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Abstract

Consider an infectious disease which is endemic in a population divided into
several large subcommunities that interact. Our aim is to understand how the time
to extinction is affected by the level of interaction between communities.

We present two approximations for the expected time to extinction in a popula-
tion consisting of a small number of large subcommunities. These approximations
are derived for an SIR epidemic model, with focus on diseases with short infectious
period in relation to life length, such as childhood diseases and influenza. Both
approximations are based on Markov jump processes.

Simulations indicate that the time to extinction is increasing in the degree of
interaction between communities. This behaviour can also be seen in our approxi-
mations in relevant regions of the parameter space.
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1 Introduction

When modelling infectious diseases a simplifying assumption often made is that the social
interaction within the population is homogeneous. This assumption becomes less credible
as the population size increases, i.e. there is a need for including some kind of population
heterogeneity. A way to include population heterogeneity is to divide the population into
subcommunities. By doing so we can, in the easiest setting, allow two different levels of
social interaction, one level within and one between subcommunities. Under these con-
ditions it is natural to let the social interaction within subcommunities be homogeneous.
In the present paper we are interested in the situation when there are k subcommunities
each of size n, and to study the effect of this new level of social interaction on the epidemic
behaviour as an infectious disease is introduced into the population. Here, typical values
of k is 2, . . . , 5 and n is 50,000 or larger. Throughout this report we will focus on infectious
diseases that have a short infectious period in relation to life length and give rise to life
long immunity, e.g. childhood diseases. When an outbreak of such a disease occurs in
a community, we have three possible scenarios. The first being that only a few become
infected and the time to extinction is short. The second one being that many become
infected but the time to extinction is short. We are interested in diseases that behave
as in the third scenario, namely when many individuals become infected and the time to
extinction is long. When a disease behaves in this way it is called endemic. Dynamically,
an endemic disease only has a rather small fraction of the population infectious at each
time point during its progression, but the accumulated number of infected individuals
may still be large due to that the disease is persistent in the community during a long
time period. Usually the fraction of infected individuals at each time point fluctuates
around some specific level, the endemic level, until disease extinction.

Whether a disease becomes endemic or not depends on a number of factors. Possibly the
most important one, apart from that we need a sufficiently large population, is the relation
between social activity and the infectiousness of the disease. This relation is usually
quantified as the so called basic reproduction number. The basic reproduction number,
R0, is defined as the expected number of individuals that a single infectious individual
infects in a large susceptible community. One can show that the basic reproduction
number works as a threshold which determines the dynamics of the disease, see Anderson
and May (1992) pp. 13-19. If R0 ≤ 1, the disease will go extinct rather quickly. On the
other hand, if R0 > 1, the disease has a positive probability to persist in the population
over a long time period. Henceforth R0 is assumed to be greater than one.

When dividing the population into subcommunities, the dynamics of the spread of dis-
ease becomes more intricate. Now, some subcommunities may be disease-free, while
others contain infected individuals, and infectious contacts between individuals from dif-
ferent subcommunities are also possible. Another important feature in the dynamics is
that subcommunities can get reinfected several times. When thinking of this behaviour
heuristically, it seems reasonable to expect that the mean time to extinction of an endemic
disease that affects the entire population will depend on the social activity between the
different communities when keeping everything else fixed. This can be shown to be true,
see Hagenaars et al. (2004).

Endemic diseases can be modelled stochastically in several different ways. Depending on
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the model, different aspects of the qualitative behaviour of the dynamics of the disease
can be studied. Our aim is to study the expected time to extinction of an endemic disease
in the situation with a small number of large subcommunities, when each subcommunity
starts at the so-called endemic level. The model used is an SIR model with demography
in the situation with subcommunities. For the case with only a single large community,
much work has been done, see for example van Herwaarden and Grasman (1995), N̊asell
(1999, 2005), and Andersson and Britton (2000b). For more on epidemic models in
general, see Anderson and May (1992), Andersson and Britton (2000a) and Diekmann
and Heesterbeek (2000).

A short heuristic description of the SIR model with demography is that all individuals
in the community are equally likely to meet, and that each individual may switch be-
tween being Susceptible, Infectious and Recovered (and immune). Thus, switches occur
according to S → I → R. Another important property is that susceptible individuals are
born into the community and that individuals eventually die, i.e. demographic aspects.
This will also give us a non constant community size. The version of this model which
we use is from Haagenars et al. (2004), and does not allow for birth of infectious individ-
uals. Important results for the single community case that we will use are from N̊asell
(1999, 2005). There approximations for the expected time to extinction when starting at
the quasi-stationary level of infection are derived. In Hagenaars et al. (2004) they study
the same expected time to extinction as N̊asell but for the case with a small number of
subcommunities. They obtain an approximation of this expected time, but the approxi-
mation is derived under the assumption of low mixing between communities and that the
infectious period is long in relation to life length.

In the present paper we have adopted ideas from both N̊asell (1999) and Hagenaars et
al. (2004), trying to find better approximations for the expected time to extinction for
the case with subcommunities for diseases with short infectious period with respect to life
length. We present two approximations, the first one is based on similar arguments as in
Hagenaars et al. and the second one is based on more heuristic arguments motivating the
use of an exponential form.

