculation of credit losses requires simulation of the number of defaults.
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Example. The calculation date is 30/9/2006, which corresponds to t = 0. The risk horizon
is 31/12/2007, which corresponds to t = T = 11

4
. Here we assume that all quarters are

of equal length, namely exactly 1/4 of a year. There are �ve intermediate time points,
namely the �nal day of each quarter of the time period under consideration. The only risk
factor is the short-term risk-free interest rate r = {r(t), 0 ≤ t ≤ T}. Today the interest
rate is 2.5%, and the master scenario s speci�es that the interest rate should be 3% by the
end of 2006 and 5% by the end of 2007. Table 1 depicts the speci�cation of the master
scenario.

Date τk As
k

31/12/2006 1/4 {r(τ1) = 0.03}
31/3/2007 2/4 Ω
30/6/2007 3/4 Ω
30/9/2007 1 Ω
31/12/2007 1 1/4 {r(τ5) = 0.05}

Table 1. Speci�cation of the master scenario of the example

There remains to specify, for each master scenario s, a continuous-time stochastic model
of S = {S(t), 0 ≤ t ≤ T} in which all the events As

k, k = 1, . . . , K, are given probability
one. We stress that each given master scenario s induces a probability measure Ps on the
events on Ω in this way, and we do not require Ps for di�erent s to be consistent in any
way. (On the other hand, using entirely di�erent approaches for di�erent s is not liable to
lead to a very credible framework.) For notational convenience, whenever a single master
scenario is analyzed the superscript s will be suppressed.

2.3 Value process
The quantity of interest is represented as an n-dimensional function X(t) of the risk factors
and time. In the simplest case, X(t) is just the value of the portfolio under consideration
and is hence scalar, but we will see, notably in Section 4 below on capital adequacy,
examples where it is natural to allow for multidimensional functions. Given a master
scenario s and a realization S of the risk factor process, we calculate a realization of the
value process, X = {X(t), 0 ≤ t ≤ T}.

2.4 Adjustments
Sometimes the value process is subject to adjustments causing large discrete jumps at
certain time points, a typical example being the accumulated result of a certain business
from which tax and dividends are drawn at the end of the �scal year. We assume that such
adjustments are made at the intermediate time points τk. Zero adjustments are of course
allowed.
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2.5 Approved events
Again �x a master scenario s. The components of the value process may be subject to
internal and/or external requirements, such as lower safety bounds on the capital bu�er.
Here we represent such requirements as �approved events� Gs

k at the intermediate time
points τk, k = 1, . . . , K. The event Gs

k = Ω means that there is no special requirement at
time τk. In order to achieve a general framework, we allow the events Gs

k to be di�erent for
di�erent scenarios s; in most cases, however, the requirements would be speci�ed regardless
of the scenarios.

Example, cont'd. Assume that the value process only consists of the capital, X = {C(t), 0 ≤
t ≤ T}. It is required that the capital exceed 100 million EUR at each end-of-quarter;
moreover, the capital at the end of each year should exceed 300 million EUR. The list of
approved events is shown in Table 2.

Date τk Gs
k

31/12/2006 1/4 {C(τ1) ≥ 300}
31/3/2007 2/4 {C(τ2) ≥ 100}
30/6/2007 3/4 {C(τ3) ≥ 100}
30/9/2007 1 {C(τ4) ≥ 100}
31/12/2007 1 1/4 {C(τ5) ≥ 300}

Table 2. Speci�cation of the approved events of the example

2.6 Questions to be answered
If the value process fails to satisfy at least one of the approved events Gs

k, 1 ≤ k ≤ K, then
we say that ruin has occurred. With this terminology in mind, we now give a technical
formulation of the fundamental questions stated in the introduction of this paper.

(1) Given a master scenario s, what is the probability that ruin is avoided, adjustments
taken into account? In other words, how large is Ps

(⋂K
k=1 Gs

k

)
?

