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Abstract

We use Krylov sequences to analyze more regression methods than
PLSR. Some results already proven for PLSR are shown to hold for
other methods also. We prove that the well-known peculiar pattern
of alternating shrinkage and inflation is not unique for PLSR. We also
show that for any method in a wide class, the coefficient of determi-
nation is, for any data, at least as high as for PCR with the same
number of components.
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1 Introduction

Several regression methods are defined in a recursive manner: A basic algorithm

is executed a number of times, identifying one “factor” at each iteration, and the

regression coefficients are finally determined by ordinary least-squares regression of

the response variable on all the factors. Iterative methods often perform well, but

a drawback is that their mathematical and statistical properties are seldom easy

to analyze. However, in the important special case of PLS regression, it is often

fruitful to resort to a geometrical interpretation, pointed out by Helland (1988). He

demonstrated that the vector ŷ consisting of the values fitted by a factor PLS is the

projection of the data vector y on a subspace of the span of the explanatory variables,

a subspace that can be described as the span of a certain Krylov sequence. In the

present paper we show that a wider class of regression methods share the property

that ŷ can be interpreted as the projection of y on the span of a Krylov sequence.

Consequently, conclusions about PLSR, drawn by utilizing the properties of Krylov

sequences, will, after appropriate modification, be valid for these other regression

methods also. We discuss two examples of this. One concerns shrinkage properties,

the other is a comparison with principal components regression (PCR).

1.1 Notation and terminology

Throughout this paper, we assume that the response variable y is univariate. We

denote by X the centered n × p matrix of data on explanatory variables, by y the

centered n-vector of response data. We assume that y is in the column span of X,

since the component of y orthogonal to span(X) plays no role in standard regression

methods. The singular value decomposition of X is denoted X = UΛ1/2V T , where

U is n× p, Λ is p× p diagonal, and V is p× p. Consequently, we have the spectral

decompositions XXT = UΛUT and XT X = V ΛV T . The eigenvalues of Λ will be

indexed in nonincreasing order: λ1 ≥ λ2 ≥ . . . ≥ λp. We use the letter b (with

different superscripts or indices) for regression coefficient vectors (p-vectors), and g

for the coefficients when expressing b as linear combinations of the column vectors

of V : b = V g. Similarly we use w for the coefficient vector for y when written
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as a linear combination of the column vectors of U : y = Uw. We treat the case

rank(X) = p ≤ n− 1, but similar conclusions will be valid for other cases also.

We use the term regression method (or just method) for any algorithm or other

instruction that uniquely defines a p-vector b given any matrix X and any data vector

y with the same number of rows as X. In mathematical terminology, a method is a

function from Rn×p ×Rn to Rp. We write b = B(X, y).

1.2 Iterative methods

For any regression method except OLSR, the residual r = y−Xb may have a nonzero

component in the column span of X. It may then be of interest to “use the residual

as input”, i.e., evaluate b′ = B(X, r). By finding a new regression vector b2 which

is a linear combination of b and b′ one often improves not only the coefficient of

explanation but also the predictive capability of the method. If this refinement is

repeated a−1 times, we may denote the resulting iterated method Bit(X, r; a). The

rationale for this recursive procedure is the belief that the variation in data is caused

by a number a of latent variables. It is tacitly assumed that only the most influential

latent variable will be captured adequately by the first factor i.e by b1 = B(X, y), so

a sequence of adjustments are necessary to correct for the influence of the second,

third, and so on. For the purpose of the present paper, however, this statistical

motivation is less essential than the exact procedure of the iteration. Therefore, we

give a more detailed description of it in Appendix A.

1.3 Organization of the paper

The purpose of this paper is to derive two results concerning a certain type of

regression methods. In section 2, we define the type. In section 3 we derive a

conclusion about their shrinkage properties, and in section 4 we compare them to

PCR.
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2 Semi-linear methods

Definition 1. A method B(X, y) is called semi-linear if it can be written

B(X, y) = κ M XT y, (1)

where the (p × p)-matrix M does not depend on y. The number κ may depend on

both X and y.

Comments:

• When a method is called linear, one means that for constant X, B varies

linearly with y. OLSR and PCR (with a pre-determined number of factors) are

linear, but most other methods are not. Several methods attempt to reduce the

variance of the OLS regressor by replacing the ill-conditioned XT X by some

alternative, better suited for inversion. The replacement is often dependent

on y, making B a non-linear function. We now study a class of methods where

the nonlinearity has a particularly simple form, viz., in the factorization (1),

only the scalar κ depends on y, while the matrix M does not.

