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2 Very, very, short summary

The first article investigates two issues. First how many will totally be in-
fected if no major outbreaks are possible. This has arisen due to small out-
breaks of measles which occur annually. We investigate how different random
distributions on the time an individual is infectious affects the number of to-
tally infected.

The second part deals with how long time it will elapse until a major outbreak
can take place. This can be applied to SARS and the infection which is in
“fashion” at the moment, pandemic influenza. Is it efficient to screen people
before inter continental flights or does the effect of putting restrictions on
traveling within a country stop the arrival of an epidemic? In both cases it
can be shown not to be very efficient. The time gained before the epidemic
comes is very small.

The second article concerns the latest outbreak of smallpox in Stockholm
1963. We estimate some parameters of interest for epidemic modeling.
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Abstract

This paper aims at making sensitivity analysis in epidemic models.
We will concentrate on the effect of different random distributions on
the infectious time period. One issue is how many persons will be
totally infected during an outbreak when no major outbreaks are pos-
sible. With a major outbreak we mean the equivalence with branching
processes, when a population will explode in size. We find out that
the expected value is low, but the variance can be considerably high.
This causes problems since often having more than one case makes it
to an epidemic among medically trained individuals.

The second problem considered is how long time will it take for a
major epidemic to occur. Given that the population is in a state, that
major outbreaks can occur.
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1. Introduction

The aim is to investigate the sensitivity in epidemic models. The emphasis
will be on the effect of different random distributions on infectious time
periods.

But first we will have to define the term epidemic (or outbreak). There is no
universal definition for an epidemic. (Heymann (2004)) describes an epidemic
as “The occurrence, in a defined community or region, of cases of illness (or
an outbreak) with a frequency clearly in excess of normal expectancy”, this
is for a disease which could occur seasonally. In the case of new diseases it
is described as “A single case of a communicable disease long absent from a
population or the first invasion by a disease not previously recognized in that
area requires immediate reporting and full field epidemiological investigation;
2 cases of such a disease associated in time and place are sufficient evidence
of transmission to be considered an epidemic”. These definitions are useful
for medical people and epidemiologists. Statistically an outbreak could be
divided into a minor or major outbreak A minor outbreak could be when the
size of a population in a branching process approximation will not explode,
a major outbreak would mean that the population explodes in size. It is
important to be aware of the differences between the medical and statistical
view of outbreaks.

First we study the total number of infected in a community where the prob-
ability for a major outbreak (epidemic) is zero. Secondly we study the time
until a major outbreak (epidemic) appears of an infectious disease in a com-
munity who are subject to infection, with a positive probability for major
outbreak.

The infection process will be started by imported cases, that is an infectious
person enters the population.

One example is the measles is Sweden, for which the vaccination program
started 1982. Before that it was in a state that a major outbreak occurred
with 3 - 4 year intervals (Strom (1964)). After the introduction of the vac-
cine the number of resistant individuals increased. These were enough to
put the population in a state, where the probability for a major outbreak is
zero. Measles is a disease which in many countries with childhood vaccina-
tion programs against measles can cause minor outbreaks by introduction of
imported cases. The number of infected in Sweden, started by one case have
varied between 1 - 80 since 1997. 80 sounds like a major outbreak from a
medical viewpoint, but calculating prediction intervals will not make it to a
major outbreak from a statistical viewpoint.

Due to some articles claiming that the vaccine could cause autism (Wakefield
et al. (1998), Pounder et al. (1995)), the proportion vaccinated decreased.
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If this would have continued, the population could again be in a state where
major outbreaks would be possible (Asikainen et al. (2003)). This shows
that the question of how long time it will take before a major outbreak will
occur is also of importance.

These things are interesting for both known (present and past) and new
“emerging” diseases. Known diseases could be measles, rubella or smallpox.
New ones pandemic influenza caused by avian flu or some other strain.

Depending on how infectious a disease is and how many in the population are
immune against this, through vaccination or having encountered the disease
earlier in life, there is a a probability for a major outbreak. The quantity
describing infectiousness is called basic reproductive number. We will discuss
some problems in interpreting this quantity.

If the proportion immune is high enough, the probability for a major outbreak
is zero. This is linked with basic reproductive number.

An other example is the time until a major outbreak might occur. This has
been an interesting question concerning the recent outbreaks or fear of it, of
SARS and avian flu. Both could be capable of making a major outbreak, but
have been kept in control by massive counter measures by the authorities.

The most modeling done in the field do not take the stochasticity in the start
of the epidemic into account. The interesting part is how long time from
breaking the barrier when major outbreaks are possible, it will take until the
major outbreak (epidemic) will take place. It is also a believe among medical
people that this will take place instantly. We try to show that this should be
viewed as a stochastic process.