We derive approximations of the expected time to extinction given that the process is
started at the quasi-stationary (endemic) level of infection because we can then approx-
imate the distribution of TQ, the time to extinction given that the process is started in
the quasi-stationary distribution. One can show that TQ is exponentially distributed, and
by approximating τ = E(TQ), we get that TQ ∼ Exp(1/τ). Simulations indicate that our
approximations are more suitable for situations when there is low mixing between sub-
communities and that the second, more heuristically motivated approximation, performs
somewhat better.

In sections 2 we define the SIR model with demography for the case with subcommunities
and present results needed later on. In sections 3 and 4 we present the approximation
from Hagenaars et al. (2004) and we derive our two approximations. Section 5 is devoted
to a small simulation study and a numerical evaluation of these approximations. A closing
discussion and summary of our results is given in section 6.
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2 The SIR model with demography and subcommu-

nities

Let’s start with a brief look at the SIR model with demography for the single community
case from N̊asell (1999) p. 311. As mentioned in the introduction, the letters S, I and
R, stand for Susceptible, Infectious, and Recovered (and immune). These are the three
possible states an individual can experience during an epidemic. The demographic aspect
of the model is that we allow individuals to be born into the population, as susceptibles,
and that individuals also may die. Susceptibles are born into the population according
to a Poisson process with constant birth intensity µn, and all individuals live for an
exponentially distributed time with mean 1/µ. A consequence of the constant birth rate
is that the population size will fluctuate around n, which is thought of as being large. This
is deliberate to avoid that the dynamics of the disease depend on extensive population
fluctuations.

A consequence of the fact that we only let individuals be born as susceptibles is that once
the population becomes disease-free, it will remain so forever on. In other words, the
disase free states are absorbing, and all other states are transient.

When adding population separation to the SIR model with demography, the dynamics
of the disease becomes more involved. The idea is that we now have a population that
is divided into subcommunities, and individuals in different subcommunities may contact
each other at different rates.

The easiest way to model this situation, based on the SIR model with demography, is
to let all subcommunities be equally large, having size n, and to let individuals from
different subcommunities be equally likely to meet, regardless of which subcommunities
they belong to. We are interested in the situation when the number of subcommunities, k,
is fixed and small in relation to n. With this model the population structure is symmetric
and we only need to add one parameter, ε, which is the proportion of an individuals
contacts that are with other subcommunities. This parameter, ε, is defined such that
ε = 0 corresponds to having k isolated subcommunities, and ε = 1 corresponds to the
case where all k subcommunities act as a single large community of size kn. One can also
think of ε as an inverse distance, where ε = 0 corresponds to that all subcommunities lie
infinitely far apart and ε = 1 corresponds to the case when they coincide.

A natural way to model the situation with subcommunities is to do so such that the
overall infectious pressure in the entire population is kept constant regardless of the value
of ε. This also has the advantage that we get the same R0 as for the SIR model with
demography without subcommunities and hence the two models become easier to compare.
The basic reproduction number for the single community SIR model with demography
can be shown to be

R0 =
β

µα
, (2.1)

where α = (µ + ν)/µ, see Eq. (2.2) on p. 311 in N̊asell (1999). For the case with subcom-
munities, an infected individual makes contacts with any given individual within its own
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subcommunity at rate β′/n, and at rate εβ′/n with a given individual in any of the k− 1
surrounding subcommunities. Thus, we get that the probability that a contact is within
the subcommunity is

nβ′/n

nβ′/n + (k − 1)nεβ′/n
=

1

1 + ε(k − 1)
.

If we have a single infected individual in an otherwise susceptible population, she will infect
a given individual within her own subcommunity at rate β′/n during an exponentially
distributed infectious period with mean 1/(µ + ν), since the infectious period terminates
due to recovery or death, and infect a given individual in any of the k − 1 neighbouring
subcommunities at rate εβ′/n, hence the basic reproduction number becomes

R0 =
1

µ + ν
(nβ′/n + (k − 1)nεβ′/n) =

β′

µ + ν
(1 + ε(k − 1)).

Thus, if we let β′ = β/(1 + ε(k − 1)) we arrive at

R0 =
β

µα

as desired, since µα = µ + ν.

Hence, β′ = β/(1 + ε(k − 1)) is the proper scale in order to keep the infectious pressure
constant. The possible transitions and their rates are specified in Table 1, which are the
same as in Hagenaars et al. (2004).

As for the dynamics of an endemic disease, we indicated in the introduction that there
might exist some kind of equilibrium in terms of number of infected individuals, the quasi-
stationary level of infection. Let (X(t),Y(t)), t ≥ 0, denote a 2k dimensional Markov jump
process, where Xj(t) = sj and Yj(t) = ij denote the number of susceptibles and infectious
in subcommunity j at time t, with random transition rates defined in Table 1.