• One-factor PLSR is a semi-linear method, with M = Ip, the p × p identity

matrix.

• Ridge regression (RR) and its least-squares adjusted form LSRR (Björkström

& Sundberg, 1999) are semi-linear methods if the ridge parameter is pre-

determined. In this case, M = (XT X +δIp)−1, where δ is the ridge parameter.

An alternative, equivalent parameterization is M = ((1− α)XT X + αIp)−1.

• Continuum regression, CR (Stone & Brooks, 1990) is not a semi-linear method.

This may seem as a paradox, given the close relationship (Sundberg, 1993)

between CR and RR. CR is similar to RR in that the first factor can be

written bCR = κ (XT X + δIp)−1XT y. However, in CR the ridge parameter δ

is determined from a maximization criterion that involves y.

• Continuum power regression, CPR (Wise & Ricker, 1993; de Jong et al, 2001)

is a semi-linear method if their method parameter µ is pre-determined. Here,

M = V Λ2(µ−1)V T .
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• The role of the scalar κ is, usually, to ascertain orthogonality between residuals

and fitted values (this happens when κ = yT XMXT y/|MXT y|2). If we choose

κ in any other way, the resulting method is not really fit for being iterated, but

it seems nevertheless convenient to let Definition 1 admit other scalar functions

κ also.

• PCR with a factors is a semi-linear method, with M = (XT X)−1 truncated

to its first a eigencomponents. However, in PCR subsequent factors are not

formed by iteration as defined in Appendix A. Therefore, our conclusions

(Propositions 1 and 2) are not applicable to PCR.

Helland’s (1988) result says that for PLSR with a factors, the vector b of regres-

sion coefficients satisfies the equation

X b = Pa y (2)

where the n×n matrix Pa denotes projection on a certain subspace of span(X), viz.

the Krylov sequence

SA = span[ XXT y, (XXT )2y . . . (XXT )ay ]. (3)

We now formulate a generalization of this.

Proposition 1 If B(X, y) is a semi-linear method, then Bit(X, r; a) yields a p-

vector ba satisfying Xba = Pa y, where Pa denotes projection on the column span of

a Krylov sequence, viz.

SH(a) = span[Hy,H2y, . . . ,Hay ]

where H = XMXT , and M is the matrix that occurs in the definition of the method

B (equation 1).

Proof: With M = Ip the proposition is a well-known result for PLSR. Our proof,

also, mimics the proof for the PLSR case (Helland, 1988). The core is to establish

that two subspaces SH(a) and St(a) are equal, where St(a) is spanned by the a first
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vectors Xb1, . . . , Xba in the iteration procedure. We give the details in appendix

B. By construction, ba satisfies Xba = Pa y when Pa denotes projection on St(a),

so the proposition follows.

The subspaces SH(a) = St(a), a = 1, 2, ... cannot be indefinitely increasing.

From some a-value onwards, SH(a + 1) will be the same as SH(a). This happens

when a = p, or earlier. The corresponding b-vector will then be the OLS regressor.

2.1 Regular semi-linear methods

Proposition 1 is applicable to any semi-linear method. To proceed, we need an

additional condition, which we define as follows:

Definition 2. A semi-linear method is called regular if there exists a function µ(x)

such that M in Definition 1 can be written

M = V diag(µ(λ1), . . . , µ(λp)) V T ,

where V and Λ are from the spectral decomposition XT X = V ΛV T .

Definition 2 requires that M depends only on XT X, that is, the covariances between

the x-variables, and not on any other properties of the training data X. Most

methods are of this kind. PLSR is a regular semi-linear method with µ(x) = 1

(a constant function). In the following, we shall be particularly interested in two

families of functions µ(x):

µ(x) =
1

(1− α)x + α
,

where α is a nonnegative number, and

µ(x) = xα,

where α ≥ −1. PLSR is a member of both families, corresponding to α = 1 in the

first case and α = 0 in the second case.
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3 Shrinkage properties of regular semi-linear methods

3.1 Shrinkage functions

Variance reduction is the major motivation for seeking alternatives to OLSR. A use-

ful descriptive measure characterizing an alternative method is its so-called shrinkage

factors. They are defined as f̃j = g̃j/ĝj , j = 1, . . . , p, where the numbers ĝj descibe

the OLSR regressor as a linear combination of the eigenvectors of XT X, and the g̃j

do the same for the alternative method. In other words, bOLS = V ĝ and b̃ = V g̃.

