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Abstract

Maximum Likelihood (ML) is used as a standard method for es-
timating divergence times in phylogenetic trees. The method is con-
sistent and hence the precision can be improved by analysing longer
sequences. In this paper, we show that the estimates also can be im-
proved by including more taxa to the existing tree. It is a theoretical
study, complemented with simulations, showing that the gain in pre-
cision is faster with increasing sequence length than with increasing
number of taxa, using symmetric trees.

We further compare the results of estimating divergence time us-
ing Maximum Likelihood with the much faster and less complex esti-
mation method of Mean Path Length (MPL), which works with the
evoultion model of Jukes-Cantor (1969). It is shown that MPL is as
good as ML in estimating the divergence times of nodes that are lo-
cated near the root in the tree, but ML is better in the divergence
times of nodes lower down.
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1 Introduction

Maximum Likelihood (ML) is a well known, well founded method for
consistently estimating divergence times in a rooted phylogenetic tree
as in many other areas. The method was introduced into phyloge-
netics by Edwards and Cavalli-Sforza (1964) but for gene frequency
data. Felsenstein (1981) brought Maximum Likelihood to phylogenetic
inference based on nucleotide sequences. It is now used as a stan-
dard method in softwares like PAUP* (Swofford, 2002) and PHYLIP
(Felsenstein, 2005).

In this paper we investigate if divergence time estimation of a node
gain in precision if more taxa are added to that part of an existing tree.
(It was initiated when TB attended a phylogenetic meeting organized
by NESCENT in September 2006, where the question was posed.)

Since Maximum Likelihood is a consistent method, the ML esti-
mate of the divergence time of a node can be improved by analysing
longer sequences. In general the variance is proportional to the in-
verse of the sequence length. The variance is hence divided by 2 if the
sequence length is doubled. Under some conditions on the tree almost
the same improvement can be achieved by instead squaring the num-
ber of taxa. The precision is hence improved by adding taxa, but not
as fast as when sequence length is increased. To simplify the analyti-
cal calculations we have used the simplest possible model of evolution,
but we believe similar results hold for more realistic models.

We further compare the results of estimating divergence time with
Maximum Likelihood with the much faster and less complex estima-
tion method of Mean Path Length. This method assumes the evo-
lution model of Jukes-Cantor (1969), though a generalization of the
method exists (PATHd8, Britton et. al. 2007) allowing different sub-
stitution rates in different parts of the tree. Under some conditions
on the tree topology, the Mean Path Length is as good as Maximum
Likelihood in estimating the divergence time of the nodes located high
in the tree (close to the root). The divergence time of internal nodes
lower down though, are always estimated with better precision using
the method of Maximum Likelihood than of Mean Path Length.

The paper is organized as follows: the model used, tree topolo-
gies considered and observed data are described in the next section.
Thereafter the two methods are explained and how to compare their
precisions. A section of theoretical study of the improvement in preci-
sion as taxa are added is followed by a simulation section, examplifying
the theoretical findings.
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2 Model and data

In this paper we assume we have a binary rooted tree with k = 2l taxa.
Where not otherwise stated it is assumed that the tree is symmetric in
the sense that the two subtrees of a node have equally many terminal
nodes. This makes formulae for variances simpler and it is possible
to compare what happens if the number of taxa is e.g. doubled. If
we would consider other trees, doubling the number of taxa would
result in many possible tree topologies, all with different estimates of
divergence time and precision thereof.

The nodes are denoted {1, 2, 3, . . . , 2k − 1}, where {1, . . . , k − 1}
are the internal nodes and {k, . . . , 2k− 1} are the terminal nodes (see
Figure 1). Let the root be node 1 with daugther nodes 2 and 3. At
the level beneath are the nodes 4 to 7 etc. A node is at level j if it
has j − 1 nodes on the path from the root to the node. The number
of levels is log2 k = l. Denote the divergence time of node i with ti.
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Figure 1: A rooted binary tree with k = 8 taxa and l = log2 k = 3 levels. A
node is at level i if it has i− 1 nodes on the path from the root to the node.
Hence node 1 is the root at level 1 with divergence time t1. The nodes {2, 3}
are at level 2, both with divergence time t2. At the third level are the nodes
{4, . . . , 7} with corresponding divergence times {t4, . . . , t7}.

Denote the data to analyse with y, where yi is the observed number
of substitutions in a DNA sequence with n sites along the branch
between node [(i + 1)/2] and node i + 1, where [·] denotes the integer
part. We admit it is an unrealistic situation to observe the number
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of substitutions along every branch, normally we only observe the
DNA sequences at the terminal nodes and estimate the number of
substitutions along the branches, but this is to make our investigation
of the properties of the methods possible.

We further assume that substitutions occur according to the Jukes-
Cantor model of evolution (1969). In this model, at each site j in
the DNA sequence, substitutions occur independently in time with
change rate rj . When a change occur all bases are equally probable.
Along a branch of length t, the number of substitutions at a site j is
then Poisson distributed with mean trj . We further assume the sites
to evolve independently and hence the total number of substitutions
along the branch for a DNA sequence of n sites is Y = Y1 + · · ·+ Yn

where all Yj ∈ Po(trj). Hence Y ∈ Po(rt) where r =
∑n

j=1 rj . To
show the dependence on the number of sites in the sequences, define
r̄ = r/n and let Y ∈ Po(nr̄t). We assume that the mean rate r̄ is
constant over all branches since it otherwise may not be possible to
estimate the divergence time consistently (Britton, 2005). Further the
mean rate is assumed to be known as the the estimates otherwise will
be on a relative scale.