(2) Given a small number ε > 0, �nd the �optimal� start values of the value process
(optimal in a sense that needs to be speci�ed by the modeller) given the constraint
that ruin is avoided with probability at least 1 − ε for each scenario, i.e. given the
constraint that Ps

(⋂K
k=1 Gs

k

)
≥ 1− ε for each scenario s.
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3 Solvency
As a �rst application of the modelling framework outlined in the previous section, we show
how to simulate the equity (i.e., the di�erence between assets and liabilities) of an idealized
bank over time. The equity at time t = 0 is given, and the revenues and costs are simulated
from t = 0 to t = T = 1 given one single master scenario involving a broad domestic equity
index and the short-term domestic risk-free interest rate. There are no true intermediate
time points, i.e. K = 1. Furthermore, no special adjustments are modelled. The �approved
event� is the event that the equity is nonnegative at time t = T . The simpli�ed model
proposed here could be applied to a medium-sized retail bank with exclusively domestic
business activities. We assume that our model bank, named MBANK, focuses on the following
types of fundamental retail business:

• Lending to households and small corporates;

• Deposit services;

• Asset fund management (equity funds);

• Di�erent types of payment services.

In addition, the residual market risk evolving from these business activities is managed
e�ciently by a Treasury function. Finally, we assume that no positions are taken for
speculative purposes only.

As mentioned above, the present model only consists of two environmental variables: A
broad domestic equity index and the short-term domestic risk-free rate.

Equity index. Let A = {A(t), 0 ≤ t ≤ T} denote the domestic equity index. Today we have
A(0) = A0, and the master scenario speci�es that the index will have changed by 100δA

percent by time T , i.e. A(T ) = A0 (1 + δA). We model A as a geometric Brownian motion
tied down at t = T . This is equivalent to modelling ln(A) as a Brownian bridge Y with
Y (0) = ln A0 and Y (T ) = ln A0+ln (1 + δA). In the Appendix, the distributional properties
of this process are described and a simple method to simulate trajectories according to the
speci�ed distribution is outlined.

Short-term risk-free interest rate. Let r = {r(t), 0 ≤ t ≤ T} denote the short-term
domestic risk-free rate. Today we have r(0) = r0, and the master scenario speci�es that
the rate will have changed by 100δr percentage units by time T , i.e. r(T ) = r0 + δr.
We have chosen to model r as a Brownian motion tied down at t = T ; again, see the
Appendix for the necessary mathematical framework. Note that negative interest rates
are not precluded; on the other hand, very few trajectories will entail negative rates if
parameters have been set up properly. A large number of sophisticated short-term rate
models have been suggested in the literature. It is however not necessary to appeal to any
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of these models in the present study, since the results that we are looking for are of a very
crude nature indeed.

The environmental variables are presented in Table 3.

Variable Name Start value Change Type of change
Broad equity index A(t) A0 δA Relative
Short-term interest rate r(t) r0 δr Absolute

Table 3. List of the environmental variables used in the case study

For easy reference, all the relevant bank-speci�c variables are presented here, see Table 4.
They will be further explained as we move along.

Variable Name Start value Change Type of change
Deposit volume VD(t) VD,0 δD Relative
Household lending volume VLH(t) VLH,0 δLH Relative
Corporate lending volume VLC(t) VLC,0 δLC Relative
Equity position VEQ(t) VEQ,0 δEQ Relative
Service volume VPS(t) VPS,0 δPS Relative
Cost volume VC(t) VC,0 δC Relative

Table 4. List of the bank-speci�c variables used in the case study

Let S = {S(t), 0 ≤ t ≤ T} denote these eight quantities, i.e. environmental variables as
well as bank-speci�c variables. The value process of Subsection 2.3,

X = {C(t), 0 ≤ t ≤ T},
is simply the bank equity. At time t = 0 the equity is equal to C0, and the �approved
event� as introduced in Subsection 2.5 can be written G1 = {C(T ) ≥ 0}. We turn to
describe simple models for the major business activities of MBANK. Note that, although
models for the time dynamics of the risk factors are given explicitly here, the equations
(1)�(6) specifying the revenues are presented in a form that indicates that much more
general risk factor models could be invoked if desired.