2. Models for spread of infection

2.1 Disease and infection

The development of disease can be described as shown below and in Figure 1
(Giesecke (2002)):

1. Healthy The person has not yet experienced the disease and is not
protected against it.

2. Incubation period A susceptible person gets infected by an infectious
individual. It takes a certain amount of time until the disease develops
in the body and the first signs of disease appear (these can be sub
clinical).

3. Clinical disease Signs of the disease are appearing
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Figure 1. Progress of disease
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Figure 2. Progress of infection

4. Resistant The person has recovered from the disease, or has been trans-
ferred from susceptible through a successful vaccination.

How infection is spread, differs from the above. This is because an individual
can be infectious before or even after the stage of clinical disease. This process
consists of the following states and is shown in Figure 2 (Giesecke (2002)):

1. Susceptible The person has not yet experienced the disease and is not
protected against it.

2. Latent period A susceptible person gets infected by an infectious indi-
vidual. The virus is fighting with the body’s defense system.

3. Infectious period The person is now infectious and can transmit the
disease to others.

4. Resistant The person has recovered from the disease, or has been trans-
ferred from susceptible through a successful vaccination.

The number of individuals in the different states are usually of interest.
Although in many cases, each individual has to be followed separately during
the epidemic. These are the two important factors which will decide how the
epidemic is progressing:

- The time spent at each state, and its random distribution

- How many susceptible are infected per time unit



When an individual has moved to Resistant state, there will be two possi-
bilities. For individuals who have been infected with measles they will stay
there for the rest of their life. For persons vaccinated it is not known how
long time the protection holds. The other possibility is with diseases like
influenza which come in different forms every year and this is why people
can be susceptible even after encountering the disease earlier.

2.2 Basic assumptions in epidemic models and some terms

Infectious contacts made by an infectious person in the population are as-
sumed to occur according to a Poisson process K with rate A. This mean that
time periods between contacts are exponentially distributed. The number of
contacts during a time period is Poisson distributed.

If a proportion of the population are immune, due to earlier encounter with
the disease or through vaccination, the rate A will reduce in relation to this.

Different kind of mixing is possible in the population, through families, work
etc. In this report the population is homogeneously mixing. That is there is
no special division of the population into different subgroups.

An index case is the first infective in an outbreak. The others infected by
this index case are called secondary cases. Tertiary cases are those infected
by the secondary cases. In reality this ordering is very hard to follow due to
the uncertainty in who has infected whom. It is also possible to have several
index cases, people exposed to a sudden release of an agent for example.
The index case will be assumed to be equally infectious as other individuals
during the epidemic. Often it might happen that the index case is infectious
before entering the population, making him less infectious that the others.
This is not investigated in this paper.

In order to start an epidemic the index cases are assumed to appear according
to Poisson process K; with rate )\;. Index case be a person who gets infected
abroad and is still infectious or becomes infectious when returning home.

2.3  Time spent in different states

An infectious individual will remain infectious for a stochastic period of time
I, according to a random distribution.

When trying to model the transitions between different states the time spent
in different states can have different distributions. The two most common
distributions are delta distribution (constant time period) and exponential
distribution.

Constant time periods are useful in certain situations. The case with expo-
nential distribution gives some stochasticity. But very few infections, if any,
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follows an exponential distribution in the different states.

In our paper we try a number of different distributions and do comparisons
between these. We will use the gamma distribution, since it can be viewed as
a sum of exponential distributions. This way we can keep the nice Markovian
properties and add more reality to our model.

We will also investigate the effect of time, when the critical level for hav-
ing major outbreaks is achieved. The time for a major outbreak, can be
depending on the assumptions concerning the distribution of time being in-
fectious. The disease might also have different states, where individuals are
transmitting different amounts of infection.

2.4 Basic reproductive distribution

Assume we have knowledge of the number of infectious contacts per time
unit, Chapter 2.2. The random distribution of the infectious time period I
is also known, Chapter 2.3.

The number of new cases made by an infectious person will be a stochastic
process. We will propose the term “Basic reproductive distribution”, RD),
for the number of new cases. Depending on the random distributions on the
input parameters, RD will follow a random distribution. In some situations
it will be a very simple expression.

Using RD as a tool, there will be a lot of flexibility. Assume that the
infectious time period is constant and that the rate of making infectious con-
tacts is exponentially distributed. This is equivalent for having exponentially
distributed infectious time period and a constant rate of making infectious
contacts.

2.5 Basic reproductive number

An often used parameter in epidemic modeling, is the so called “basic re-
productive number", denoted Ry. In its easiest form it can be expressed as
the expected number of new infections generated by one infectious individual,
during the time he is infectious in a population where everyone is susceptible.
It can be seen as the mean of the basic reproductive distribution.