For a given tree, y denotes the number of substitutions along each
branch. According to the model described above Yi ∈ Po(nr̄(t[(i+1)/2]−
ti+1)) for internal branches (i = 1, . . . , k− 2) and Yi ∈ Po(nr̄t[(i+1)/2])
for branches ending in a terminal node (i = k − 1, . . . , 2k − 2).

3 Methods

3.1 Likelihood and Score function

The joint probability function of y can, as we assume that branches
evolve independently, be written as the product of the probability
functions for the observations at each branch. For a phylogenetic
tree of the kind we consider, with k taxa, t = (t1, . . . , tk−1) and y =
(y1, . . . , y2k−2) the joint probability function equals
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f(y|t) =
k−2∏
i=1

1
yi!

e−nr̄(t[(i+1)/2]−ti+1)(nr̄(t[(i+1)/2] − ti+1))yi ×

2k−2∏
i=k−1

1
yi!

e−nr̄t[(i+1)/2](nr̄t[(i+1)/2])
yi

=
1∏2k−2

i=1 yi!
exp

{
− nr̄t1 −

k−1∑
i=1

nr̄ti +
k−2∑
i=1

yi log(nr̄(t[(i+1)/2] − ti+1))

+
2k−2∑
i=k−1

yi log nr̄t[(i+1)/2]

}
. (1)

Let h(y) = 1/(
∏

y!), T (y) = y, a(t) = −nr̄t1 −
∑k−1

i=1 nr̄ti and

η(t) =
{

log(nr̄(t[(i+1)/2] − ti+1)) i = 1, . . . , k − 2
log(nr̄t[(i+1)/2]) i = k − 1, . . . , 2k − 2.

Then (1) can be written on the form

f(y|t) = h(y) exp{η(t)T (y)− a(t)}. (2)

A joint probability function that can be written on the form (2) is
said to be in the exponential family. Hence (1) is in the exponential
family.

The likelihood, L(t) is the probability of data given the parameter
t, but seen as a function of t, that is L(t) = f(y|t). The log likelihood
l(t) = log L(t) is hence, using (2), l(t) = log L(t) = log(h(y)) +
η(t)T (y)− a(t).

The score function Ui(t) := ∂l(t)
∂ti

is in this case

Ui(t) =
∂η(t)
∂ti

T (y)− ∂a(t)
∂ti

=


−2nr̄ + y1

t1−t2
+ y2

t1−t3
i = 1

−nr̄ − yi−1

t[i/2]−ti
+ y2i−1

ti−t2i
+ y2i

ti−t2i+1
i = 2, . . . , k

2 − 1

−nr̄ − yi−1

t[i/2]−ti
+ y2i−1+y2i

ti
i = k

2 , . . . , k − 1.

(3)

To obtain the Maximum Likelihood (ML) estimate of t, the score
function is set to 0. The solution is then found by solving the equations
numerically. In the exponential family, under mild regularity condi-
tions, the Maximum Likelihood estimate t̂(ML) is consistent, that is
t̂(ML) → t when n → ∞. The asymptotic variance of t̂(ML) equals
the inverse of the expected information matrix, which will be defined
later.
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3.2 Mean Path Length

The algorithm of Mean Path Length (MPL) was first introduced by
Bremer and Gustafsson (1997) and further developed by Britton et.
al. (2002), who also showed it to be consistent for the Jukes-Cantor
model. We focus on the divergence time of one node and call that
node the root. The divergence time of the root is denoted t1. As-
sume that a path from the root to a taxa is defined by the branches
with corresponding observations {yi1 , . . . , yil}. The total number of
substitutions along that path is hence xi = yi1 + · · · + yil . With
the assumptions of the tree made earlier in this paper we have that
Xi ∈ Po(nr̄t1). The Mean Path Length estimate of the divergence
time of the root is the mean of the total number of substitutions of
all paths from the root to the taxa divided by nr̄.

The MPL estimate can be rewritten as a weighted sum of observa-
tions, where each observation yi is weighted with a constant ci, which
equals the proportion of all paths that traverses the branch which yi

belongs to. This will make the estimate a sum of independent vari-
ables and the variance will then be easy to calculate. Since we assume
a symmetric tree ci = 1

2j , where j is the level which yi belongs to.
With the notations we use, y1 and y2 are at the first level, y3, . . . , y7

at level 2 and level j consists of the observations {2j−1, . . . , 2j+1−2},
j = 1, . . . , log2 k. Hence the MPL estimate of the divergence time of
the root will be

t̂
(MPL)
1 =

1
nr̄

log2 k∑
j=1

2−j

( 2j+1−2∑
i=2j−1

yi

)
. (4)

3.3 Precision of the estimates

Assuming the Jukes-Cantor model both methods consistently estimate
the divergence time of the root, t1. That is, as the sequence length
n increases, the closer to the true value t1 the estimates t̂

(ML)
1 and

t̂
(MPL)
1 will be.

Furthermore we have assumed that we are able to observe the
number of substitutions along the branches. In a practical situation
this is rarely the case. Often, only DNA sequences of terminal taxa
are observed and the number of substitutions along branches have
to be estimated. This can be done by a number of algorithms, non-
probabilistic or probabilistic (e.g. Maximum Likelihood). With this
method it can be shown that the expected number of substitutions
per site can be estimated consistently. By letting the observations of
our tree be the estimated branch length multiplied by the sequence
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length we can consider the observations to be outcomes of the Poisson
distribution with mean nr̄t. The results of the analytical calculations
of the precision of the two methods that follow are hence optimistic
bounds when it comes to real data, but with large n the true variances
should be close to the analytical ones obtained here.