If we instead look at the process of proportions (X(t)/n,Y(t)/n) = (x,y), when n is large,
this process can be approximated by the solution of a deterministic system of differential
equations corresponding to the transition rates defined in Table 1. This system is given
by

dxi

dt
= µ− β

(1 + ε(k − 1))
xi

yi + ε
∑
j 6=i

yj

− µxi

dyi

dt
=

β

(1 + ε(k − 1))
xi

yi + ε
∑
j 6=i

yj

− (µ + ν)yi.

Setting these equations equal to zero for i = 1, . . . , k gives us the stationary points, which
turn out to be (1, 0), the disease-free state, and

(x̂i, ŷi) = (x̂, ŷ) =
(

1

R0

,
1

α

(
1− 1

R0

))
, (2.2)
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Table 1: SIR model with demography for the case with subcommunities
Rates for community j

From To Rate
(sj, ij) (sj + 1, ij) µn
(sj, ij) (sj − 1, ij) µsj

(sj, ij) (sj − 1, ij + 1) β
n

1
(1+ε(k−1))

sj

(
ij + ε

∑
u 6=j iu

)
(sj, ij) (sj, ij − 1) (µ + ν)ij

which corresponds to the endemic level, and which only exists if R0 > 1. These two
stationary points are the same as for the single community case, see N̊asell (1999) p. 312.

The term quasi-stationary level of infection originates from something called the quasi-
stationary distribution. A quasi-stationary distribution is defined as the distribution after
a long time conditioned on that the process has not been absorbed. The endemic level
can be thought of as the mean of this distribution, which the process fluctuates around.
The quasi-stationary distribution is important when modelling endemic diseases, since we
are interested in the behaviour of the epidemic until it goes extinct. But, quasi-stationary
distributions give rise to many difficulties such as questions of uniqueness and existence,
see Pollett and Roberts (1990).

Let Q = {qx,y} denote the quasi-stationary distribution, where qx,y is the probability that
the process (X(t),Y(t)) is in (x,y) as t → ∞, conditioned on not having gone extinct.
Remembering that the lack of memory property implies an exponential distribution, we
have

P (TQ > t + s | TQ > t, (X(0),Y(0)) ∼ Q)

= P (TQ > t + s | TQ > t, (X(t),Y(t)) ∼ Q)

= P (TQ > s | (X(0),Y(0)) ∼ Q),

which establishes that TQ is exponentially distributed. The rate parameter for this ex-
ponential distribution is the intensity with which the process leaves the set of transient
states. For the case with subcommunities the set of states from which the process can be
absorbed is X(t),Y(t) = {(x,y);y = ei, i = 1, . . . , k}.

Proposition 2.1 The time to extinction given that the process is started in the quasi-
stationary distribution, TQ, is exponentially distributed with mean

τ =
1

µαq·,1
, (2.3)

where

q·,1 =
∑
x

k∑
i=1

qx,ei
, (2.4)
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and where ei is the i’th unit vector.

The reasoning here is the same as in the proof of Proposition 4.1 in Andersson and Britton
(2000b), but this result was first derived for the single community case in N̊asell (1999),
and if we set k = 1 in Proposition 2.1 we get the single community case. In N̊asell (1999)
he approximates q·,1 with the stationary distribution of the diffusion approximation of
(X(t), Y (t)), conditioning on non extinction. The resulting diffusion approximation is
of Ornstein-Uhlenbeck type, and thus the stationary distribution is Gaussian. By doing
so he was able to approximate τ , and thereby determine the distribution of TQ. More
precisely, when the quasi-stationary distribution is approximated with a truncated normal
distribution, TQ is exponentially distributed with mean

τn =
σY

µα

Φ((µY − 0.5)/σY )

ϕ((µY − 1)/σY )
(2.5)

where Φ(·) and ϕ(·) are the standard normal distribution function and density function,
and

σY =
√

n
R0

√
R0 − 1 + R2

0/α

µY = nR0−1
αR0

.

(2.6)

This corresponds to Eqs. (2.13) and (2.10) in N̊asell (1999). From here on τn refers to the
single community case with population size n, and all other types of references to τ are
for the case with subcommunities unless otherwise stated.

However, when the average life length is long in relation to average infectious period,
N̊asell (2005) shows that (2.5) is a too crude approximation when n is only moderately
large, smaller than say a couple of million individuals. In N̊asell (2005) he instead pro-
poses that the quasi-stationary distribution of the number of infected individuals could be
approximated with a geometric distribution with p = 1/µY where µY is from (2.6). As a
consequence of that Y ∼ Ge(p) and E(Y ) = 1/p = µY together with Proposition 2.1 with
k = 1 yields the following: When the quasi-stationary distribution is approximated with
a Ge(1/µY ) distribution with mean µY from (2.6), then TQ is exponentially distributed
with mean

τn = n
R0 − 1

µα2R0

. (2.7)

This corresponds to Eqs. (8.3) and (9.2) in N̊asell (2005).