3.1 Deposit margins
We assume that MBANK o�ers one single deposit account to its clients. At each time point,
the revenue is given by the margin times the deposit volume. The margin taken by the bank
follows the short-term rate�low interest rates imply low margins (indeed, the di�erence
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between the interest rate and the margin needs to stay positive) and vice versa. Hence we
set up a suitable non-decreasing function mD(x) with mD(x) = 0 for x ≤ 0 and mD(x) ≤ x
for all positive x to model the deposit margin. The function that has been chosen for the
present simulation is shown in Figure 1. Of course, in reality the bank updates the deposit
margin in leaps, and there is a time lag between changes in the interest rate and margin
updates. However, for mathematical convenience we assume a precise and immediate
response.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015

0.02

0.025

0.03
Deposit margin function

Figure 1. The deposit margin as a function of the interest rate

The deposit volume, VD = {VD(t), 0 ≤ t ≤ T}, is handled as follows. At time t = 0 the
volume is equal to VD(0) = VD,0. Also, the volume at time t = T is speci�ed by the master
scenario; VD(T ) = VD,0 (1 + δD). We assume a linear growth (or decline) between these
time points, i.e. VD(t) = VD,0 (1 + δDt/T ). It follows that the accumulated revenue during
the time interval [0, t] is given by

PD(t) =
∫ t

0
VD(t′)mD (r(t′)) dt′, (1)

where r(t) refers to the short-term interest rate model de�ned above.

3.2 Asset fund commissions
We assume that MBANK o�ers one single domestic equity index fund to its clients. At each
time point, the revenue is given by the total invested volume times the value of the index
times the commission fee. The underlying equity index, A = {A(t), 0 ≤ t ≤ T}, has been
discussed above. Commission fees are typically not updated very frequently. Hence we may
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assume here that the fee, mEQ, is constant in time. The total asset volume invested by the
clients is more di�cult to model. It is clear that the interest among the public for equity
investments increases as the stock index grows, implying substantial new investments. The
opposite situation occurs during a falling trend. Here we make the simplifying assumption
that the total position VEQ evolves in time according to the master scenario, regardless
of the equity index level. At time t = 0 the volume is equal to VEQ(0) = VEQ,0, and we
assume that VEQ(t) = VEQ,0 (1 + δEQt/T ), 0 ≤ t ≤ T . The total asset volume at time t is
of course given by VEQ(t)A(t).

It follows that the accumulated revenue during the time interval [0, t] is given by

PEQ(t) =
∫ t

0
VEQ(t′)A(t′)mEQ dt′. (2)

3.3 Lending margins
Private persons and corporates may take loans at MBANK. The lending business is actually
extremely hard to model accurately. At each time point a lending margin is speci�ed
for each maturity, and as time goes by, margins are accumulated in a very complicated
manner. Here we need a pragmatic approach that captures the dynamics of the revenues
of the lending business reasonably well.

We note that lending margins do not depend on the prevailing interest rate like deposit
margins do, since there is no natural margin cap. Furthermore, at least in countries where
loan prepayment risk is not an issue, there is no need to price �xed rate loans di�erently
from �oating rate loans. Hence we make the simplifying assumption that the lending
margin, mL, is constant in time and over scenarios. Turning to the lending volume, VL =
{VL(t), 0 ≤ t ≤ T}, we assume a linear time development, i.e. VL(t) = VL,0 (1 + δLt/T ),
where VL,0 is the volume at time t = 0 and where the growth δL by time t = T has been
speci�ed by the master scenario. It follows that the accumulated revenue during the time
interval [0, t] is given by

PL(t) =
∫ t

0
VL(t′)mL dt′. (3)

In order to di�erentiate between household lending and corporate lending we will use
subindices LH and LC, respectively, instead of just L.

3.4 Payment services
The revenue, PPS = {PPS(t), 0 ≤ t ≤ T}, from payment services (credit card services,
telephone bank, Internet bank etc) is modelled in the simplest possible way. Historical
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revenues are analyzed, and based on this analysis a start value VPS,0 and a growth rate
δPS are speci�ed. Assuming a linear trend, VPS(t) = VPS,0 (1 + δPSt/T ), we get that the
accumulated revenue during the time interval [0, t] is given by

PPS(t) =
∫ t

0
VPS(t′) dt′. (4)

3.5 Loan losses
The lending volume VL = {VL(t), 0 ≤ t ≤ T} has been de�ned in Subsection 3.3 above.
Inspired by the risk process concept in insurance mathematics, we specify the following
continuous-time model for the credit losses in the lending portfolio (cf. the concept of Cox
processes2 in the insurance literature, e.g Grandell [6], and in Lando [10]). It is well known
that in an economy with rising interest rates the clients will have di�culties ful�lling their
payment obligations and as a consequence credit losses will start to build up. Hence, we
model the time points of default as a Poisson process with a stochastic intensity λL that
follows the short-term interest rate, i.e. λL(t) = fL (r(t)). For the present simulation we
have simply assumed that fL is a linearly increasing function.