(It is well-known that ĝ = Λ−1/2w, cf section 1.1.) The shrinkage factors indicate

whether the j:th singular component is ”shrunk” (f̃j < 1) or ”inflated” (f̃j > 1) by

the alternative regressor, relative to OLSR. The shrinkage function f(λj) relates the

factor f̃j to the corresponding eigenvalue λj . For example, for RR, the shrinkage

function is f(λ) = λ/(λ + δ). For PLSR with a factors, an important property is

that the shrinkage function can be written fj = Φ0(λj), where Φ0(x) is a certain

polynomial of degree a.

3.2 The shrinkage properties of PLSR

It has been shown (Butler & Denham, 2000 or Lingjærde & Christophersen, 2000)

that PLSR always shrinks the smallest eigencomponent, (fp < 1) while, for other

components, shrinking and inflation alternates in an intricate way. If the sequence

of shrinkage factors is arranged in order of increasing eigenvalues, elements less than

one and greater than one will form a sequence that consists of a+1 “runs” (by a run

we mean an unbroken sequence of numbers on the same side of 1). Thus, for example,

the largest eigencomponent will be shrunk, f1 < 1, if a is even, and expanded, f1 > 1,

if a is odd. In proving this, equations (2) and (3) play an important role. We now

generalize the proofs to arbitrary regular semi-linear methods.

3.3 A generalization

In connection with Proposition 1, we note that the vector Xba = Pay, being in

SH(a), can be written as a sum Σa
m=1φmHmy, for some coeficients φm, m = 1, . . . , a.

Since the projection is orthogonal, the coefficients φm will be the numbers that
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minimize

|y − Σa
m=1φmHmy|2 . (4)

Since H = XMXT and M = µ(XT X), we get Hm = UDmUT , (where U comes

from X = USV T ), with D = diag(d1 . . . , dp), each dj = λjµ(λj). Recalling y = Uw

we see that the quantity to be minimized is

|w − Σa
m=1φmDmw|2 = Σp

j=1(wj − Σa
m=1φjdj

mwj)2 = Σp
j=1(1− Φ(dj))2wj

2 (5)

where Φ(x) is an intercept-free polynomial of degree a. We denote by Φ0(x) the

polynomial that minimizes (5). Its coefficients are denoted φm, that is, Φ0(x) =

Σa
m=1φmxm.

Proposition 2 The shrinkage factors for the iterated method Bit(X, y; a) are the

numbers Φ0(dj).

Proof: We need to find the expression for the regressor in canonical form, that is,

find ga such that ba = V ga. It follows from (4) that Pay = Φ0(H)y, which is equal

to UΦ0(D)UT Uw, or shorter UΦ0(D)w, so from Xba = Pay we get UΛ1/2V T V gA =

UΦ0(D)w. Since UT U = Ip, we get Λ1/2gA = Φ0(D)w, and, since diagonal matrices

commute, ga = Φ0(D)Λ−1/2w = Φ0(D)gOLS . We see thus that the numbers Φ0(dj)

will be the shrinkage factors as asserted in the proposition.

Graphically, to find the numbers Φ0(dj) we want to find a polynomial curve of

degree a that passes through the origin (i.e., no constant term), and that comes as

close as possible to the points with coordinates (dj , 1). Figure 1 illustrates the

situation.

It turns out that the following holds:

Proposition 3 The iterated method Bit(X, y; a) will shrink some of the singular

components of X and expand others. The smallest eigencomponent will be shrunk,

and there will be a total of a + 1 runs of shrinkages and inflations.

Proof: See Appendix C.

Again PLSR is an important application. In PLSR we have µ(x) = 1, so dj = λj .

We now apply proposition 3 to other regression methods.
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Figure 1: Illustration of an intercept-free cubic polynomial y = Φ(x) minimzing (5)
given p = 5 eigenvalues λj . The quantity to be minimized is the (weighted) sum of
squares of the deviation from y = 1 at x = λj , indicated by vertical dashed lines.
Here, the two smallest eigencomponents are shrunk, number three is inflated and
number four shrunk. The largest eigencomponent is fit almost exactly.

3.3.1 Application to ridge-type regressors

Proposition 3 is applicable to LSRR. In this case, (using one of several possible

parametrizations) one has M = ((1− α)XT X + αIp)−1. This corresponds to

µ(x) = 1/((1− α)x + α) which gives

dj =
λj

(1− α)λj + α
.