Returning to the case with subcommunities again, we proceed as in N̊asell (1999) or (2005)
to approximate the quasi-stationary distribution, but due to symmetry, the resulting
Ornstein-Uhlenbeck diffusion process approximated in the endemic level is independent
of ε, and hence not of much help. One sees this when replacing all sj and ij in the rates
defined in Table 1, by nx̂ and nŷ. Due to this, the second approach will also give us
an approximation of the quasi-stationary distribution which is independent of ε, since it
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was a geometric distribution with parameter p = 1/µy, where µy is as (2.6), but with n
replaced with kn.

However, we can still say something about the two extreme cases, ε = 0 and ε = 1, with
the results from the single community case. When ε = 0 all k subcommunities are isolated.
When all k subcommunities start at the endemic level of infection, the expected time until
one of the k infected subcommunities recovers is τn/k, due to independence and that the
expected duration of an epidemic within a subcommunity is exponentially distributed
with mean τn, where τn is from one of Eqs. (2.5) or (2.7). Due to the Markov property
and that a disease-free community never can be reinfected when ε = 0, the expected
time until one of the k − 1 remaining communities recovers is τn/(k − 1). Repeating this
argument gives us

τ(0) = τn

k∑
i=1

1

i
, (2.8)

where τn is either of N̊asell’s approximations of the expected time to extinction for the
single community case, Eqs. (2.5) or (2.7). Note that τ(ε) in fact is a function of the form
τ(ε) = τ(ε, n, k, µ, α, R0) and denotes the expected time to extinction when each of the k
subcommunities are started at the quasi-stationary level of infection, each having size n,
and having a proportion ε of the contacts being with other subcommunities.

On the other hand, when ε = 1, all k communities behave as one large community of size
kn, and we can again make use of (2.5) with n replaced by kn, i.e.

τ(1) = τkn. (2.9)

For sufficiently large n, we have the following relation between the two

τ(0) < τ(1),

see Hagenaars et al. (2004).

3 Approximation using a recovered (and immune)

state

As we have seen, it is hard to find approximations of the quasi-stationary distribution
which depend on ε. But, if we rely on Proposition 2.1, that TQ is exponentially distributed,
we can approximate τ = E(TQ) directly, instead of going via approximations of the quasi-
stationary distribution.

In Hagenaars et al. (2004) they look at the case when 0 < ε � 1 and α is thought
of as small, such as α = 2 or 160. An example of a disease with small α is scrapie
among sheep, see Hagenaars et al. (2004). For scrapie the average incubation period is
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a few years which is of the same order of magnitude as the average life length of sheep.
Hence, for diseases with small α one can assume that when an individual recovers from
infection, she will likely be removed due to death within a relatively short time period.
This motivates that we can look at the system from a subcommunity view, classifying
each subcommunity as either endemic or susceptible. That a subcommunity is endemic
here means that the subcommunity on average has a fraction of infected individuals
corresponding to the endemic level ŷ. A subcommunity that is susceptible only contains
susceptible individuals. Hagenaars et al. (2004) further assume that switches between
these two states occur instantaneously. This is a reasonable approximation, since the
time it takes from that a single individual becomes infected until the endemic level of
infection is reached is short in relation to the time it takes for an endemic subcommunity
to become disease-free.

When defining the rate with which susceptible subcommunities becomes endemic, it is
natural to think that this rate depends on the infectious pressure generated by the en-
demic subcommunities. But, we are only interested in those infectious contacts between
subcommunities that result in a disease invasion and not those that fade out by chance,
so we must take this fact into account. We will give a short heuristic derivation of this
probability for the case when a subcommunity has a fraction x susceptibles and 1 − x
recovered (and immune) individuals, because this more general result is needed later on.

Suppose a subcommunity with a fraction x susceptibles and 1−x recovered (and immune)
individuals has just been reinfected, i.e. a single susceptible becoming infected. In the early
stages of an epidemic it behaves approximately as a branching process. In our model the
infectious period is exponentially distributed. When there is only one infected individual
in a population with a fraction x susceptible individuals, the effective reproduction number
in this situation becomes xR0. If we let D denote the number of children of this one
infected individual, D ∼ Geo(1/(1+xR0)), we get that the probability that the epidemic
started by this single infected individual will not fade out by chance, p, is the solution to
the following equation:

1− p = E((1− p)D), (3.1)

see Andersson and Britton (2000a) pp. 22-25. Solving this gives us the solution

p = 1− 1

xR0

. (3.2)

From this we get that the probability that disease invasion will not fade out by chance in
a fully susceptible population is 1− 1/R0.

One individual contacts a given individual in a different subcommunity at rate εβ′/n,
and hence contacts a whole subcommunity at rate εβ′. Consequently, a subcommunity at
the endemic level, having ŷn infectives, infects a given susceptible subcommunity at rate
εβ′ŷn = εβŷn/(1 + ε(k − 1)). Thus, each endemic subcommunity generates an infectious
pressure εβŷn/(1 + ε(k − 1)) on each of the surrounding susceptible subcommunities,
where each infectious contact has the probability 1 − 1/R0 that the introduced disease
will become endemic.
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If we again look at the rate with which subcommunities becomes disease-free, this is
thought of occuring independently of everything else, i.e. the time to disease extinction in
a subcommunity is exponentially distributed with mean parameter τ . From this we can
define a birth and death process of number of endemic subcommunities, with transition
rates  ζj = (k − j)jεn µR0

1+ε(k−1)

(
1− 1

R0

)2

ηj = j/τn

(3.3)

where ζj is the rate for a transition from j to j + 1 endemic subcommunities, and ηj is
the rate for a transition from j to j − 1 endemic subcommunities.