This is although a very “misused” parameter since it is often estimated from
previous outbreaks. Usually how the population structure is set can give ma-
jor deviations in the estimation. (Asikainen (2005), Gani and Leach (2001))

If Ry < 1 no major outbreaks (epidemics) will occur, only small outbreaks
are possible. Although a small can be of size even exceeding 100. If Rg > 1
there will be a positive probability for a major outbreak, meaning that a
considerable proportion of the population will get infected.
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Basic reproductive number is related to the term, herd immunity, which
means that Ry < 1, giving only small outbreaks. It means that there are so
few susceptible in the population that even if an infectious individual enters
the population, he will not start an epidemic. This term should be used
very carefully. For example 1997 a person infected with measles entered a
discotheque in a Stockholm, which due to mass vaccination is in a state of
herd immunity. There he infected a number of others and the total epidemic
consisted of about 80 cases before it was stopped.

If the population possesses some resistance to the disease, not all infectious

contacts will cause new cases. In this case Rg will be scaled to suit the case,
often denoted R,, R, or R.. We will write Rg even in this case.

3. Epidemic models

In Chapter 2 we mentioned the basic assumptions and some common terms.
In this chapter we mention a number of models used.

In describing the models all will have the same value on Ry, namely \/7.

The notation for the number of susceptible, latent, infectious and removed
at time point ¢ is S(t), £(t), Z(t) and R(t).

Assume that a person spends in average 1/ in the latent phase.

3.1 Constant value on the infectious time period

Also known as the Reed-Frost epidemic model (Abbey (1952)), assumes that
the infectious time period I is constant, with a value of 1/+.

()

D

ks
=

2
|-

Ro = EIK(D)] ="

A model can be made for both discrete and continuous time.

Assume that infections occur at discrete time (and that the time between
generations is of length 1 for simplicity). The number of infections at different
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time points will be binomially distributed. Let NV denote the total size of the
population.

P(A certain individual not infected by 1 infective) = e %
AZ(t)
P(A certain individual not infected by Z(t) infective) = e~ ~v

_AZ()

P(A certain individual infected by Z(t) infective) =1 — e~ ™

This gives a way to calculate the number of infected at different generations:

Bzt +1)] = SO(1- %) ~ 28wz

In continuous time, the infection is a Poisson process with rate % The time

between new infections will be exponentially distributed with rate A\, with

expected value ;. Let £ = number of new cases made by Z(t) infective.

¢ ~ RD.

e

Proportion susceptible =

E] = —Z
The expected value of the processes is the same. The difference is that in

continuous time new infections do not have to happen at certain generations.

We would like to point out that in the latter calculations, not everyone in
the population is assumed to be susceptible. This is why %, proportion of
susceptible has been used.

The Basic reproductive distribution, RD with constant value on the infec-
tious time period will be a Poisson distribution.
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3.2 Ezponentially distributed infectious time period

Also called the general epidemic model (Kermack and McKendrick (1927)),
the infectious time I is assumed to be exponentially distributed with rate ~.

I ~ Exp(y)
E[I] = 1/y
1
Var(I) = ?
¢ ~ RD
A
Ry = E[§] =~
v

This model is widely used, specially for simulating epidemics. Since the times
are exponentially distributed there can be a deterministic solution by solving
a number of differential equations. N denotes the population size, 1/ the
average time spent in the latent phase.

% = BE—-7L

The downside is that with this setup, we are modeling what happens in
average. It is crucial to decide if this is the quantity of interest before applying
this approach.

We would like to point out that in the latter calculations, not everyone in
the population is assumed to be susceptible. This is why the differential
equations are scaled with £.

The Basic reproductive distribution, RID with exponential distribution on
the infectious time period will be a geometric distribution.

3.3  Gamma distributed infectious time period

The general epidemic model is modified so that the expected infectious time
period of length 1/7 is divided into n independent blocks each having an
exponentially distributed length of 1/n-.
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1
a Var(Ij) = ’n,2f>/2
1

; Var(I) = n—f}/2
RD

A
Blg] = 2

Y

The main advantage is that the variation compared with the general epidemic

model is reduced.

As with an exponential distribution, this can be modeled using differential
equations, the difference being that the infectious time period Z will be split

into n different blocks.

as
dt

de

dt
dz,
dt
dZ,
dt

az,
dt

IR
dt

)\ n
j=1
)\ n
+S > 1,-p¢
7j=1
BE —nyLy

nyL, — nvyZ,

nfy-’z—n—l - nyl'n

nyZ,

We would like to point out that in the latter calculations, not everyone in

the population is assumed to be susceptible.