Since the model implies that Yi ∈ Po(nr̄(t[(i+1)/2] − ti+1)), i =
1, . . . , k − 2 and Yi ∈ Po(nr̄t[(i+1)/2]), i = k − 1, . . . , 2k − 2, and

Y1, . . . , Y2k−2 are independent, the variance of t̂
(MPL)
1 can be calcu-

lated as

V (t̂(MPL)
1 ) = V

(
1
nr̄

log2 k∑
j=1

2−j

[ 2j+1−2∑
i=2j−1

yi

])

=
1

n2r̄2

log2 k∑
j=1

2−2j
2j+1−2∑
i=2j−1

V (yi)

=
1

n2r̄2

log2 k−1∑
j=1

2−2j
2j+1−2∑
i=2j−1

nr̄(t[ i+1
2

] − ti+1) +
1

n2r̄2k2

2k−2∑
i=k−1

nr̄t[ i+1
2

]

=
1
nr̄

k−1∑
j=1

2−2j
2j+1−2∑
i=2j−1

(t[ i+1
2

] − ti+1) +
1

nr̄k2

2k−2∑
i=k−1

t[ i+1
2

]. (5)

For any estimate, t̂, Cramér-Rao’s inequality states that V ar(t̂) ≥
I−1(t), where I−1(t) is the inverse of the Fisher information matrix
(see e.g. Lindsey, 2001). Under mild regularity conditions (which are
satisfied in our case the model being from the exponential family) the
ML-estimate, t̂

(ML)
1 , achieves the Cramér-Rao lower bound, at least

asymptotically as n → ∞. The variance of t̂
(ML)
1 will therefore be

I−1
11 (t) which is the first element of the inverse of the information

matrix. The Fisher information matrix is defined as

Iij(t) = E(Jij(t))

= E

(
− ∂Ui(t)

∂tj

)
,

which can be shown to equal
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I(t) =



nr̄
t1−t2

+ nr̄
t1−t3

i = j = 1
nr̄

t[i/2]−ti
+ nr̄

ti−t2i
+ nr̄

ti−t2i+1
i = j, i = 2, . . . , k

2 − 1
nr̄

t[i/2]−ti
+ 2nr̄

ti
i = j, i = k

2 , . . . , k − 1
− nr̄

tj−ti
j = [i/2]

− nr̄
tj−ti

j = (2i, 2i + 1),

(6)

where i = 2, . . . , k − 1 in the last row.

4 Increasing the number of taxa

Suppose as before that we are interested in the divergence time t1
of two taxa A and B (the node is hence on referred to as the root).
As data, we have the rooted tree to the left in Figure 2 as well as
the number of substitutions (which we here denote x1 and x2) in a
DNA sequence of length n for each branch. The observations are both
outcomes from Poisson distributed random variables with mean (and
variance) nr̄t1. The ML estimate, as well as the MPL estimate of t1
will be

t̂
(ML)
1 = t̂

(MPL)
1 = x1+x2

2nr̄ .

The variance of the estimates is V (t̂(ML)
1 ) = V (t̂(MPL)

1 ) = 1
(2nr̄)2

(V (X1)+
V (X2)) = t1

2nr̄ . Increasing the length n of the sequences decreases the
variance as can be seen from the formula. One way of improving the
estimate is hence to analyse longer sequences. We will now show that
a different way to improve the estimate is by increasing the number of
taxa. We will also investigate how much this improves the estimate.

At the right in Figure 2 two more taxa, C and D, are considered,
with divergence times more recent than t1, which is the time we want
to estimate. We assume that the number of substitutions along each
branch are observable and the observations are now (y1, . . . , y6), with
y1 + y3 = x1 and y2 + y6 = x2. With real data those observations
are not really observed but estimated, consistently as the sequence
length increases. The number of levels is l = log2 k = 2 and the MPL
estimate is then, according to (4)

t̂
(MPL)
1 =

1
nr̄

(
2−1(y1 + y2) + 2−2(y3 + · · ·+ y6)

)
,
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Figure 2: To the left is the topology of the tree representing the divergence
time we are interested in. To estimate the time t1 we have the observations
x1 and x2. To the right two more taxa are added, with divergence times t2
and t3 that we are not primarily interested in. The observations in the right
hand tree are y = (y1, . . . , y6).

with variance

V (t̂(MPL)
1 ) =

1
n2r̄2

(
2−2(nr̄(t1 − t2) + nr̄(t1 − t3)) + 2−4(2nr̄t2 + 2nr̄t3)

)
=

t1
2nr̄

− t2
8nr̄

− t3
8nr̄

, (7)

which is smaller than the variance of the first estimate. Hence, by
adding more information in the form of new taxa, corresponding un-
known divergence times that we are not primarily interested in and
observed substitutions along the branches, we have improved the es-
timate of the divergence time of the root.