Since ε is small, the probability of reinfection will also be small. Based on this fact
Hagenaars et al. (2004) assume that the probability of more than one reinfection during
the epidemic is negligible. Their approximation can be described as the expected time to
absorption of a birth and death process for the number of endemic subcommunities, with
rates as in (3.3), which only allow one birth, or more formally:

Approximation (Hagenaars et al. (2004)) The expected time to extinction given that
the process is started at the endemic level can be approximated by

τSI(ε) = τ(0) + ε

(k + 1)
k∑

j=1

1

j
− 2k

 τ 2
nµR0

(
1− 1

R0

)2

+ O(ε2) (3.4)

where τ(0) is from (2.8) and τn is any approximation for a single community of size n,
e.g. (2.5) or (2.7).

This corresponds to Eq. (6) in Hagenaars et al. (2004). Here SI in τSI is used to empha-
sise that they only use the two subcommunity states, Susceptible and Infected, in their
approximation.

Remember that our aim is to find approximations for the expected time to extinction when
α is large, corresponding to an average infectious period of one to two weeks for humans,
as opposed to Hagenaars et al. (2004), and then their approach is not completly feasible.
This is because when α is large, the approximation that an endemic subcommunity that
becomes disease-free instantaneously becomes susceptible is not reasonable. One way
to avoid this problem is to add a recovered (and immune) state to our approximating
subcommunity Markov process. A subcommunity is defined as being recovered (and
immune) when it is disease-free but not possible to infect. The difference between this
state and the susceptible state is that, when a subcommunity is recovered (and immune)
there is on average a fraction x̂ susceptible and 1− x̂ immune individuals, as opposed to
the susceptible state which only contain susceptible individuals.

By introducing this type of transitions for the subcommunities we have a communication
between the states of subcommunities that can be described as S → I → R → S, so what
we need to define is the rate, ξ, with which a community makes a transition from R to S,
since (3.3) can be used for the other transitions.
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Figure 1: Schematic graph of the dynamics in our approximating SIR Markov jump
process for k = 3 subcommunities, where each node is (no. of susceptible subcommunities,
no. of endemic subcommunities) and the rates are from (3.5).

One way to do so is to assume that a subcommunity stays immune for an exponentially
distributed time with mean τR, which is equivalent to that an immune subcommunity
becomes susceptible again independently of everything else. We will will return to the
definition of τR later.

Let s be the number of susceptible subcommunities and i be the number of endemic
subcommunities out of a total of k subcommunities, so that k− (s+ i) are recovered (and
immune), then the transition rates become

ζs,i = siε µnR0

1+ε(k−1)

(
1− 1

R0

)2

ηs,i = s
τn

ξs,i = k−(s+i)
τR

.

(3.5)

There are k(k + 1)/2 + k possible states, and k of them are disease-free and hence an
absorbing class of states. For a schematic graph of the dynamics of this process, see Fig.
1.

Based on the rates (3.5) we are able to set up a difference equation t̃s,i, the expected time
to extinction when starting with i endemic and s susceptible subcommunities out of k
possible, by conditioning on the first transition. We then get the following relation

t̃s,i =
1

ζs,i + ηs,i + ξs,i

+
ζs,i

ζs,i + ηs,i + ξs,i

t̃s−1,i+1

+
ηs,i

ζs,i + ηs,i + ξs,i

t̃s,i−1 +
ξs,i

ζs,i + ηs,i + ξs,i

t̃s+1,i. (3.6)

In general this system has no closed form solution. But, by looking at the transition rates
(3.5) and the relation (3.6), we see that we can write this as an equation system of the
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form

t̃ = v + At̃, (3.7)

where t̃ = (t̃0,k, t̃0,k−1, . . .)
′, v = (v0,k, v0,k−1, . . .), vs,i = 1/(ζs,i + ηs,i + ξs,i), and A is the

matrix with transition probabilities defined by the rates (3.5). A general solution to (3.7)
is given by

t̃ = (I−A)−1v, (3.8)

which can be solved numerically, where I is the identity matrix of the same dimension
as A. As before, we are mainly interested in the case when all k subcommunities are
initially endemic corresponding to t̃0,k, corresponding to the expected time to extinction
starting at the endemic level. This defines our first approximation for the expected time
to extinction.

Approximation 1 The expected time to extinction given that the process is started at
the endemic level can be approximated by τSIR(ε) = t̃0,k, where t̃ solves (3.7).