This is why the differential

equations are scaled with % The latent period is in the differential equation
above assumed to be exponentially distributed.
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The Basic reproductive distribution, RD with gamma distribution on the
infectious time period will be a negative binomial distribution.

3.4  Changes for the remaining of the article

This far the latent period has been taken into account in the models. In the
continuation of our report the latent period is abandoned from the model.
The focus will be on the probability for a major outbreak and the time point
at which that might be initiated.

4. Total number of infected during herd immunity

As stated in Chapter 2.2 the number of infected can become rather big. This
even if the population is “protected” by herd immunity (Ro < 1). The total
number of infected is of interest. As shown in the Introduction, if this is a
major outbreak or not, depends in which definition of outbreak to use.

Let X denote the total number of cases during the outbreak, including the
index case(s).

Assume that the infectious contacts made by an infectious person is a Poisson
process K with rate A\. The distribution of the infectious time period I is
assumed to be known.

The progression of disease will be modeled by using techniques from the
field of branching processes. The approximation is done by assuming that
as infectious person possibly generates new cases, all of these will start new
independent processes.

4.1 Calculation of moments

Let &, denote the number of new cases made by an infectious individual,
&, ~ RD 1. The infectious contacts made by him is a Poisson process with
rate A\. The probability generating function for £ = g¢(t).

9¢(t) = vr(A(t—1))

¥r(t) = Moment generating function for I

Sy = Z £j
j=1

9s.(t) = Yr(A(t —1))
S:c

o
|
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As proved in (Sewastjanow (1975)):

P(X=2) = 2P(S, =2—1)
T
1 av !
(Se=2-1) = mwgsz(t)
t=0
1 dw—l 1 dm—l N
P(X=x) = EWQSZ@) = EWTPI(A@— 1))
t=0 t=0
gx (t) =Probability generating function for X.
1 d*— 1
gx(t) = Ztﬁ U~ 1)
=0
X - 4 1 G
Ux(t) = EeX] =3 e S vl 1)
= t=0
, S
BIX] = wk(0) = 3 =gy A - 1)
Jj=0 t=0
00 -l i—1
EX"] = ¢%(0 )=mewi(k(t— 1))
Jj=0 t=0

This enables to calculate moments of acquired value.

4.2  FEzxpected value of total number infected

The expected value of total number infected can be calculated by letting &
denote the number of infected by an infectious person, & ~ RD. Let Y
denote the total number of infected caused by the index case. Use methods
from branching processes. The index case will generate & new cases. Each
of these & will start new independent processes of size Y.

17



X £ yv+1
3
Y = &+ Z Y,
E[Y[§] = E[¢]+E[E]E[Y)]
Since Y; £Y and E[E[Y|¢]] = E[Y]
E[Y] = E[{+E[E[Y]
__E[¢]
S
1
E[X] = 1+E[Y]= T—FE

Alternative solution can be obtained by noting that X has the same distri-
bution as the index case plus the total number infected by the offsprings of
the index case.

3
X £ 1+ X,
BIX] — 11 EEEX, =1+ EEBX]
BX] - g (1)

The expected value of the total number of cases during the epidemic, will be
independent of the distribution on the infectious time I. As long as it has
the same mean 1/7.

4.3 Variance of total number infected

The variance of total number infected can be calculated by letting & denote
the number of infected by an infectious person, & ~ RD. Let X denote the
total number of infected including the index case. This index case generates
& new cases. Each of these will start a new independent branching process,

18



with the same distribution as X.

¢
1+ X;
j=1

Var(X) = E[¢]Var(X;) + (E[X;])*Var(€)
Var(€)
(1 —E[§])?

[l

X

Var(X) (2)

In contrast to the expected value, which is same for all distributions with
the same mean value. The variance will depend on the variance of £. In our
case & will be a compound Poisson distribution.

4.4  Constant value on the infectious time period

The total number of cases X in a Reed-Frost process (constant infectious
time period) can be shown to follow a Borel-Tanner distribution (Height and
Breuer (1960), Tanner (1953), Borel (1942)). This distribution is derived
from queuing theory, in the case for a constant service period and arrival of
new individuals according to a Poisson process with rate \.

1
I ~ §(=
(7)
¢I(t) = e
rLp]’()\(t — 1)) — e%(t_l) — eRO(t—l)
YNt —1)) = "Rolt=D
% — (IRO)xemRo(t—l)
1
P(X = SL’|R0) = ;(%Ro)m_lexRO(t—l)
' t=0
rRy)* et
P(X=alRy) = RS
X ~ Borel-Tanner(Ry) ; Rp<1
1
E X =
X1 - R,
Ry
Var(X - -0
ar(X) _ (AL
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—

lim E[X] = oo
Ro—1—
00

lim Var(X) =

—1—

Alternative solution by using equation (2) and (1), side 19 and 18:

§ ~ Po(A7) = Po(Ro)

E[é] = Ro
R
Var(X) = TR —Rz(lzo)s

See Figure 3 for the progress and the increase in the number of infected as
R() — 1—.