Turning to the size of the loss given default, we note that an exposure is in general secured
by collateral. It is very complicated to model the recovery process properly, as this process
may extend over a long time period and the amount actually recovered is very uncertain.
In this simpli�ed framework, we assume that the recovery process is contracted to a single
time point; the time of default3. We also assume that the bank has estimated an average
recovery rate based on historical recoveries. We remark in passing that having recovery
processes that extend in time is analogous to having delays in claim settlement in the
insurance context, and could preferably be handled using the same machinery, cf Mikosch
[11].

The above reasoning leads to the following model. First assume that the volume VL is
constant in time. Let XL,i be independent and identically distributed nonnegative random
variables representing net losses (i.e. exposure net recovery) on defaulted loans. Also, let
NL = {NL(t), 0 ≤ t ≤ T} be a Poisson process with stochastic intensity λL(t) = fL (r(t)).
The total loss up to time t is given by

NL(t)∑

i=1

XL,i. (5)

2A Cox process N = {N(t), 0 ≤ t < ∞} is de�ned as follows. A nonnegative random process {λ(t), 0 ≤
t < ∞} is speci�ed. Conditioned on its realization, N is a non-homogeneous Poisson process with that
realization as its intensity.

3Indeed, some institutions sell the defaulted contracts to third parties and receive a fraction of the face
value up-front, hence the assumption is not entirely unreasonable.

13



The case with non-constant lending volume is handled by further modifying the intensity
function of the Poisson process to be λL(t) = fL (r(t)) VL(t)/VL(0). Compare the concept
of operational time scale in insurance mathematics, where an increasing consumer base is
modelled by running the time according to a di�erent clock.

As mentioned above, in order to di�erentiate between household lending and corporate
lending we will use subindices LH and LC, respectively, instead of just L.

3.6 Costs
The cost side consists of e.g. sta� costs, rent, equipment etc, and is not very volatile.
Denote the total costs by PC = {PC(t), 0 ≤ t ≤ T}. We model the costs in the simplest
possible way. Historical costs are analyzed, and based on this analysis a start value VC,0

and a growth rate δC are speci�ed. Assuming a linear trend, VC(t) = VC,0 (1 + δCt/T ), we
get that the accumulated costs during the time interval [0, t] are given by

PC(t) =
∫ t

0
VC(t′) dt′. (6)

3.7 Value process
Putting the pieces together, we have from Equations (1)�(6) that the equity at time t, i.e.
the sum of the equity at time 0 and the accumulated result during the time interval [0, t],
is given by4

C(t) = C0

+
∫ t
0 VD(t′)mD (r(t′)) dt′ (deposits)

+
∫ t
0 VEQ(t′)A(t′)mEQ dt′ (commissions)

+
∫ t
0 VLH(t′)mLH dt′ −∑NLH(t)

i=1 XLH,i (household lending)
+

∫ t
0 VLC(t′)mLC dt′ −∑NLC(t)

i=1 XLC,i (corporate lending)
+

∫ t
0 VPS(t′) dt′ (payment services)

− ∫ t
0 VC(t′) dt′ (costs)

We note that the costs and the revenues from payment services are deterministic. The
commissions from equity funds follow the equity index and are independent of the other
items. On the other hand, both deposits and lending are a�ected by the interest rates.
Higher interest rate levels will lead to higher deposit revenues, but at the same time the
loan losses will start to build up.

4The return on the equity is not taken into account here. It could conveniently be modelled by investing
the equity using short money market instruments, implying essentially that the bank would receive the
short-term rate. In reality, however, the management of the equity position is much more sophisticated.
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We have performed a simulation of the equity, using the following numerical values. Re-
garding the development of the environmental variables, we assume that the short-term
rate grows from 3% to 6% over the year, while the equity index falls by 20%. The model
has been fed with realistic volatilities.

