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Abstract

A Plackett–Burman type dataset from a paper by Williams (1968),
with 28 observations and 24 two-level factors, has become a standard
dataset for illustrating construction (by halving) of supersaturated de-
signs (SSDs) and for a corresponding data analysis. The aim here is
to point out that for several reasons this is an unfortunate situation.
The original paper by Williams contains several errors and misprints.
Some are in the design matrix, which will here be reconstructed, but
worse is an outlier in the response values, which can be observed when
data are plotted against the dominating factor. In addition, the data
should better be analysed on log-scale than on original scale. The im-
plications of the outlier for SSD analysis are drastic, and it will be
concluded that the data should be used for this purpose only if the
outlier is properly treated (omitted or modified).
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1 Introduction

A classical dataset, from an article by Williams in 1968 [1], will be revisited.
This dataset, of Plackett–Burman type with n = 28 observations and k = 24
factors has been used as an exercise by Box & Draper [2, 3] and for trying
variable selection strategies [4]. Of more importance here, however, is that
it has become very popular for trying construction and analysis methods for
supersaturated designs (SSD), ever since a half-fraction of it was used by Lin
[5]. Quoting [6]: “It has, in a sense, become the default data set by which
to judge SSD analysis methods”. Supersaturated designs are characterized
by having n ≤ k, and can be useful when only a few factors are believed to
be of importance (the effects sparsity principle), in particular in ruggedness
tests when none of the factors is expected to be very influential.

We will take a closer look at this dataset. It suffers from many typ-
ing errors in original form [1], and we will reconstruct its complete design
matrix. We will argue that data should be regarded on log-scale, but also
demonstrate the presence of an outlier, whose influence on the SSDs is seri-
ous. This has led to several misinterpretations of the properties of proposed
methods for statistical analysis of SSD data. These comments were specifi-
cally triggered by a recent paper [7] where this dataset is used to investigate
the properties of the so-called FEAR method of SSD data analysis.

2 History

The dataset in question, in [7] misleadingly called Data set of Abraham [8],
originates from a paper by Williams in 1968 [1]. According to this origin
it was designed as a Plackett–Burman type experiment with 28 runs but
restricted to 24 two-level factors. Two decades later it was used as Exercise
5.20 in the book by Box & Draper [2]. They identified and corrected a
typographical sign error in the design matrix, but did not notice that two
factors in the design matrix had identical sign columns. Lin [5] took up
the dataset in order to try his method for generating SSDs, constructing a
14 runs half-fraction from the original 28 runs. Wang [9] pointed out that
two sign columns in [1] (and [5]) were identical. In later studies one of these
column duplicates has typically been deleted, with later factors renumbered.
This has occasionally misled others to quote wrong factor numbers [10]. In
[2], the neglect in combination with the primitive computation facilities
at the time misled the authors to give an erroneous ANOVA table in the
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solutions to the exercise. This particular error has been corrected in the 2nd
edition [3], and is of no further concern here.

Since Lin’s paper appeared in 1993 [5], Williams’ dataset has been used
in numerous papers on supersaturated designs. Some of these papers are of
particular interest here. Lin ran a stepwise regression to select factors to
include in the model. His method appeared successful, because he got essen-
tially the same effects as Williams had obtained for the whole dataset. Wang
[9] tried effect estimation in the same way as Lin, but on the complementary
half-fraction of the data, and was surprised to find a quite different set of
presumably significant effects from his stepwise regression. Abraham et al.
[8] went a step further and tried four pairs of half-size SSDs. They did not
refer to [9], but found similarly that different half-fractions yielded different
choices of factors, They made two suggestions, “The nonorthogonality of
the columns of the design matrix X is the root of the problem” (repeated
in [11]), and “The dramatically different conclusions found in the eight dif-
ferent subsets appear to be mainly due to random variation in the data”.
Dejaegher et al. [7] refer to different confounding patterns and “a relatively
high noise level”. Selection error control has been studied in [12] and [13].
The former suggests that the disagreement between Lin’s and Wang’s anal-
yses “could easily be attributable to the multiplicity problem”, whereas the
latter suggested that the reason might be that “Williams’ data may not fol-
low the effects sparsity principle well”. Lu & Wu [10] mention that different
half-fractions yield very different results but apparently avoid this problem
by trying their own factor selection method only on Lin’s half-fraction.