4.5  FEzxponential distribution on infectious times

Since the infectious time is exponentially distributed, the offspring distribu-
tion in a branching process approach becomes geometric. This given that
infectious contacts occur according to a Poisson process with rate A\. The
total number of infected X including index cases has been investigated by
(Farrington et al. (2003)), by using the Lagrangian generalized negative
binomial distribution (or Lagrangian negative binomial distribution).

I ~ Exp(y)
i) = (1_§)—x
Sty = LD Lo Ly
%W(A(t_l)) = %(%)1(1—¥)—(M)
PIX = alRo) = %(x : Ei - B!_ 1)!(3):‘”‘1(1 - ¥>—(r+(m—l)) B
PX - alRy) ~ 222D Re

2z — 1)1+ Ro)2T
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Rewriting the expression as Z = X — 1 ~ Lagrangian binomial distribution
(Kotz and Johnson (1983)), also known as Lagrangian negative binomial
distribution (Jain and Consul (1971)).

Var(X)

X — 1 ~ Lagrangian generalized negative binomial distribution

nfat(ntaz)ﬁqnmz_z ,n>0 p<ap<l ,2=0,1,2,...
np
1—ap
g
(1 —ap)?

1-‘113)%0 — RO _ RO
1_111?1?0 1+Ry—2Ry 1—- Ry

Ro

m :R0(1+R0)
(1 B 12+R§)0)3 (1 - R0)3

Ry 1
[Z] + R TR
RO(]-‘I'R())

Var(Z) = —/—— "~/

ar(Z) 1Ry’

Since the offspring is geometrically distributed, the variance of X can also
be calculated by equation (2) and (1), side 19 and 18:

I ~ Exp(y)
¢~RD ~ Po(\)
§ ~ Ge(p)
Var(g) = %:RO(HRO)
1
N (N
_ Ro(1+Ry)
Var(X) 1= Ry

See Figure 3 for the progress and the increase in the number of infected as

RO — 1—.
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4.6 Gamma distributed infectious times

Dividing the expected time 1/ into n separate parts. Each of these are
exponentially distributed with rate n~.

I ~ I, n%)
H) = (=)
Lot = DLy e
d%?ﬂ?(/\(t - = %(H—Av)l(l - A(tn; Yy~
P(X =z|Ry) = é(m téi — B!_ 1)!(%)1"1(1 - )\(tT;U)—(nx+(x—1))
P(X = 2|Ry) — Lt =2 Ro 1 =0

_ rz—1
z! (nx —1)! ( n ) (1 + Bo)a(nt1)-1

n

When having a compound Poisson distribution with a gamma distribution,
the resulting distribution will be a negative binomial.

1
I N

(n, m)
Y ~ K|I=in~ Po(\i)

P(E=p) — / TP = plT = )P(I = i)di

OO - (>\7’>p 1 ‘n—1 n_—iny J;
= e — 1" (ny)"eT"Mdi = ... =
= ou

(ny)"” 1 1

- p!T'(n) (ptmn— 1)!(>\+n7)n(>\+n7
)

~
2

y =

(p+n—1)" X ny

~ ln— 1) (/\+m)n(/\+m

Set p = 5= Using equation (2) and (1), side 19 and 18:
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& ~ NegBin(n,p)

q A
El¢] = n];:na
A
q e A(A + ny
Var(g) = nﬁzn<}j> — (W L NELNY
+ny
1
EX] = ——
X = TR
Ro(fe +1)
Var(X) = m

If n = 1 we will get the variance for the exponential distribution on the
infectious time period. If n = oo we will get the variance for the constant
infectious time period.

See Figure 3 for the progress and the increase in the number of infected as
R() — 1—.

4.7 Comparison between different epidemic models

All models show that the uncertainty in the number of infected rapidly in-
creases when approaching the herd immunity threshold limit (R = E[€§] =
1). In all cases the mean number will not differ. The variance is shifting
between the models, see Figure 3. Assuming exponential distribution, shows
the largest distribution in our case. This can be explained due to that some
individuals have very long infectious periods.
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Figure 3. Number of infected as a function of Ry, the mean value of the
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upper prediction interval.
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5. Probability for a major outbreak when no herd immunity

5.1 Background

A common problem with different infectious diseases is that the population
might not be protected by herd immunity. This can be caused by decreas-
ing vaccination coverage. Or in the case of whooping cough, the vaccine is
not efficient enough. Even if everyone would be vaccinated it would not be
possible to obtain herd immunity.