For the method of Maximum Likelihood the information matrix
I(t) corresponding to the right tree in Figure 2 will be, according to
(6),

I(t) = nr̄

 1
t1−t2

+ 1
t1−t3

− 1
t1−t2

− 1
t1−t3

− 1
t1−t2

1
t1−t2

+ 2
t2

0
− 1

t1−t3
0 1

t1−t3
+ 2

t3

 ,

with inverse
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I(t)−1 = c

 (2t1 − t3)(2t1 − t2) t2(2t1 − t3) t3(2t1 − t2)
t2(2t1 − t3) t2(4t1 − t3 − 2t2) t2t3
t3(2t1 − t2) t2t3 t3(4t1 − 2t3 − t2)

 ,

(8)
where c = 1

2nr̄(4t1−t2−t3) . It can be shown that the first element of (8)

satisifies {I(t)−1}11 < t1
2nr̄ and hence also t̂

(ML)
1 is improved by adding

more taxa.
From (7) and (8) we see that the variance is smaller the closer the

nodes 2 and 3 are the root. To optimize the extra information taxa
should hence be chosen so that the speciation did not happen recently.

If the unknown divergence times t2 and t3 in fact were the same
(i.e. t2 = t3), then both (7) and the top left element of (8) would equal
((2t1− t2)/4nr̄). Adding more taxa, assuming the tree to be complete
symmetric, by which we mean that all nodes at a level have the same
divergence time, it can be verified that

V (t̂(MPL)
1 ) = V (t̂(ML)

1 ) = I−1
11 (t), (9)

for k = 4 (shown above), k = 8 and k = 16, but we have not managed
to prove this for larger k. However, simulations indicate that it holds
in general also for larger k. In the appendix it is shown analytically
that (9) holds if we further require the branches to be of the same
length. This type of tree we call equidistant complete symmetric.
Then (9) becomes

V (t̂(ML)
1 ) = V (t̂(MPL)

1 ) =
t1

nr̄ log2 k

k − 1
k

. (10)

To divide the variance of the estimate of the divergence time of the
root in an equidistant complete symmetric tree with 2, the sequence
length should be doubled according to (10). Since k−1

k ' 1, at least
for large k, almost the same improvement can be achieved by instead
squaring the number of taxa. Adding more taxa hence improves the
precision, but not as fast as increasing the sequence length.

For a symmetric tree where all nodes have individual divergence
times, simulations indicate that ML estimates the divergence time of
the root with slightly higher precision than the method of Mean Path
Length. The difference between the estimates of the two methods
and corresponding variances are small though, as long as it is the
divergence time of the root that is of interest.

For other internal nodes, e.g. the most recent common ancestor of
A and C in Figure 2 with divergence time t2, are always estimated
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with better precision with Maximum Likelihood than with Mean Path
Length. For the example in Figure 2 we have

t̂
(MPL)
2 = y3+y4

2nr̄ , V (t̂(MPL)
2 ) = t2

2nr̄ .

The ML estimate is obtained as U(t) = 0 is solved numerically,
giving t̂(ML). The variance of t̂

(ML)
2 is {I−1(t)}22, and by (8) this

equals

V (t̂(ML)
2 ) = t2

2nr̄

(
1− t2

4t1−t2−t3

)
.

It can be shown that for this particular situation 1
2V (t̂(MPL)

2 ) ≤ V (t̂(ML)
2 ) ≤

V (t̂(MPL)
2 ).
When estimating the divergence time for internal nodes, the method

of Maximum Likelihood uses all observations of the entire tree. The
method of Mean Path Length only takes the observations on the paths
from the node to descending taxa, so the Mean Path Length uses less
information than Maximum Likelihood. For a node located high in
the tree the two methods use almost the same amount of information,
for the root exactly the same. The estimates, as well as the precisions
thereof should therefore be close. For a node lower down the tree
though, MPL only uses part of the information and the precision is
then lower than for Maximum Likelihood.

We have only considered adding taxa to the subtree defined by the
node whose divergence time we are interested in and which will be
the root of the subtree. Adding taxa to other parts of the tree will
not affect the MPL estimate, since it only uses observations in the
subtree. The ML estimate uses information from all parts of the tree
and will gain in precision wherever the taxa are added. How much the
variance of the estimate decreases is however hard to specify. It will
depend on the size of the tree and subtree, and also on how far away
from the node of interest the extra information is added.

5 Simulations

In the simulation part we considered three types of trees: (1) equidis-
tant complete symmetric, (2) complete symmetric and (3) symmetric
trees (see Figure 3). In the complete symmetric trees all nodes at
the same level diverged at the same time. In the equidistant case
we further require the times between speciation to be equal, that is
all branches are of the same length. In the symmetric trees the two
subtrees of a node have equally many nodes, but the divergence times
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may be individual for all nodes. When doing the inference, the type
of tree is of course assumed to be unknown.

The goal of the simulations were to estimate the divergence time of
the root for a number of datasets and see how well the methods meet
the theoretical variances by calculating the sample variances. We also
wanted to see how the variances decreased when the number of taxa,
k, was increased. To obtain the ML estimate of the divergence time of
the root, t̂

(ML)
1 , for a given tree and dataset, the log likelihood function

l(t) should be maximized with respect to t (or equivalently U(t) = 0
should be solved). We have to do this under the ”complex” constraints
t1 > 0, 0 < ti < t[i/2], since otherwise the time of a daughter node can
be older than the mother node. Several numerical algorithms exist
that are able to optimize a function under ”simple” constraints. Let
x = x(t) = (t1, t2

t1
, t3

t1
, . . . , ti

t[i/2]
, . . . ,

tk−1

t[(k−1)/2]
), that is xi is the time ti

divided by the time of the node above it. Consider now l(x) with the
simple constraints x1 > 0, 0 < xi < 1, i = 2, . . . , k − 1. Reparameter-
izing back to t(x) = (x1, . . . ,

∏[log2 i]
j=0 x[i/2j ], . . . ,

∏[log2(k−1)]
j=0 x[(k−1)/2j ])

with t̂ = t(x̂) will give the ML estimate of t.