We see that the special case α = 1 gives dj = λj , which is PLSR. The other

special case, α = 0, gives dj = 1 for all j. At this extreme, all the points to be

approximated collapse into the point (1,1). It is possible to catch this one point

exactly, with a straight line (a first-degree polynomial) through the origin. This

illustrates that with OLSR one factor is enough to catch all there is to capture.
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For a third special case we may let α grow larger than 1. As α approaches

λ1/(λ1 − 1) we see that the denominator in the expression for d1 tends to zero,

implying that the point (d1, 1) is very far to the right. Then, if one approximates

all the points with a straight line, the great leverage effect of the remote point will

force a solution where φ(d1) ≈ 1 while φ(dj) ≈ 0 for j ≥ 2. This is equivalent to

first-factor PCR.

3.3.2 Application to continuum power regression

Continuum power regression, CPR, is a variation of PLSR where the matrix X =

UΛ1/2V T is replaced by Xµ (defined as UΛµ/2V T ) and PLSR is performed using

this modified matrix instead of X. The metaparameter µ is zero or positive. The

regressor then obtained, b̃ = BPLS(Xµ, y) is back-transformed to yield the final

result bCPR = V Λ(µ−1)/2V T b̃. The definition of BPLS and some linear algebra yield

bCPR ∝ V Λµ−1V T XT y, that is, CPR is a semi-linear method and the expression for

the horizontal coordinates dj in equation (5) now is

dj = λj
µ.

We see that µ = 0 or 1 yields dj = 1 or λj , so that OLSR and PLSR are special

cases of CPR as they are of LSRR. As µ → ∞, the point (d1, 1) will be far to the

right of all other points (dj , 1), so that a leverage effect will lead to first-factor PCR,

similarly to LSRR.

4 Regular semi-linear methods fit closer than PCR

When proving that “PLS fits closer than PCR”, de Jong (1993) did the following,

in summary: Note that the shrinkage factors corresponding to PCR with a factors

are

fj =
{ 1 for j = 1, . . . , a

0 for j = a + 1, . . . , p

There exists an intercept-free a-degree polynomial, denote it Φ∗(x), such that Φ∗(λj) =

1 for j = 1, . . . , a. It can be shown that Φ∗ satisfies the inequalities 0 ≤ Φ∗(x) ≤ 1

for all 0 ≤ x ≤ λa+1. Therefore, if we were to construct a candidate regressor with
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the numbers Φ∗(λj) as shrinkage factors for j = 1, . . . , p, this candidate would obtain

better fit than PCR with a factors. But PLSR with a factors corresponds to using

the polynomial that has best fit among all intercept-free a-degree polynomials, so

PLSR cannot give worse fit than our candidate regressor. Therefore PLS fits closer

than PCR.

Essentially the same argument is valid for any regular semi-linear method. We

have the following propostition:

Proposition 4 If the function xµ(x) is increasing, the regular semi-linear method

in Definition 2 fits any data set better than PCR with the same number of factors.

Proof: The proof is completely analogous to that by de Jong (1993). The only

adjustment necessary is that the horizontal coordinates for the points to be approxi-

mated (the numbers dj in (5)) are not λj but λj µ(λj). It is therefore necessary that

d1 ≥ d2 ≥ . . . ≥ dp. It is to this end that we need the requirement that the function

xµ(x) must be increasing. Some further details are given in Appendix D.

5 Discussion and conclusions

It is known that PLSR has peculiar shrinkage properties. We have now demonstrated

that at least two other methods, CPR and LSRR, share these troublesome properties.

In one way, this is not surprising. Both methods include PLSR as a special case,

and the shrinkage factors vary continuously with the metaparameter, so the same

shrinkage pattern should reasonably prevail in a neighborhood of PLSR, too. As we

have now seen, the pattern is present for any value of the metaparameter.

However, both CPR and LSRR offer an additional degree of flexibility (which

PLSR does not) in that the metaparameter can be varied between the steps in

the iteration process. As the above shows, we must use this flexibility, if we are

to avoid the unwanted shrinkage/inflation effects. Thus, in the model selection

process, a modeller has to set values for, in effect a continuous parameters, αm,

m = 1, . . . , a. where αm = the metaparameter at the m:th iteration. Obviously, this

violates a principle of parsimony, and the risk for overfitting is clear. In addition,
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the metaparameter is often defined to be the argument that maximizes a function,

and the only way to maximize this function is to evaluate it for a large number of

values. The computational burden will be considerable.
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Appendices

A Iteration of methods

Let B(X, y) be any method. Let A ≥ 2 be an integer. By Bit(X, y;A) we mean the

following method:

1. b1 = B(X, y)

2. r1 = y −Xb1.