The initial equity is 100 million EUR. The bank has a total exposure of 1100 million EUR
to households and 1000 million EUR to corporates. On the other hand, the total deposit
volume is 2000 million EUR. These volumes are assumed to grow moderately with time
(about 5-10% over the year), and the margins taken by the bank are about 1%. Next, the
total fund asset volume is 1000 million EUR. The asset volume changes with the equity
index, and the commission fee is 1.5%. Finally, the total revenue from payment services
over the year is about 10 million EUR, and the total costs are about 60 million EUR.

We have used 100 time steps in the simulation. Figure 2 shows 100 trajectories of the value
process. We note that most of the randomness can be attributed to the loan losses of the
corporate segment. There are only a few defaults over the year, but each default leads to
a loss of about 1 million EUR. On the other hand, there are many defaults on loans to
households, but the loss on each of these defaulted loans is minor (about 20 000 EUR).
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Figure 2. Trajectories of the value process (i.e. the capital) of the case study

Table 5 shows the constituents of the total result for three speci�c paths; one adverse path
(Path 1), one normal path (Path 2), and one favourable path (Path 3). We note that some
drivers of the result are very volatile while other drivers seem to be deterministic, or almost
deterministic.
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(million EUR) Path 1 Path 2 Path 3
Deposit margins 30.76 30.73 29.79
Lending margins 16.03 16.03 16.03
Commissions 13.50 13.48 15.62
Payment services 10.00 10.00 10.00
Costs -61.51 -61.51 -61.51
Loan losses -16.56 -8.56 -4.60
Result -7.78 0.17 5.33

Table 5. Result of the business activities of MBANK
(three paths corresponding to the same master scenario)

Finally, a simulation using 5000 realizations was performed, giving a lower 1%-quantile of
94.17 million EUR. Furthermore, the simulated probability of the approved event (nonneg-
ative capital at the end of the time period) was 100%. It is virtually impossible to lose the
entire start capital of 100 million EUR.

4 Capital adequacy
Our next task is to simulate the so-called Tier 1 capital ratio over time. Our model bank
MBANK is required by the national supervisors to hold an adequate capital bu�er against
large potential losses. More precisely, the Tier 1 capital ratio is required to stay above
4%. The numerator of this ratio is called the Tier 1 capital and is obtained by making
a number of adjustments of the equity5. In this work we simply assume that the equity
and the Tier 1 capital are identical. The denominator of the Tier 1 capital ratio consists
of the Risk Weighted Assets (RWA). Under the new capital adequacy rules, Basel II,
risk weights are calculated for all assets of the bank using supervisory functions that are
designed so that risky assets are assigned large risk weights, and vice versa. The Risk
Weighted Assets for credit risk is simply the sum of these risk weights. In addition, RWA
for market risk and operational risk are calculated using supervisory formulas. The bank's
total RWA is the sum of these three components (credit risk, market risk and operational
risk). For each of these risk types, the bank needs to choose one out of several levels of
sophistication�selecting a more advanced calculation model requires additional investments
from the bank's side, but tends to lead to lower RWA. In Subsection 4.2 below we present
the model choices made by MBANK.

The simulation will use the same risk factors and the same master scenario as before (see
Section 3). The risk horizon is still one year, and no special adjustments are assumed. This

5To obtain the Tier 1 capital, a number of supervisory deductions (involving e.g. goodwill and provi-
sions) are applied to the equity. On the other hand, subordinated loans may in some countries be included
in the Tier 1 capital to a certain extent.
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time, however, the value process is bivariate: X = (C,R), where C = {C(t), 0 ≤ t ≤ T} is
the Tier 1 capital and R = {R(t), 0 ≤ t ≤ T} is the RWA. The model of the Tier 1 capital
is identical to the model of the equity as presented in Section 3. In Subsection 4.2, the
RWA simulation model is depicted. As mentioned in the introduction of this paper, the
bank management typically announces a slightly higher target capital ratio, α say, for the
business than the minimum capital ratio of 4% speci�ed by the regulators. This leads us
to announce the following �approved event�:

G1 = {C(T )/R(T ) ≥ α} = {C(T )− αR(T ) ≥ 0}.