When the herd immunity threshold has been reached, there will be a positive
probability for a major outbreak. This can happen every time a new index
case enters the population. The probability for a major outbreak can be
calculated from branching process theory (Sewastjanow (1975)).

& = The number of new infectious contacts
§ ~ Po())

ge(t) probability generating function for &
t 9e(t)

The smallest solution ¢ is the probability for not having a major outbreak
(epidemic).

Knowing the distribution of the infectious time period I gives a way to
calculate the probability for not having a major outbreak.

We will calculate this in different epidemic models. The assumption is that

the probability is for one index case. The probability generating function for
& can be written as:

9¢(t) = B[t*] = B[E[t*|1]] = E[e""9] = E[MV] = Wy (At - 1)) (3)

Where Uy(t) is the moment generating function for I. In equation (3) & ~
RD, which is the basic reproductive distribution. See Figure 4 for different
random distributions on I.
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5.2  Constant value on the infectious time period

Also known as the Reed-Frost model.

1
E[I] - =
Y
At—1)
\III(T,) = € 7
A(t—1)
= e
s = 1—t
—As
1—s = e =¢ fos

Here s will denote the probability of having a major outbreak. It can be
solved numerically for different values of Rj.

5.3  FExponentially distributed infectious time period

Also known as the general epidemic model. The probability for a major
outbreak will be less than for the case with a constant infectious time period.

I ~ Exp(y)
E[I] = 1
Y
1 Y
Ur(t) = =
1) l—f/ v—1
t = Yr\t—-1))
;= Y
vy—At+t
Y
t = —
A
s = 1—1t
s — )\—’)/_R()—l_ _L
a A Ry a Ry

Here s will denote the probability of having a major outbreak. The general
epidemic model gives an easy way to calculate the probability for a major
outbreak.
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5.4  Gamma distributed infectious time period

I ~ T(n,nvy)
E[Il] = il
Var[I] = n—72
Up(t) = a _1%)n

t o= TpA(t— 1))

1 : tun@_M)

ny
n
s = 1—-1

L= (-9 (14 %)

Here s will denote the probability of having a major outbreak. It can be
solved numerically for different values of Ry.

5.5  Comparison between the different epidemic models

The probability for a major outbreak given by the Reed-Frost, gamma dis-
tributed infectious time period and the general epidemic model are shown in
Figure 5. For low values in Ry the difference can be remarkably large. For
example with Ry = AE[I]| = 2, the general epidemic has a probability of 0.50
while the Reed-Frost has 0.80. The ordering seems to be that constant dis-
tribution > gamma distribution > exponential distribution, when it comes
to the probability for having a major outbreak.

5.6  Order of probabilities for major outbreaks with different random distri-
butions on the infectious time periods

Assume that R has the same value in all models.
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Figure 5. Probability for a major outbreak as a function of Ry

29



Let f be a convex function and U be a stochastic variable.

Jensen’s inequality = f(E[U]) < E[f(U)]

Let f(t) = e
e—)\E[I] < E[e—)\I]
P(Infected during time period I) = 1—e M
1-Ee™M < 1- e B

In the constant case there is an equality while for the exponential and gamma
distributions on the infectious time period there can be an inequality. This
gives that the constant distribution has the highest probability for a major
outbreak.

Next we show that the probability for a major outbreak with the general
epidemic model, is less or equal to the case with a gamma distribution with
an integer as the form parameter. This can be shown by methods from (Daley
(1990)). ¢(t) is the Laplace transform for I, ¢;(t) = E[e™]. Let p,, =
probability for a major outbreak.

I, ~ Exp(v) I, ~T(n,ny)
1 1
¢I1(t) = 1 _‘_% ¢12(t) = m

o(I;)  (1+)"

¢I1(t> > (bIQ(t) , SInce ¢(I2) - 1 +$
_—
I, <, I,
_
pmo(I1> S pmo(I2>

For n = 1 there is equality, since it gives the exponential distribution. While
for n > 1 there is an inequality. Showing that gamma distribution has greater
or equal probability for an outbreak than the exponential distribution.

$(I1) _ ¥

(I2) 1+§‘

Letting n — oo gives

6. Time until a major outbreak

In Chapter 5 we calculated the probability for having a major outbreak. In
real life the probability is not always the most wanted concept. People are
more interested in what time span outbreaks might happen. This giving aid
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in the planning procedures, such as producing the necessary amounts of anti
viral or vaccine doses.