Hence, there is a large number of proposals concerning the reason for the
problems with this data set. However, in none of these papers is a plot of
the data to be found. It will here be demonstrated that Williams’ dataset
should be considered on the log-scale instead of original scale and that it
suffers from an influential outlier, which is seriously influential for the small
datasets constructed as SSDs. The latter consequences motivate the advice
that these data should not be used to study SSD properties, except for
pointing out this vulnerability—otherwise the outlier must be taken care of
(omitted or modified).
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3 Data structure

3.1 Design

Williams [1] denotes his design as “Plackett–Burman in 28 experiments”,
referring to the standard paper by Plackett & Burman [14]. Dejaegher et al.
[7] raise a question as to this property, by categorically stating (p. 307) that
it is not P–B. We will here first indicate how it can be true that Williams
actually did use a Plackett–Burman design, and hence that the questioning
in [7] is not motivated. At the same time we will (and have to) reconstruct
columns 13 and 16, which by mistake were printed identical in Williams’ pa-
per, and the 3 supplementary contrast columns (mixed interactions) needed
to have a set of 27 orthogonal effect estimates representing (together with the
grand mean) uniquely the whole original dataset. A complete and revised
sign table is given in the Appendix.

A standard Plackett–Burman construction of a n = 28 observations de-
sign matrix uses permutations of three 9 × 9 matrices for 27 rows supple-
mented by a row of only minus signs. Clearly the table in [2] does not have
a row of minus signs. The first clue to understanding Williams is that for
quantitative factors Box & Draper conventionally let the higher value cor-
respond to the + level. Williams [1], however, did not use the signs in this
way. There are some inconsistencies in the levels themselves in [1], and in
the ordering of the factors, but if we simply change level notations for six
factors in the table from [2] so that the last row contains only minus signs,
it turns out that we almost see the standard construction. The differences
are only as follows:

• The 27 × 27 part of the full design matrix is (essentially—see below)
the transpose of the matrix devised by Plackett and Burman, but one
is obtained from the other by reversing the order of both rows and
columns, and that makes an insignificant difference. If Williams were
fully aware of this, or just lucky, is unclear from his paper.

• The sign column for factor 13 does not match the construction, whereas
for factor 16 it does. A design-matching column 13 and the given col-
umn 16 actually yield the effects calculated by Williams, to a typical
degree of precision (which is not very high in [1]). This strongly in-
dicates that column 13 was misprinted in [1], whereas column 16 is
right. The version given in the Appendix is corrected in this way.
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• Design-matching column 24 appears in the expected position of column
21, and the design-matching columns 21–23 are moved one step to the
right. Of course this does not matter for the character of the design.

• The last 3 design-matching columns, A1–A3 were not used by Williams.
They correspond to mixed interaction effects.

The conclusion is that Williams’ design is of P–B type. The interaction
columns are important for the statistical inference. Lin [5] used the last
column (A3) as defining contrast for his half-fraction construction. Abraham
et al. [8] tried all three (A1–A3), and the revised column 13, in this way
obtaining four pairs of different half-samples.

3.2 Data

Already a brief look at the column of response values y in Table 1 shows that
the variation in magnitude is large, a factor 10 from the smallest (y = 32) to
the largest (y = 300), and the distribution is clearly upwards skew. Whether
the variation is random or systematic (due to some of the design factors),
it is anyway natural to try modelling by multiplicative effects, rather than
additive. Figures 1 a) and b) show data on original scale and on logarithmic
scale, respectively, in combination with a split according to the clearly dom-
inating factor 15. Surprisingly, there is no plot of these data to be found in
the extensive previous literature using or discussing them. Factor 15 being
dominant is not only seen from Figure 1, but also from ANOVA or regres-
sion analyses, where it has a much higher effect/coefficient than any other
factor. In Figure 1 we see that after logarithmic transformation, the two
subsets show variation of more similar size, except for one extreme obser-
vation when factor 15 is on its plus-level (x15 = +1), run #14. It appears
obvious from Figure 1 that #14 is an outlier, which if not neutralized might
have detrimental effects. For example, in the log-scale two-sample model
represented by Figure 1b, but with run #14 excluded, its actual value devi-
ates as much as 4.5 σ̂ from the corresponding sample mean. Hence, we make
two observations:

• Log-scale is more appropriate than the original scale.

• Run #14 is an outlier.