In general an explicit expression for τSIR is not attainable, but for the case k = 2 we have
the following explicit expression

τSIR(ε) = τ(0) +
εµnR0(1− 1/R0)

2τRτ 3
n

2(εµnR0(1− 1/R0)2τRτn + τR + τn)
, (3.9)

where τ(0) is from (2.8). From (3.9) one sees that τSIR is increasing in ε, and that if ε = 0
then τSIR = τSI. For larger values of k the calculations becomes more tedious, since the
number of unknown equations increases rapidly.

We now return to the derivation of τR, the expected time which a subcommunity is
recovered (and immune). When a subcommunity becomes recovered (and immune), there
is approximately a fraction x̂ = 1/R0 susceptible individuals and a fraction 1− x̂ immune
individuals. The problem now is that the probability that disease invasion will be able to
persist depends on the fraction of susceptibles in the subcommunity.

If we look at the probability that disease invasion will take off, (3.2), we see that this prob-
ability is zero when we have a proportion of susceptibles corresponding to the endemic
level, and we know that this probability is 1 − 1/R0 when a subcommunity is fully sus-
ceptible. Thus, we can define the expected time which a subcommunity is kept recovered
(and immune) in terms of the average time it takes until a fraction x̃ > x̂ becomes sus-
ceptible in a subcommunity such that disease invasion will persist in the population with
a pre-specified probability. A natural, but somewhat arbitrary, choice of this probability
is (1− 1/R0)/2, i.e. half way between 0 and 1− 1/R0.

This gives us that the fraction of susceptibles x̃ is the solution to

1− 1

x̃R0

=
1

2

(
1− 1

R0

)
,
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which is x̃ = 2/(R0 + 1) ≈ 2x̂ when R0 is fairly large.

While a subcommunity is treated as recovered (and immune), no infectious contacts may
occur, and the expected fraction of susceptibles x(t) at a certain time point t after be-
coming disease-free is given by the solution to the differential equation{

dx
dt

= µ(1− x)
x(0) = x̂

(3.10)

Solving this equation gives us the relation

x(t) = 1− (1− x̂) exp(−µt). (3.11)

If we set x(t) = x̃ = 2/(R0 + 1) and solve (3.11) in terms of t, we get

t = τR =
1

µ
log

(
R0 + 1

R0

)
. (3.12)

Note that the longer we treat a subcommunity as recovered (and immune), the harder
it gets for the infection to persist in the rest of the population. If τR is close to zero,
we loose the effect of the recovered (and immune) state and the approximation resembles
that of Hagenaars et al. (2004), and if τR tend to infinity it is the same as removing
a subcommunity which becomes disease-free. Our suggestion of an approximation of τR,
(3.12), will give relatively small values. However, as said before, it is hard to find a natural
definition of this quantity.

4 Approximation using an exponential form

When we introduced the SIR model with demography for several communities, we derived
the expected time to extinction both for the case when all communities are isolated and
the case when they are mixing as one large homogeneous community, corresponding to
ε = 0 and ε = 1 respectively. We have also mentioned that these two approximations
cannot be improved along the present lines without improving N̊asell’s approximations
for the single community SIR model with demography, Eqs. (2.5) and (2.7).

For 0 < ε < 1 we now introduce a new approximation, τExp(ε), by simply fitting an
exponential curve having τ(0) as starting point and approximately τ(1) as end point such
that τ ′Exp(0) = τ ′SIR(0), i.e. we let the shape of τExp be determined by the behaviour of
τSIR in the ε region where we expect it to work satisfactory. We propose the following
approximation:

Approximation 2 The expected time to extinction given that the process is started in
quasi-stationarity can be approximated by

τExp(ε) = τ(1)− (τ(1)− τ(0)) exp

(
− τ ′SIR(0)

τ(1)− τ(0)
ε

)
, (4.1)
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where τ ′SIR(·) is the first derivative of (3.8) with respect to ε, and τ(0) and τ(1) are from
Eqs. (2.8) and (2.9) respectively.

One can easily verify that τExp(0) = τSIR(0) and that τ ′Exp(0) = τ ′SIR(0), and one also sees
that when τ ′SIR(0) � τ(1) − τ(0) then τExp(1) ≈ τ(1), as desired. To see that this is
reasonable, look at the expoenent of (4.1), −τ ′SIR(0)ε/(τ(1)− τ(0)), when k = 2 and use
τSIR from (3.9). We then get that τ ′SIR(0) = µn(R0 − 1)2τRτ 3

n/(2R0(τR + τn)) and a first
order expansion of τR around 1 gives us that τR ≈ 1/(µR0) which togheter with N̊asell’s
geometric approximation of τn yields

− τ ′SIR(0)

τ(1)− τ(0)
ε ≈ −n3 (R0 − 1)4

R3
0µα2(α2 + n(R0 − 1))

ε, (4.2)

which is a very small number for reasonable parameter values and choices of n. We
illustrate this with a numerical example: Suppose that we have a population which is
separated into two equally large subcommunities of size n = 50, 000. Suppose further
that the average infectious period is one week and a typical individual lives for ca. 70
years, i.e. α ≈ 3500. This togheter with R0 = 14 and ε = 1 gives us that the exponent
(4.2) is approximately -475, and exp(−475) ≈ 0, thus τSIR(1) ≈ τ(1).