1

2 3

4 75 6

time

equidistant complete symmetric 

time

2 3

4 5 6

complete symmetric 

7

1 time
1

2

3

4

5

6

7

symmetric

Figure 3: The three different types of tree considered in the simulations. To
the left is the equidistant complete symmetric case where all nodes at a level
diverged at the same time and the times between the levels are equal. In the
middle is the complete symmetric case where the times between the levels do
not need to be equal. At the right is the third type which is symmetric in the
sense that the two subtrees of a node have equally many nodes, but the times
of divergence may differ between nodes.

For different types of trees a starting tree with k = 128 taxa was
created by simulating the time of divergences t = (t1, . . . , t127). The
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divergence time of the root, t1, was always set to 1.0, implying rela-
tive times. The divergence times of the other nodes were simulated
according to Table 1. To be able to compare the results for different k,
nr̄ should be held constant and was always set to 30. We then expect
about 30 substitutions on a path from the root to a taxa.

type of tree simulation algorithm

equidistant
complete symmetric

(i) li = 1− i
log2 k

, i = 1, log2 k − 1

(ii) tj = li, j = 2i, . . . , 2i+1 − 1

complete symmetric
(i) u1, . . . ulog2 k−1 ∈ U(0, 1)
(ii) u sorted from max to min
(ii) tj = u(i), j = 2i, . . . , 2i+1 − 1

symmetric a) Start from the root. For the two branches:
(i) u1, . . . , ulog2 k−1 ∈ U(0, 1)
(ii) each u(i) represents a divergence node

b) For each divergence node, add a branch.
(i) u1, . . . , ul′ ∈ U(0, 1), where l′ = log2k − j,

where j is the level the node belongs to
(ii) each u(i) represents a divergence node

on the added branch.
For each new divergence node that is not on
the last level, goto b)

Table 1: A tree was created by setting t1 = 1.0 and simulating the divergence
times of the other nodes according to the type of tree wanted. The number of
taxa in the tree is k.

For the tree created, the theoretical variances were calculated using
formula (5) and by solving the inverse of (6) numerically. Then 500
data sets were simulated. For each dataset t̂

(ML)
1 was calculated using

the optimization routine of Nelder and Mead (see e.g. Mathews, 1987),
and t̂

(MPL)
1 was calculated using formula (4). The sample variances

were then calculated from the 500 estimates.
The number of taxa were then divided by 2 by deleting a level. The

level to be deleted was chosen randomly between the levels {2, . . . , log2 k}.
For each node at the chosen level, the left or the right subtree was
deleted with probability 0.5 each. The resulting tree was then of the
same type as the original tree, the divergence times of the nodes that
exist in both trees maintained, but with half as many taxa as the orig-
inal tree. New data sets were created and all calculations were done
for the new tree. The number of taxa, k, were then divided again by
deleting a level of nodes, the calculations were redone etc. until k = 4.
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The equidistant complete symmetric tree was an exception of the
this procedure as deleting a level in such a tree would result in a tree
not being equidistant. For this type of tree we started with k = 4
taxa, calculated the theoretical variances, created 500 data sets for
which the estimates were calculated. Finally the sample variances
were calculated from the estimates. Then a new equidistant complete
symmetric tree was created by squaring the number of taxa. This
could be interpreted as adding two levels of nodes to the existing tree.
New data sets were created, the calculations redone etc.

Table 2 summarizes the results from the equidistant complete sym-
metric case. The first box is where the tree started with 4 taxa, the
second box where the starting tree had 8 taxa. As is shown in the
appendix, the theoretical variances are equal for the two methods.
Formula (10) showed that the variances should almost decrease with
a factor 2 when the number of taxa were squared, a result that holds
in the simulations.

mean sample variance Theoretical variance

k t̂
(ML)
1 t̂

(MPL)
1 t̂

(ML)
1 t̂

(MPL)
1 I−1

11 V (t̂
(MPL)
1 )

4 0.99834 0.99820 0.01332 0.01328 0.0125 0.0125
16 1.00016 1.00057 0.00761 0.00756 0.0078 0.0078
256 1.00295 0.99895 0.00350 0.00400 0.0041 0.0041

8 0.99666 0.99686 0.01030 0.01029 0.0097 0.0097
64 1.00468 1.00391 0.00489 0.00477 0.0055 0.0055

Table 2: Results from simulations of 500 datset for each tree in the equidistant
complete symmetric case. Each box represents a tree where the number of taxa
has been squared in each step.

In the complete symmetric case the theoretical variances of t̂
(ML)
1

and t̂
(MPL)
1 are equal, but the numerical values depend on the simu-

lated t, and can therefore differ even if the same k and nr̄ have been
used. In Table 3 we present the results from two of the many simu-
lated trees to visualize the dependence on t. Each box represents a
unique starting tree. In the last row of the box, where k = 128 the
original starting tree has been used to create datasets. In the row
with k = 64 a level of nodes has been deleted as described earlier and
the resulting tree has been used to simulate data. The results within
a box can therefore be compared, but not between boxes as another
starting tree has been used in box 2.