4.1 Equity
To reiterate, we know from Section 3 that the equity at time t, i.e. the sum of the equity
at time 0 and the accumulated result during the time interval [0, t], is given by

C(t) = C0

+
∫ t
0 VD(t′)mD (r(t′)) dt′ (deposits)

+
∫ t
0 VEQ(t′)A(t′)mEQ dt′ (commissions)

+
∫ t
0 VLH(t′)mLH dt′ −∑NLH(t)

i=1 XLH,i (household lending)
+

∫ t
0 VLC(t′)mLC dt′ −∑NLC(t)

i=1 XLC,i (corporate lending)
+

∫ t
0 VPS(t′) dt′ (payment services)

− ∫ t
0 VC(t′) dt′ (costs)

(7)

4.2 Risk weighted assets
We make the following de�nitions:

• RCR(t) = Risk Weighted Assets for credit risk at time t;

• RMR(t) = Risk Weighted Assets for market risk at time t;

• ROR(t) = Risk Weighted Assets for operational risk at time t.

Their sum is simply denoted by R(t). We assume that MBANK has made the following choices
regarding the calculation of the minimum capital requirement (i.e., Pillar 1 of Basel II):

• The least advanced method for credit risk (known as the Standardised Approach).
More advanced Pillar 1 models require sophisticated methods to estimate the default
probabilities for each counterparty, as well as the amount recovered given default for
each deal. This is typically not yet implemented among the smaller banks.
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• The most advanced method for market risk (known as the Internal Method). It
has become best practice in the �nancial world to use Value-at-Risk to quantify the
market risk of the trading book on a daily basis. With Value-at-Risk in place, the
bank may use the most advanced of the available Pillar 1 calculation methods to
quantify market risk.

• The least advanced method for operational risk (known as the Basic Indicator Ap-
proach). At the time of writing it is still not very common that a �nancial institution
has developed advanced methods to quantify operational risk. Indeed, it is very dif-
�cult to estimate the probability and the severity of �nancial losses caused by e.g.
IT system crashes, fraud, administration failures etc.

We turn to give a brief description of these three calculation models.

RWA for credit risk (�Standardised approach�)

Under this approach, each loan is assigned a risk weight based on the type of loan. Table
6 shows some examples.

Loan type Risk weight
Retail 75%
Mortgage 35%
Revolving credit 15%
Unrated corporate 100%
... ...

Table 6. Examples of risk weights according to the standardised approach

RWA for credit risk is then calculated as a weighted sum of the exposures to the various
loan types, using these risk weights as weights. For the purpose of this example, we assume
that all loans of the portfolio are classi�ed as either Mortgage or Unrated corporate. It
follows that RCR(t) = 0.35VLH(t) + 1.00VLC(t).

RWA for market risk (�Internal method�)

Under this approach, RMR is based on the bank's daily Value-at-Risk �gures. The daily
VaR covers equity risk in the trading book, interest rate risk in the trading book, and all
currency risk. Since we have assumed that MBANK is involved in neither foreign activities nor
proprietary trading, RMR is typically just a small part of the total RWA. In this example
we assume RMR(t) to be constant in time.
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RWA for operational risk (�Basic indicator approach�)

The philosophy behind this approach is that large revenues indicate vivid business activity,
which in turn indicates large operational risk. Therefore, ROR is based on the bank's gross
income, namely a certain fraction of the average revenues of the three previous years.

In this example we have

ROR(t) = 0.15× 12.5× P+
hist(t) + P+

sim(t)

3

where P+
hist(t) is the total revenue between the time points t − 3 and 0, calculated using

historical data, and where P+
sim(t) is the (simulated) total revenue between the time points

0 and t. The latter quantity is the sum of the right hand sides of Equations (1), (2), (3)
and (4).

4.3 Capital ratio
We wish to estimate the probability that ruin is avoided in the given master scenario, i.e.
the probability that C(T ) − αR(T ) is nonnegative. Figure 3 shows a simulation of 100
trajectories. In our example, RCR grows deterministically with time (from 1385 million
EUR to 1475 million EUR) while RMR = 100 million EUR by assumption and ROR depends
on the simulated paths (ROR is about 130 million EUR). The relative order of magnitude
of these three quantities is quite typical for retail banks. In fact, RWA for credit risk is
usually even more dominant than in this example. The trajectories of the capital process
were shown in Figure 2 above. In Figure 3 (left) we see the corresponding paths of the risk
weighted assets, R(t). The picture to the right in Figure 3 shows the paths of the Tier 1
capital ratio.