5 Examples and simulations

We have made comparisons of our two approximations with simulations for some dif-
ferent parameter values and number of subcommunities. First, we recollect some vital
assumptions that we have made. For both approximations we make use of N̊asell’s ap-
proximations for the expected time to extinction for a single large community given that
it initially has a number of infected individuals corresponding to the endemic level, i.e.
the quasi-stationary level of infection, Eqs. (2.5) and (2.7). In order for the concept of
quasi-stationarity to have any meaning, the quasi-stationary level of infection should at
least correspond to that 10-20 individuals are infectious in each subcommunity, otherwise
the disease will die out too quickly and the disease cannot be regarded as endemic.

Turning to our examples. For childhood diseases and diseases such as influenza the average
infectious period is about one to two weeks, see pp. 81-86 in Anderson and May (1992).
This toghether with the assumption that the average life length among individuals in the
population is 70 years, gives us α values between 1,800 and 3,500. Usually, these kind
of diseases have values of R0 around 10 or higher. We have chosen to set R0 to 14 in
compliance with N̊asell (2005). These are the parameter values which we will use. As for
the number of subcommunities we have chosen k = 3 and 5.

All simulations have been done using Monte Carlo simulation and the routines where
written in the C-programing language and all graphics have been made using MATLAB.
We estimate the expected time to extinction when starting in quasi-stationarity from the
simulations as follows. Initially, 500 epidemics were started at the endemic level, which is
the mean in the limiting quasi-stationary distribution. Then the epidemics were simulated
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long enough for 100 of them to go extinct, and at this time point, the clock for the
remaining 400 simulations was started. These starting points will be approximately from
the quasi-stationary distribution since the epidemics have been started at the endemic
level together with the fact that they had not gone extinct for some time.

Depending on parameter region we have alternated between using N̊asell’s truncated
normal and geometric approximation of the quasi-stationary distribution. For more on
the apropriate choice of approximation in different parts of the parameter region see N̊asell
(2005), Fig. 3 on p. 210. Roughly one can say that for the parameter values used here, the
geometric approximation, Eq. (2.7), is to prefer if n (ntot) is smaller than ca. 5-600,000
and when n (ntot) is greater than ca. 2,000,000 one should use the truncated normal
approximation, Eq. (2.5). For values of n (ntot) in between, neither of the approximations
work that well. From here onwards all references of type ’Fig. (A)’ are refering to subfigure
(A) in Fig. 2. In Fig. (A) we have a total population size of ntot = 150, 000 and k = 3, i.e.
n = 50, 000, and in this parameter region we have used N̊asell’s geometric approximation
of the quasi-stationary distribution. We see that both approximations work well for small
values of ε, but that τExp also gives a good fit for intermediate values of ε as well. But,
notice that the expected time to extinction is too short to say that the disease is endemic,
since the average time to extinction is ≈ 0.01 life lengths, i.e. less than a year. Worth
noticing is also that the simulation of the expected time to extinction when starting at
the endemic level indicates that it is increasing in the degree of social interaction between
subcommunities, and that already for small values of ε the expected time to extinction
is close to the case when the population is mixing homogeneously. This behaviour is also
seen in both our approximations. In Fig. (B) we have used the same parameter values as
in Fig. (A), but now with k = 5. Note that since we keep ntot fixed the subcommunity
size is smaller now. We again see that τExp performs better than τSIR.

In Figs. (C) and (D), we have increased the total population size, ntot, to 900,000. Now
we are in a part of the parameter region where neither of N̊asell’s approximations of the
quasi-stationary distribution is working that well. We have choosen to use his geometric
approximation, Eq. (2.7). Here we see in Figs. (C) and Fig. (D) that both our approx-
imations gives a rather poor fit unless ε is very small, and note that both τExp(0) and
τExp(1) are quite far away from the corresponding simulated values. If we instead use the
simulated values for the cases ε = 0 and ε = 1 to approximate τ(0), τ(1) and τn, things
look different. We have done this in Fig. (E) when the parameter values are as before
and when ntot = 900, 000 and k = 3. Again we see that both τSIR and τExp work well for
small values of ε, and that τExp also gives a good fit for somewhat higher values of ε. This
indicates that the functional form of τExp works rather well, but that both τSIR and τExp

are sensitive to the intital approximations of τn, τ(0) and τ(1).

In Fig. (F) we have five subcommunities and a total population size of 2,500,000, and
in this situation we should use N̊asell’s truncated normal approximation of the quasi-
stationary distribution, Eq. (2.5), for τ(1), and his geometric approximation, Eq. (2.7),
for τn and τ(0). Once again we see the same behaviour as before: both τSIR and τExp

gives a rather good fit for small values of ε, but τExp also gives a good fit for high values
of ε, but not particularly good fit for intermediate values. We also see that the functional
form of τExp seems to work rather well.