The theoretical variances always decreased with increasing number
of taxa. Sometimes though they can be quite close as for k = 64 and
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k = 128 in the first box of Table 3. This can be explained by the
level chosen to be deleted being close to taxa or to another level. The
impact on the estimates from the deleted branches were then small.
As a result the estimate of the variance, i.e. the sample variance, could
then increase.

mean sample variance Theoretical variance

k t̂
(ML)
1 t̂

(MPL)
1 t̂

(ML)
1 t̂

(MPL)
1 I−1

11 V (t̂
(MPL)
1 )

4 0.99551 0.99552 0.01652 0.01651 0.0158 0.0158
8 1.00302 1.00310 0.00781 0.00776 0.0083 0.0083
16 0.99705 0.99761 0.00638 0.00637 0.0066 0.0066
32 1.00051 0.99938 0.00544 0.00548 0.0055 0.0055
64 1.00154 1.00023 0.00364 0.00372 0.0041 0.0041
128 0.99852 0.99592 0.00364 0.00396 0.0040 0.0040

4 1.00278 1.00290 0.00905 0.00909 0.0094 0.0094
8 1.00201 1.00207 0.01002 0.00999 0.0092 0.0092
16 0.99966 0.99958 0.00999 0.00993 0.0090 0.0090
32 1.00216 1.00139 0.00701 0.00697 0.0078 0.0078
64 1.00643 1.00231 0.00635 0.00604 0.0060 0.0060
128 1.00383 0.99606 0.00509 0.00550 0.0057 0.0057

Table 3: Results from simulations of 500 datset for each tree in the complete
symmetric case. The theoretical variances, as well as the sample variances,
depend on the t vector simulated for the unique tree represented by a box in
the table.

The table for the symmetric case (Table 4) should be read in the
same manner as for the complete symmetric case (Table 3). The
theoretical variances have been calculated according to the formulae
(5) and (6) and depend on the simulated t. As we can see in the
table, V (t̂(ML)

1 ) < V (t̂(MPL)
1 ), but the ratio between them are always

less than 1.15. Only once, for all simulations we did with a symmetric
tree was the ratio greater than 1.5 which happened for 128 taxa.

For the complete symmetric and the symmetric cases we have sim-
ulated many starting trees. For all trees, the theoretical variances
decreased with increasing number of taxa. The sample variances were
close to the theoretical ones, but for large k the sample variances
for the method of Maximum Likelihood tend to be smaller than the
theoretical ones. A reason could be that with large k, the number of
nuicance parameters is large and the log likelihood function more com-
plex. The numerical optimization algorithm may then have problems
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mean sample variance Theoretical variance

k t̂
(ML)
1 t̂

(MPL)
1 t̂

(ML)
1 t̂

(MPL)
1 I−1

11 V (t̂
(MPL)
1 )

4 1.00323 1.00225 0.00991 0.01008 0.0112 0.0113
8 0.99922 0.99895 0.00934 0.00950 0.0106 0.0107
16 1.00289 1.00347 0.00714 0.00763 0.0069 0.0072
32 1.00698 1.00531 0.00699 0.00747 0.0063 0.0067
64 1.00019 0.99698 0.00346 0.00377 0.0032 0.0035
128 1.00829 0.99946 0.00196 0.00301 0.0027 0.0031

4 0.99923 0.99910 0.01180 0.01206 0.0132 0.0132
8 1.00098 1.00181 0.01009 0.01033 0.0104 0.0107
16 0.99980 1.00037 0.00577 0.00587 0.0057 0.0057
32 1.00416 1.00436 0.00378 0.00379 0.0035 0.0036
64 1.00890 1.00457 0.00341 0.00348 0.0034 0.0035
128 1.00953 0.99962 0.00256 0.00334 0.0028 0.0030

Table 4: Results from simulations of 500 datset for each tree in the symmetric
case. The theoretical variances, as well as the sample variances, depend on
the t vector simulated for the unique tree represented by a box.

finding the global maximum and is stuck in one of the local max-
ima. For the same reason the much less complex estimation method
of Mean Path Length seem to be closer to the true value for k ≥ 64.

6 Concluding Remarks

In this paper we have investigated the method of Maximum Likeli-
hood for estimating divergence time of a root. We have compared two
ways of improving the estimate - either by analyzing longer sequences,
that is adding more information by increasing the sequence length n,
or by adding more information in form of new taxa with more re-
cent divergence times than the root. The first approach is the usual
one when investigating consistency and asymptotics. The number of
parameters is fixed, here the divergence times of the internal nodes
(t1, . . . , tk−1) where k is the number of taxa, but n increases, theoret-
ically n → ∞. We have shown that in general, the variance of the
estimate of the divergence time of a node decreases with a factor 2 if
the sequence length is doubled. In the second approach n is large but
fixed and the number of taxa k is increased implying that the num-
ber of parameters is increased. Since we only have finite sequences
we cannot, even theoretically, let k → ∞. If e.g. k > n there is not
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enough data to estimate the number of substitutions along branches.
Instead we consider the situtation where k is increased in a nice way
and not too much so that the sequence length always is much larger
than the number of taxa. If possible, to gain as much as possible, the
taxa added ought to be as close to the root as possible. If the taxa
added diverged recently, the precision is still improved, but not with
the same amount. In a situation ”in between” the two extremes, e.g.
the equidistant case where all branches are of the same length, we have
shown that the same reduction of the variance of the ML estimate can
almost be achieved if the number of taxa is squared as if the sequence
length is doubled, assuming the Jukes-Cantor model of evolution.