Further support is provided by the half-normal quantile plots in Figure
2, where estimated effects (the effect of factor 15 excluded) fit a half-normal
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Figure 1: Scatter-plots of all data, split by the level of the dominating factor
15. The high value when x15 = +1 belongs to run #14.
a) Data on original scale.
b) Data on log-scale.
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Figure 2: Four half-normal quantile plots of effect estimates.
Left part: Original data log-transformed.
Right part: Value for run #14 changed to the sample mean under x15 = +1.
Circles: All 27 effects included.
Asterisks: Effect of the influential factor 15 not included.
It is seen that the modified data fit the halfnormal better, and the asterisks
then fit perfectly. This supports the conclusions that run #14 is an outlier
and that factor 15 is the only certainly influential factor.
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almost perfectly (right part), when data are on log-scale and run #14 has
been replaced by its x15-sample mean. The corresponding fit is not that
good with the original value of run #14 (left part) and even worse with
data on original scale. The latter is not shown here, but can be found in
[7], except for the defect that the effects corresponding to the (main-effect-
free) interaction columns (A1–A3 in the Appendix) have been omitted or
forgotten.

The log transformation makes statistical conclusions based on the nor-
mal distribution (p-values and confidence intervals) more reliable. The more
constant variance improves power. If several factors have effects, the trans-
formation will also imply that their influence is differently modelled, multi-
plicatively instead of additively. In the present case, however, it cannot be
concluded from data that any factor other than number 15 has an effect.
Figure 2, for example, does not indicate that any other factor is influential,
and a full main effects model yields factor 15 alone as significant. However,
with all 24 factors in a main effects model, there are only 3 degrees of free-
dom, which means that ordinary t-tests for factor effects in this model are
not very powerful. To be more liberal, we give in Table 1 below the first
factors appearing in a forward selection. When judging p-values, there is
also a need to compensate for multiple testing by demanding lower values
than in a single test. For Lin’s SSD data, this was stressed in [12], and the
result was that only factor 15 was found significant.

On original scale, and with full data, the coefficient value for factor 15 is
twice as high as the next largest coefficient. After going over to logarithms,
and excluding the outlier, twice has increased to a factor 3.

Orig. scale, full data log10-scale, full data log10-scale, obs. 14 excl.
Factor Coeff. (p-value) Factor Coeff. (p-value) Factor Coeff. (p-value)

15 –43 (0.001) 15 –0.19 (0.000) 15 –0.21 (0.000)
17 –21 (0.03) 17 –0.07 (0.04) 8 +0.07 (0.01)
20 –24 (0.03) 20 –0.07 (0.04) 24 –0.05 (0.04)

17 –0.05 (0.04)
20 –0.04 (0.04)

Table 1. Forward selection main effects, as regression coefficients for x-
variables at values x = ±1. Listed p-values are F -test inclusion probabili-
ties, after rounding to two or three decimal digits. Coefficient estimates in
the 3rd column are from the main-effects model with the five factors listed.

7



4 Consequences for SSD analysis studies based on
Williams’ data.

As mentioned above, Williams’ data [1] have been used a lot, starting with
Lin 1993 [5], for investigation and comparison of statistical analysis methods
applied to supersaturated designs, mostly various forms of variable selection
methods. Soon afterwards, Wang [9] tried stepwise regression on the com-
plementary half-fraction and got such a different sequence of factors that
he concluded that one of the two analyses must be misleading. He also
suggested that from the given data alone, without using subject matter
expertise, it would be impossible to tell which of them. His statement is
not true, because the understanding of the full data given in the previous
section, pointing out the extreme run #14, will explain his observation, in
particular why factor 15 dominates in one half-fraction but does not even
enter in the analysis of the complementary half. At the same time it explains
analogous observations reported in [7, 13], but more generally it clarifies the
wider, “not entirely encouraging” observation made by Abraham et al. [8],
when they try four pairs of half-fractions and have problems understanding
why factor 15 is entering or not entering in their variable selection procedure.

log10-scale, Wang half log10-scale, Wang, run #14 excluded
Factor Coeff. (p-value) Factor Coeff. (p-value)

4 +0.16 (0.02) 15 –0.18 (0.000)
24 –0.09 (0.03)

Table 2. Forward selection main effects, as regression coefficients for x-
variables at values x = ±1. Listed p-values are F -test inclusion probabili-
ties, and next p-value was > 0.05. Coefficient estimates are from the model
with the factors given in the table.