To conclude, of our two proposed approximations τExp seems to be the best. But, re-
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member that we still need τSIR, since we make use of τ ′SIR(0) when defining τExp, see
Section 4. Further, we see that the functional form of τExp seems to work rather well, but
both our approximations are sensitive to the initial approximations of τn, τ(0) and τ(1),
obtained from the single community model. These are also, to our knowledge, the only
approximations of the expected time to extinction when α is large.

6 Discussion

In the present paper we have been concerned with approximations of τ , the expected
time to extinction for an SIR model with demography for the case with subcommunities,
when each subcommunity is started at the endemic level of infection. Our aim has been
to understand the effect of population subdivision on the time to extinction. We have
mainly focused on endemic diseases which are highly infectious and with a short average
infectious period in relation to average life length, such as childhood diseases.

Our first approximation, τSIR (Approximation 1), is based on a method presented in a
paper by Hagenaars et al. (2004). In Hagenaars et al. (2004) they are mainly interested
in diseases with rather small α, such as scrapie among sheep, in situations where the
social activity between subcommunities is low, i.e. 0 < ε � 1. Under these circumstances
they argue that the underlying SIR model can be analysed from a subcommunity view,
where each subcommunity is classified as either fully susceptible or endemic, and they
approximate the dynamics in the population with a birth and death process for the
number of endemic subcommunities, which only allow for one reinfection. The expected
time to extinction for this process is then a reasonable approximation of τ , (3.4). We are,
as said before, mainly interested in childhood diseases. Based on similar arguments as
those made in Hagenaars et al. (2004), we argue that we in this situation also need to
introduce a recovered (and immune) state when classifying subcommunities in order to
avoid over-estimation of τ . Using these states we approximate the underlying SIR model
with a Markov jump process for the number of endemic subcommunities, see Fig. 1, and
estimate τ with the expected time to extinction for this process. We present a general
solution form for an arbitrary number of k subcommunities in Eq. (3.8), which can be
solved numerically, and we present an explicit expression for the case when k = 2 in (3.9).

Simulations indicate that the expected time to extinction is increasing in the degree of
social interaction between subcommunities, which also can be seen in τSIR. Further, we see
that τSIR is more suitable to use when the degree of social activity between subcommunities
is very low. One crucial part with this approximation is that it is difficult to find a natural
way of defining the time which we let a subcommunity stay recovered (and immune). If
one could improve this part of the approximation, it is possible that τSIR could work better
when the degree of social activity between subcommunities is somewhat higher as well.
One other thing worth noticing is that τSIR is rather sensitive to the initial approximations
of τn, τ(0) and τ(1). Depending on the part of the parameter region we are in we must
be careful with which of N̊asell’s approximations of the quasi-stationary distribution we
use, i.e. the truncated normal or geometric distribution, Eqs. (2.5) and (2.7) respectively.

Our second approximation, τExp (4.1), is motivated in a slightly different way. At the end
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Figure 2: In all (A)-(F) we have used α = 3, 500 and R0 = 14, and time is measured in
units of life lengths. In (A)-(B) we have a total population size of ntot = 150, 000, but in
(A) there are k = 3 subcommunities where as in (B) k = 5. In (C) and (D) ntot = 900, 000
and k = 3 and k = 5 respectively. Further, (E) is the same as (D), but here τ(0) and τ(1)
are approximated with the values corresponding to ε = 0 and ε = 1 from the simulation,
and τn can be obtained from τ(0). In (F) ntot = 2, 500, 000 and k = 5.
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of section 3 we talked about the expected time to extinction for the two extreme cases of
social activity, when all subcommunities are totally isolated from each other, ε = 0, and
when the social contact between subcommunities is so high that all subcommunities mix as
one large homogeneous community, ε = 1. These two approximations cannot be improved
without improving results for the single community SIR model with demography. As we
just discussed when talking about τSIR, we said that it is reasonable to use when the
social activity between subcommunities is very low. With these two things in mind, we
approximate the expected time to extinction with an exponential curve with start point
corresponding to τ(0), Eq. (2.8), and has approximately τ(1), Eq. (2.9), as end point in
such a way that τ ′Exp(0) = τ ′SIR(0).

When comparing τExp with simulations we see, as for τSIR, that τExp works satisfactory
when the degree of social activity is low, and that it is increasing in the degree of social
activity. But, for τExp we also get a better fit for higher degrees of social activity as well.
We have also seen that the exponential form of τExp gives a rather good description of the
expected time to extinction. Further, since τExp is defined using τ ′SIR(0), it is also sensitive
to the initial approximations of τn, τ(0) and τ(1).

To conclude, both approximations work rather well for small values of ε when we are
in the parts of the parameter region where one of N̊asell’s approximations of the quasi-
stationary distribution is good. But, in these situations τExp also gives a rather good fit
for intermediate values of ε as well. Thus, τExp is the best approximation of the two.
These approximations are, to our knowledge, the only ones at hand which deal with the
expected time to extinction when α is large.

We have also shown that the time to extinction given that the epidemic process is started
in the quasi-stationary distribution TQ, is exponentially distributed, see Proposition 2.1.
This result is important when talking about other quantities of interest such as critical
community size.
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