Assume that there is a flow of imported new infectious individuals (index
cases) K; who arrive according to a Poisson process with rate ;. If the
population is protected by herd immunity, (Ry < 1), this contributes with
a probability 0 a.s. for a major outbreak. If Ry > 1, there is a probability
k(Ro(t)) for a major outbreak. This at a certain time point ¢, where index
cases enters the population.

The probability function k(Ro(t)) has been calculated in Chapter 5. Let T
denote the time point for a major outbreak.

Ro(t) <1 < k(Ro(t)) =0.
Pt <T <t+h) = MNAP(T > t)k(Ro(t))
P(T <t+h)—P(T <t)

= AP(T > t)k(Ro(t))

h
lim P(TSH—h})L—P(Tgt) L P
P(T >t) = 1-P(t)
Prit)
1_713(0 - Aik(RO(t»
In(1-P(t)) = —Nk(Ro(t))
In(1-P(t)) = -\ /0 k(Ro(s))ds
P(t) = 1— e iJok(Ro(s)ds
P(t) = Fx(t)
fr(t) = Ak(Ro(t))e o HIRlDt ()

Looking at the expression for P(t), shows that the probability for a major
outbreak increases when k(Rg) increases. This is also what to expect. Let-
ting k(Rp) increase is similar to that Ry is increasing. Knowing the function
k(Ro(t)), gives now a way to calculate the probability for a major outbreak
at any given time point.

6.1 Time for an outbreak when Ryg is constant

Assume that Rg will be constant for all time points and Rg > 1. It is possible
to give an analytic expression the expected time T for a major outbreak
and its variance. Equation (4) shows this is the density function for an
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exponential distribution with rate A\;k(Ro(t)), where k(Ro(t)) is constant.

T ~ Exp(M\k(Ro(t)))

1
BT = SR
1
Varlll = @)

Depending on which assumptions are on the infectious period of time I, we
can make comparisons between different models.

Figure 6 shows how the distribution of time depends on the value of Rj.
Figure 7 shows the expected time and the 95% prediction interval for a major
outbreak with Ry = 1.1,2,4,10. For small values on Ry there is a certain
difference.

6.2 Twme for an outbreak when Ry is not constant

In this situation there rarely exists an exact solution, instead the calculations
will be done numerically.

Two typical situations arise with this setting. First situation is diseases
like measles which in many countries is controlled by herd immunity. But
decreased vaccination coverage can make Ry > 1. The second situation is
when a new unknown disease enters the population. For example SARS or
pandemic influenza. With diseases like these Ry might be far from 1 already
at the beginning.

To answer these questions of when after crossing the herd immunity threshold
level a major outbreak can occur, two different scenarios are calculated with
different assumptions on the development of Ry. Assume that one index case
enters the population each year. In the first scenario R increases with 0.01
units each year, see Figure 8. The second scenario is when Ry first increases,
followed by a decrease, see Figure 9.

7. Results and Discussion

When using different epidemic models it is important to consider how the
infectious time period is distributed. Both for the case of emerging new
infections and for future outbreaks of diseases known which are known today.

The number of infected when the population is protected by herd immunity

can also be considerably high. This shows the danger of using deterministic
models which will predict the expected value, and this will be very low.
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Figure 6. Probability for a major outbreak as a function of Ry. The index
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each year if the time scale is in weeks.
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The time for major outbreaks when crossing the herd immunity level is very
sensitive for the assumption on the distribution of the infectious time period.

There are limitations in this report. One is that the population is assumed
to be homogeneously mixing. The aim is to concentrate on the random dis-
tribution on the infectious time period. Constant, exponentially distributed
and gamma distributed time periods have been used. Although the methods
can be used for other distributions.

In the future other distributions will be considered. Also the case with dif-
ferent heterogeneity in the population will be considered.
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This gives individual data on date of probable infection and different
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We have fitted different distributions to the observed times spent in
different states of the infection process. The states considered are in-
cubation and period with fever until rash.
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ing the prodromal compared with the rash period.

Estimations are made in respect to community, household and hospital
based spread of infection.
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Abstract

Detailed individual data are used to estimate the number of infec-
tious contacts in the population due to an outbreak of smallpox. The
data is known due to a contact tracing conducted during the epidemic.
This gives individual data on date of probable infection and different
stages in the disease.

We have fitted different distributions to the observed times spent in
different states of the infection process. The states considered are in-
cubation and period with fever until rash.

We have also considered if there is any difference in infectiousness dur-
ing the prodromal compared with the rash period.

Estimations are made in respect to community, household and hospital
based spread of infection.

The major finding is that many estimates are very dependent of popu-
lation structure, making comparisons with other studies cumbersome.