Throughout the paper we have assumed the number of substitu-
tions along branches to be observable. Admittedly, this is rarely the
case in practice, usually only DNA sequences at terminal nodes are ob-
served and the number of substitutions along branches are estimated.
We performed a simulation of DNA sequences of terminal taxa with
equidistant complete symmetric trees under the Jukes-Cantor model
and used PAUP* to analyze the sequences with the Maximum Likeli-
hood method, Jukes-Cantor model and a global molecular clock. For
100 data sets the first 500 sites where analyzed as well as all 1000 sites.
The results are summarized in Table 5 where the sample variances of
the estimates of the divergence time of the root are calculated. The
results verify our theoretical findings, the sample variance is approx-
imately divided by two if the sequence length is doubled, and in the
equidistant case the variance is almost divided by 2 when the number
of taxa is squared from k = 4 to k = 16.

In the study we have focused on the divergence time of one given
node, which we have denoted the root and restricted the study to
symmetric trees. Such trees maintain the topology when taxa are
added to the tree, making the precisions for different number of taxa
comparable. The conclusion that precision is improved by adding
more taxa holds for nonsymmetric trees too, but it is then harder to
express how fast it is improved.

We have used the Jukes-Cantor model of evolution througout the
paper when investigating the properties of Maximum Likelihood as
a method of estimating the divergence time. It is a simple and un-
realistic model, but it simplifies the complex calculations and make
theoretical studies of the estimation method possible. In order to
obtain the ML estimate of divergence times, the time vector t that
maximizes the log likelihood function has to be computed numerically.
The task to find the log likelihood function is harder with a more com-
plex model, it will be harder to solve the score function numerically
and to find the inverse of the information matrix. The method is time
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α n k t̂
(ML)
1 V (t̂

(ML)
1 )

0.02 500 2 1.032 0.0479
4 1.021 0.0402
16 0.994 0.0245

1000 2 1.030 0.0241
4 1.015 0.0219
16 1.007 0.0129

0.03 500 2 0.967 0.0302
4 0.979 0.0220
16 0.985 0.0139

1000 2 0.976 0.168
4 0.978 0.0139
16 0.987 0.0074

Table 5: Results from simulations of 100 data sets for each tree, with sub-
stitution rate α = 0.02 and α = 0.03 respectively. The first 500 sites of
the sequences as well as all 1000 sites have been analyzed with PAUP* using
the Maximum Likelihood Method, Jukes-Cantor model and a global molecular
clock. The estimates and variances given in the table are the means and the
sample variances.

consuming even for a moderate number of taxa and a simple model.
Another reason to use the model of Jukes-Cantor was to be able

to compare the results of ML with the much less complex method
of Mean Path Length which only works with that model. There is
however a generalization of MPL, allowing different substitution rates
in different segments of the tree in a software recently introduced called
PATHd8 (Britton et. al. 2007).

The method of Mean Path Length is consistent for the Jukes-
Cantor model. We have shown that for this method too the variance
of the estimate decreases with increasing sequence length or increasing
number of taxa.

If the tree is symmetric with the same divergence times across a
level, both methods are efficient, they achieve the Cramér-Rao lower
bound. This is shown analytically when all branches are of the same
length and by simulations when the times between levels may differ.
If the divergence time of the nodes at a level are individual, Maximum
Likelihood has slightly better precision of estimating the divergence
time of the root than Mean Path Length. MPL uses almost the same
amount of information for nodes high in the tree, near the root, as the
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method of ML. The advantages of MPL for those nodes are that the
algorithm is very fast and it does not use a numerical optimization
routine that can get stuck in local maxima. For internal nodes lower
down though, Maximum Likelihood is the better but slower method
as it uses more information than the method of Mean Path Length.

Appendix

In this appendix we will show that the variances of the estimators of
the divergence time of the root of a tree that in fact is an equidistant
complete symmetric one are equal for the methods of Maximum Like-
lihood and Mean Path Length. We will also show that the estimators
achieve the Cramér-Rao lower bound.

In the equidistant complete symmetric case with k = 2l taxa all
nodes on a level have the same divergence time. Further the times
between the levels are equal, t1/l = t1/ log2 k, where t1 is the time of
the root. Figure 4 shows two equidistant trees with k = 4 and k = 8
taxa respectively.

t_1

time time

t_1

t_4=...=t_7

t_2 = t_3

t_2 = t_3 2 3

1

2 3

4 5 7

1

t_1/2

t_1/2

t_1/3

t_1/3

t_1/3

6

Figure 4: To the left is a equidistant tree with k=4 taxa. The time between
the divergences is then t1/ log2 k = t1/2. To the right the tree has k = 8 taxa
and the branches are then of length t1/ log2 8 = t1/3.

In such a tree, the estimator of t1 using the method of Mean Path
Length, t̂

(MPL)
1 , is as good as the estimator using Maximum Likeli-

hood, t̂
(ML)
1 , as the next theorem will show. The methods of course

do not assume the tree to be equidistant nor complete.
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Theorem: If the number of taxa in a rooted phylogenetic tree is
k = 2l and all branches are of the same length (t1/ log2 k), where t1 is
the time of the root, then

V (t̂(MPL)
1 ) = V (t̂(ML)

1 ) = I−1
11 = t1

nr̄ log2 k
k−1

k ,

where I is the information matrix. Hence V (t̂(ML)
1 ) = V (t̂(MPL)

1 )
in the equidistant complete symmetric case and both estimators are
efficient.