3. t1 = Xb1

4. a = 2

5. ba
′ = B(X, ra−1)

6. ta = Xba
′.

7. Obtain ba from Xba = Pay, where Pa denotes projection on span [t1 . . . ta].

Apply a minimum-length condition on ba if the solution is not unique.

8. If a = A, return Bit(X, y;A) = ba and stop.

9. ra = y −Xba

10. Set a = a + 1 and return to 5.

B Proof of proposition 1

It follows from step 7 in the iteration (Appendix A) that all we need to prove is the

following: For any integer a ≥ 1,

St(a) = SH(a) (6)

that is, the two subspaces St(a) = span[ t1 . . . ta] and SH(a) coincide. It is clear

that (6) is true for a = 1, since t1 = Xb1 = X(κMXT y) ∝ Hy. We proceed by

induction and assume that (6) is true for a certain a. Then, because of Steps 5 and

6 in the iteration, ta+1 = XB(X, ra), and because of the definition of a semi-linear
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method (equation 1), ta+1 ∝ XMXT ra, so that because of Step 9 in the iteration,

ta+1 ∝ Hra = H(y −Xba) = Hy −HXba.

Now Xba ∈ St(a) by Step 7, so Xba ∈ SH(a) by our induction hypothesis. Therefore

Xba can be written as a sum Σa
j=1γjH

jy for some coefficients γj , and

ta+1 = Hy − Σa
j=1γjH

j+1y = z − γaH
a+1y,

where z ∈ SH(a). We can thus write

St(a + 1) = span [A | ta+1] = span [A | z − γaH
a+1y]

and

SH(a + 1) = span [A |Ha+1y],

where A denotes any matrix whose column vectors span SH(a) (or St(a)). It follows

that SH(a + 1) = St(a + 1), and the induction is complete.

C Proof of proposition 3

Denote with r the number of runs occurring for Φ0(x), the best-fitting intercept-free

polynomial of degree a. Assume r ≤ a. The polynomial Φ0(x) must then have r− 1

“ones” (i.e an x such that Φ0(x) = 1) in the interval from the smallest to the largest

of the numbers dj , j = 1, . . . , p. Denote these x-values δj , j = 1, . . . , r− 1. Consider

the polynomial

π(d) = d(d− δ1)(d− δ2) . . . (d− δr−1).

One realizes that one of the two intercept-free a-degree polynomials φ(d)−π(d) and

φ(d) + π(d) will be closer to 1 at all the points dj , j = 1, . . . , p than φ(d) is. This is

a contradiction, since φ(d) was defined as the best-fitting polynomial. We can thus

rule out the possibility r ≤ a i.e, we have r ≥ a + 1. On the other hand, it must

also hold that r ≤ a + 1: Since an intercept-free polynomial of degree a can have at

most a “ones”, it is impossible to obtain more than a+1 runs. Since both r ≤ a+1

and r ≥ a + 1 hold, we conclude r = a + 1.
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D Comparison to PCR

For a regular semi-linear method with a factors, the error |y − ŷ|2 is

ε2 = Σp
j=1 (1− Φ0(dj))2 wj

2. (7)

where Φ0 is the relevant polynomial for the method in question, as defined in equa-

tion (5).

Now let Φ∗∗ denote the intercept-free a-degree polynomial that has

Φ∗∗(x) = 1 for x = d1, . . . , da. (8)

This polynomial will satisfy 0 ≤ Φ∗∗(x) ≤ 1 for all x in the interval [0 , da] (Being

a polynomial of degree a, Φ∗∗ can have at most a− 1 extreme points, and all these

have to be in the interval [da , d1] in order for (8) to be possible. It follows that

0 = Φ(0) ≤ Φ∗∗(x) ≤ Φ(da) = 1 when x ∈ [0 , da]). Therefore,

Σp
j=1 (1− Φ∗∗(dj))2 wj

2 = Σp
j=a+1 (1− Φ∗∗(dj))2 wj

2 ≤ Σp
j=a+1 wj

2 = εPCR
2.

However, the polynomial Φ0 in (7) is by definition that which minimzes the sum

Σp
j=1 (1− Φ(dj))2 wj

2, so it follows that ε2 ≤ εPCR
2.
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