Table 2 is intended to show that run #14 is the problem. It uses data
on log-scale, but this is not crucial. We can see that Wang’s half does not at
all suggest factor 15, but as soon as run #14 is excluded from Wang’s half-
fraction, factor 15 will be highly significant again. To understand why factor
15 has lost its significance, it helps to contemplate how a t-test statistic for
the main effect of factor 15 is affected when the full dataset is reduced to
Wang’s half-fraction. Its numerator will decrease substantially (by 26%),
because the outlying observation 14 will have much higher influence with 7
than with 14 observations per sample. At the same time the pooled sample
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standard deviation in the denominator will increase, for the same reason (by
21%). Finally, the formula for the standard error will increase by a factor√

2 when sample sizes are reduced from 14 to 7. All these effects together
reduce the t-test statistic by more than a factor 2, at the same time as the
reduced degrees of freedom (from 26 to 12) would have required a higher
t-value to keep the p-value level. The result is that factor 15 is not even
10% significant with original response and just below 5% significant on log-
scale. Instead the potential to (falsely) explain run #14 by other factors
will increase as samples sizes are reduced.

Lin’s half-fraction happened to exclude run #14. The effect of this is
similar to deliberate exclusion of the suspect run #14 from the full data,
and the t-test statistic for factor 15 is substantially increased.

Similar effects will be seen whatever sign column is used as defining
contrast for the half-fraction. If run #14 is in the fraction selected, the risk
is high that factor 15 will not be significant even when tested alone, and
that it will not enter in a selection procedure, whereas the opposite effect
will be seen in the complementary half-fraction. This adequately explains
the observations made in [8], when they try different branching columns (or
defining contrasts).

If we believe that run #14 should be excluded from the complete dataset
in order to achieve representative data, we can draw the following conclu-
sions for the study of SSDs using Williams’ data with run #14. Lin’s and
other half-fractions excluding run #14 show better results than the full set
of all runs, whereas Wang’s and corresponding half-fractions show mislead-
ingly bad results. Earlier papers have not clarified this, but only referred
to “random variation in the data” or other not very elucidative arguments
(see Section 2 above).

5 Concluding discussion

Many old datasets are repeatably used for statistical method comparison and
illustration. Some such datasets are frequently used for a period of time until
it is pointed out that they are not suitable for the intended purpose, due
to previously unrecognized features, for example lurking variables, design
structure elements, outliers, etc. [15, 16]. Here it has been argued that due
to a previously unnoticed outlier, Williams’ data from 1968 [1] are likely
to be misleading when trying methods of statistical analysis on subsets of
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them.
The literature about outlier detection and identification in factorial ex-

periments [17–21] was of limited use in this case. It is based on the re-
dundancy of higher-order effect estimates, which is not equivalent with the
sparsity of effects in a main effects model. In particular, we had to con-
fine ourselves to the blunter half-normal plots instead of the usual (Daniels)
normal quantile plot of effects.

The reason for the outlier cannot be reconstructed. It might be a mis-
print, a gross error, the wrong design point (not the intended level of factor
15), or just an otherwise extreme outcome. Of importance for the analysis
is only that its outcome is not representative for the error distribution oth-
erwise seen in the data, and therefore SSDs represent half-fractions of full
datasets having one outlier.

It has been stressed above that the only significant factor is factor 15.
Williams [1] reported that in subsequent experiments he tried seven of the
factors and found them all influential. That is of course not a contradiction,
since not significant does not mean the same as not influential.

The outlier was more serious for SSDs than the negligense to transform
the response variable. Since there is only one influential factor (15), its sys-
tematic effect can arbitrarily be characterized as additive or multiplicative,
in combination with a response variance depending on the response level. A
peculiar consequence is achieved, however, when in one of the studies in [7],
extremely large artificial effects are added to the response. The consequence
is that additivity of effects is prescribed, and that the log-transform is no
longer even possible, since negative responses occur. Hence, the resulting
structure is additive in factor effects but with a (residual) variance that
depends (only) on the level of factor 15 — a fairly artificial situation.

Returning to the main topic, if the aim is not to show the influence of an
outlier or to give only a mere illustration, the conclusion for use of Williams’
data in SSD studies is:

• It is acceptable to use Lin’s half, and other halves that exclude run
#14, if also the underlying (true) structure of the full dataset is esti-
mated with run #14 excluded (or replaced).

• It is not advisable to use Wang’s or other halves that include run #14
[7–9], unless its response value is replaced by some more reasonable
value.
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Appendix: Table of data

Partially corrected, incomplete sets of data from Williams’ experiment [1]
are found in [2, 3] (exercise 5.20), [8], and [7] (Table II). A complete version
is given here, with column 13 reconstructed and with the three interaction
columns added. The latter are denoted A1–A3, where A3 is the defining
contrast used by Lin [5].
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