Assume that the management has announced a capital ratio target of 5.5%, i.e. α =
0.055. Then it is important to estimate the probability that the target is maintained
given the master scenario. A simulation using 5000 realizations shows that this probability
is 99.5%. Turning the discussion around, assume that the management is comfortable
with the approved event having probability 95%. Then the same simulation shows that
the initial capital may be decreased by 2.5 million EUR (from 100 million EUR to 97.5
million EUR), still keeping the bank on the safe side. Hence, in this simple setting we have
managed to answer the fundamental questions stated in Subsection 2.6.
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Figure 3. Trajectories of the total RWA (left)
and the Tier 1 capital ratio (right) of the case study

5 Possible extensions
5.1 More sophisticated bank business
We have deliberately chosen to study a very simple and idealized �nancial institution � the
purpose has been to present the main ideas rather than to give detailed descriptions of all
relevant models. The framework can however be extended in a number of directions. We
proceed to give some examples.

A bank that is involved in FX trading is exposed to currency risk. The same is true for a
bank having foreign branches. Currency e�ects are introduced into the model by including
the relevant FX rates among the environmental variables. The master scenario speci�es
the long-term changes in the FX rates, and the continuous-time dynamics can be modelled
as for the equity index in our example. Interesting dependencies between markets may be
revealed by introducing such currency e�ects.

The lending volumes and the deposit volumes are typically not perfectly matched. The
residual volume is actively managed by the Treasury function of the bank. The interest
rate risk is managed by trading capital market instruments, and a certain degree of out-
right positions may also be allowed. Such activities could be modelled using the present
framework. One or several relevant interest rate curves (i.e., not just the short-term rate)
should be included in the risk factor set, and the master scenario should specify the long-
term behaviour of a number of nodes on each curve. Then the interest rate portfolio should
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be simulated over time, using simple trading rules (for instance, as the instruments mature
the trader reinvests the cash in order to maintain a speci�ed target duration).

Proprietary trading introduces a volatile component that is hard to model. It is not
practical to roll a trading portfolio forward for a number of years. One possible alternative
solution would be to adopt a `top-down' approach, where the volatility of the trading
activity is inferred using time series of historical results. The trading portfolio might be
simulated independently of all environmental variables.

Finally, a bank that is involved in lending to large corporates needs more sophisticated
simulation models of loan losses. The creditworthyness of a large corporate is a�ected by
internal factors rather than by macroeconomic variables, hence asset value models like the
models developed by Moody's KMV corporation (see e.g. [3]) might be more appropriate
for this segment.

5.2 The Internal Ratings Based framework
As mentioned above, when implementing Basel II Pillar 1, �nancial institutions need to
make a choice between a number of available calculation models. Regarding the most im-
portant risk type, credit risk, the choice lies between the simpler standardised approach
and the more sophisticated internal ratings based approaches. The common denominator
of the di�erent internal ratings based approaches is the requirement of a rating assessment
of each individual loan6. In fact, for each loan an estimate of the probability of default
within the next twelve months is required7. Our model bank MBANK has selected the stan-
dardised approach. However, larger �nancial institutions tend to adopt the more advanced
framework, the reason being two-fold. First, the implementation of rating systems in the
organization leads to a more sound credit granting process, which should eventually pay
o� in terms of a decrease in loan losses. Second, the Pillar 1 capital requirement tends to
be lower under the more advanced approaches.

The framework outlined in Section 4 can be used without changes also in the case where
the risk weighted assets for credit risk is calculated according to the internal ratings based
approach. Indeed, using the model of loan losses, as described in Subsection 3.5, it is easy
to extract default probabilities of all loans. Furthermore, exposures at default and losses
given default may be extracted. Then, applying the appropriate supervisory risk weight
formulas (see e.g. [1]) the quantity RCR(t) may be simulated over time.

Note that a new feature enters the RWA simulation, and thus the simulation of the Tier
1 ratio: Since the probability of default changes with changing macroeconomic conditions,

6The regulation speci�es that individual default probabilities should be assigned on counterparty level
for some segments and on deal level for other segments.