Proof:
Since all branches have the same length, t1/ log2 k, the variance of

the time estimate of the root using the method of Mean Path Length
in the equidistant complete symmetric case is, according to (5),

V (t̂(MPL)
1 ) =

t1
nr̄ log2 k

k − 1
k

, (11)

Using formula (6) the information matrix will have the elements

Ititj (t) =

nr̄
t1−t2

+ nr̄
t1−t3

= 2nr̄ log2 k
t1

i = j = 1
nr̄

t[i/2]−ti
+ nr

ti−t2i
+ nr̄

ti−t2i+1
= 3nr̄ log2 k

t1
i = j, i = 2, . . . , k

2 − 1
nr̄

t[i/2]−ti
+ 2nr

ti
= 3nr̄ log2 k

t1
i = j, i = k

2 , . . . , k − 1

− nr̄
tj−ti

= −nr̄ log2 k
t1

j = [i/2],

− nr̄
tj−ti

= −nr̄ log2 k
t1

j = (2i, 2i + 1),

where i = 2, . . . , k − 1 in the last two rows. The information
matrix can hence be written as I = nr̄ log2 kE, where E is a matrix
describing the tree topology. The diagonal elements of E will tell how
many branches that are connected to the nodes (2 for the root and 3
for the rest). For i 6= j the elements will be 0 if node i is not connected
to node j and -1 if it is.

The E-matrix can be divided into blocks A, B, C and D such that

E =
(

A B

C D

)
,

where A describes the relationships between all internal nodes except
the ones on the last level, right above the taxa, i.e. nodes {1, . . . , k

2 −
1}. D describes the relationships between the nodes right above the
taxa, i.e. nodes {k

2 , . . . , k − 1}. Since they are independent, D will
be a diagonal matrix with the diagonal elements equal 3. B describes
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the relationships between the nodes on the last level and the rest of
the nodes, C = BT .

By multiplication it can be verified that the inverse of E, E−1, can
be expressed as

E−1 =
(

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 −D−1C(A−BD−1C)BD−1 .

)
(12)

Since we are only interested in the first element of this inverse, we
concentrate on the upper left part. As C = BT and D = 3I, where I
is the identity matrix, it follows that BD−1C = BD−1BT = 1

3BBT .
The elements of B are 0 except for the places corresponding to a
branch between two nodes where the element is -1. BBT will be a
diagonal matrix with 0 or 2 at the diagonal as

(BBT )ij =
∑
m

bimbT
mj

=
∑
m

bimbjm

=


0 i 6= j

0 i = j, i = 1, . . . , k
4 − 1

2 i = j, i = k
4 , . . . , k

2 − 1

The elements equal 2 will correspond to the nodes of the second last
time level of the tree.

Let E(1) = (A − 1
3BBT ). As noted earlier, the submatrix A de-

scribes the relationships between all nodes except the ones on the
last level, right above the taxa. Finding the inverse of E(1) is then
equivalent to finding the inverse of the corresponding E matrix for
a equidistant tree where the nodes on the last level are deleted, i.e.
for a tree with k∗ = k/2 taxa, but with the diagonal elements of the
submatrix D∗ equal 3− 2

3 = 7
3 instead of 3.

With the same arguments as above, finding the inverse of the upper
left part of E(1) results in finding the inverse of E(2) = A(1)− 3

7B(1)B
T
(1),

which is equivalent with finding the inverse of A(2) where the elements
of the lower right sub matrix have changed to 3 − 2 · 3

7 . This will go
on, reducing the problem to finding the inverse of E(j) with change of
the diagonal elements of the lower right sub matrix until we reach the
matrix E(log2 k−1). We then have the problem of finding the inverse to

E(log2 k−1) =

 2 −1 −1
−1 a 0
−1 0 a

 (13)
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where a is 3 minus 2 times the inverse of the lower right part of the
previous step. The first element of the inverse of E(log2 k−1) is then,
according to (12) (2− 2

a)−1 = (2a−2
a )−1 = a

2a−2 . We can calculate the
a element recursively like the following:

Starting with the matrix for the tree with log2 k time levels, let aj

denote the diagonal element of the matrix A at step j, that is a0 = 3,
a1 = 3− 2a−1

0 = 7
3 , a2 = 3− 2a−1

1 = 15
7 etc. Rewrite this as

a1 =
7
3

=
21+2 − 1
21+1 − 1

a2 = 3− 2a−1
1 = 3− 2(21+1 − 1)

21+2 − 1
=

22+2 − 1
21+2 − 1

Assume that aj−1 can be written as 2(j−1)+2−1
2(j−1)+1−1

. Then

aj = 3− 2a−1
j−1 = 3− 2(2(j−1)+1 − 1)

2(j−1)+2 − 1

= 3− 2(2j − 1)
2j+1 − 1

=
(3− 1)2j+1 − 1

2j+1 − 1

=
2j+2 − 1
2j+1 − 1

.

Hence, by induction proof, it is shown that aj = 2j+2−1
2j+1−1

, where j =
1, . . . log2 k − 2. At this stage we have the situation in (12) and the
first element of the inverse of E(log2 k1) can be calculated as

{E−1
(log2 k−1)}11 = (2− 2alog2 k−2)−1

=
(

2− 2(2log2 k−1 − 1)
2log2 k − 1

)−1

=
(

2−
2(k

2 − 1)
k − 1

)−1

=
k − 1

k
. (14)

The first element of inverse of the information matrix I = nr̄ log2 k
t1

E

will then be t1
nr̄ log2 k

k−1
k , which is equal to (11). Hence the estimator

of the Mean Path Length for the divergence time of the root achieves
the Cramér Raos lower bound.
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