7Apart from default probabilities, estimates of losses given default and exposures at default are some-
times required, depending on the choice of method.
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RWA for credit risk is liable to show substantial �uctuations over time8. This phenomenon
is commonly referred to as the procyclicality e�ect, see e.g. Gordy and Howells [5]. Indeed,
when entering a recession the bank will show weak results (which has an adverse e�ect on
the capital) and at the same time RWA will increase. This will have a double negative
e�ect on the Tier 1 capital ratio. Such e�ects are possible to capture using the present
integrated simulation framework.

6 Conclusions
In this text we have shown how to perform a stress test of a �nancial portfolio where the
risk horizon is very long, typically a number of years. Given such large time periods, in our
opinion it is not feasible to set up a complicated stochastic model with a huge number of
parameters to simulate all the relevant risk drivers over time. On the other hand, applying
an instant shock to some risk factors and then �xing their modi�ed values throughout the
time period considered would be meaningless, since such a scenario would never occur in
reality. The framework described in this paper in a sense interpolates between these two
extreme approaches. A number of prede�ned master scenarios form the basis of the model.
Each of these master scenarios speci�es the long-term movement of the dominant risk
factors, i.e. given the current values of the risk factors, the scenario speci�es their values
at the risk horizon, and possibly at a number of intermediate time points. Given such a
master scenario, we set up a continuous-time stochastic model of the risk factors that is
consistent with the scenario. The value of the �nancial portfolio is then simulated, and
summary statistics such as the expectation and appropriate quantiles may be calculated.

We stress that it is su�cient to let the scenario set contain very few master scenarios.
On the other hand, it is crucial that these scenarios are carefully designed. A consistent
macroeconomic `story' should lie behind each scenario. This approach will greatly facilitate
the communication of the calculated results to the management.

In this work we have applied the stress testing framework in two di�erent situations. First,
we have investigated how the equity of an idealized retail bank develops over one year,
given a simple master scenario specifying the behaviour of the short-term interest rate, the
stock market, and client volumes for major business activities. Second, we have studied the
development of the Tier 1 ratio (calculated according to the new capital adequacy rules,
Basel II) for the same bank and under the same scenario. Using the model, it is possible to
calculate the probability that the Tier 1 ratio stays above a prede�ned target ratio. In case
the bank �nds itself over-capitalized, the model can also be used to give an indication of the
amount of capital that may be released. Of course, the output of our model does not alone
give su�cient information to determine the appropriate capital level of the bank�strategic

8The regulation suggests that banks should use default probabilities that re�ect `normal' business
conditions as input to the risk weight formulas. However, due to the lack of historical data, at present it
is not easy to provide accurate estimates of such quantities.
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considerations and rating goals, etc, should also be taken into account. Nevertheless, we
believe that the model could serve as an important tool in the bank's capital adequacy
assessment process. In addition, the model could provide important information to be used
in the communication with both rating agencies and regulators (e.g., in the Pillar 2 process
within Basel II).
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Appendix: Brownian bridge
A (one-dimensional) Brownian bridge from a to b on the time interval [0, T ] is Brownian
motion started at a and conditioned to arrive at b at time T . Here we give two di�erent
characterizations of the Brownian bridge; see e.g. [9] for a theoretical treatment.

Global characterization. Let W = {W (t), 0 ≤ t < ∞} be standard Brownian motion and
de�ne

B(t) = a + (b− a)
t

T
+

(
W (t)− t

T
W (T )

)
; 0 ≤ t ≤ T.

Then B is a Brownian bridge from a to b on [0, T ]. This characterization is very useful for
simulation purposes. To generate a path of the Brownian bridge, it is su�cient to simulate
a Brownian trajectory on [0, T ] and then subtract W (T ) to the proper proportions from
the simulated trajectory.

Local characterization. Let W = {W (t), 0 ≤ t < ∞} be standard Brownian motion and
consider the linear stochastic di�erential equation

dB(t) =
b−B(t)

T − t
dt + dW (t); 0 ≤ t < T,

with initial condition B(0) = a. The unique solution of this equation is given by the
process

B(t) =

{
a + (b− a) t

T
+ (T − t)

∫ t
0

dW (s)
T−s

; 0 ≤ t < T,

b; t = T.

This is another representation of a Brownian bridge from a to b on [0, T ]. The process has
expectation function

m(t) = E(B(t)) = a + (b− a)
t

T

and autocovariance function

ρ(s, t) = Cov (B(s), B(t)) = min(s, t)− st

T
.
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