1 Introduction

This paper describes the analysis of data from the last outbreak of smallpox
in Sweden, which occurred during the summer and autumn of 1963. Models
for epidemic spread are developed which take households and hospitals into
account since most of the spread during the outbreak was concentrated here.
We have aimed specifically at two questions:

e How big are the number of infectious contacts per time unit at different
locations, i.e. within community, households and hospitals?

e How do the different assumptions of the length of the infectious period
fit the data?

Even for a "well known“ disease as smallpox there exist many open questions.
How infectious are individuals before the onset of rash, is there variability
in infectiousness during the rash period? For the Stockholm outbreak we
possess individual data from the outbreak concerning probable dates of in-
fection, onset of fever, onset of rash etc. Apart from this it is also known
how many were not infected in the cases families and hospital wards if they
were hospitalized.

These data are applied into an epidemic model taking hospital and household
setting into account. The hypothesis of interest is whether there are differ-
ences in infectiousness between the prodromal and the rash period. Also to



calculate the number of infectious contacts at different settings of infection.

We have taken the approach of calculating the infection pressure on individ-
uals in the population. The model takes individual dates for infection into
account and calculates the total force of infection experienced by the non
infected in the population.

Our population structure shows a great difference in Ry if we assume a homo-
geneous population or a heterogeneous mixing assumption. This also means
that Ry is a very unclear measure without a definite meaning. This makes
comparisons with other studies very difficult.

The second part concerns time spent in different disease states, which is
analyzed separate to the first epidemic model. We use available data from
cases and compare these under different distributions, showing that assuming
an exponential distribution does not fit the data very well, neither does a
period of constant length.

2 Materials and methods

2.1 General description of the epidemic

The outbreak was initiated by a Swedish seaman who flew home from Aus-
tralia via New Zealand, Singapore, India, Pakistan, Iran, Switzerland, Ger-
many and Denmark. At that time there were smallpox outbreaks in India
and Pakistan, and it is probable that this individual was infected in one of
these two countries. This is the first documented case of transmission of
smallpox during an airport transfer.

The seaman had previously been vaccinated against smallpox. Two weeks
after arrival in Stockholm, he developed fever followed by reddish rashes.
Since he thought it was acne, he did not seek a physician and stayed at
home instead. There he was taken care of by his 80 year old grandmother
who two weeks later became ill with similar symptoms and was suspected
to have chickenpox. A third family member later also became ill. Later on
the grandmother was transfered to a hospital where she infected other people.

A community nurse visited the grandmother on a daily basis became infected
and later also infected her family.



It took one month before the first diagnosis of smallpox was made at Dan-
deryds sjukhus.

The major part of the outbreak was concentrated in three families and three
different hospitals. The spread within hospitals was due to incorrect di-
agnosis. The probably infected persons were not isolated but were under
observation in large dormitories where nurses went around and observed the
patients. After smallpox was diagnosed the patients were isolated.

A total of 27 persons were infected, and four of these died. Three of the
27 had not been vaccinated prior to the epidemic, two of these died. With
vaccination we mean that the individual has been vaccinated as a child, in
military service and / or before travel to a country with smallpox. Only per-
sons vaccinated before the epidemic are considered as vaccinated, not those
receiving vaccine after a probable infection of smallpox.

During the epidemic a massive vaccination campaign was launched. Involving
both contact tracing of possible infectious contacts as well as a mass vaccina-
tion of more than 112 000 persons. It took approximately four months until
the last infected person recovered and no new cases were found.

Some unexpected infectious routes were identified. An embalmer (a person
involved in the cleaning of corpses) was infected by contact with a corpse.
Another individual was infected through transporting laundry from one of
the hospitals, when he came in contact with clothes from one of the isolation
rooms. He also delivered food to a nearby hospital causing secondary cases
at that location.

For a general overview of how cases infected one another please see Figure 4
on page 23 and Figure 5 on page 24.

2.2 Data

The data from this outbreak was obtained from (Strom [1966]), a TV doc-
umentary (Wallén [1964]) and medical journals at the Swedish Institute for
Infectious Disease Control. Since contact tracing of possible contacts was
undertaken, information is available regarding both cases as well as persons
who were exposed but not infected (i.e non cases). The following data are
available:



For the cases:

e Whom they were probably infected by

e Which phase of disease the infectious person was in at probable contact
e Possible dates of infection

e Date of onset of fever

e Date of onset of rash

e Date of isolation

e Date discharged from the hospital / death

e Vaccination status for smallpox, in some cases also the time of vacci-
nation

e Which family they belonged to and number of family members

e Where they were hospitalized and in which ward
For the non cases:

e Probable infectious contacts
e Possible dates of infection
e If they belonged to a family

e Where they were hospitalized and in which ward

The date for probable infectious contact is not used in the calculations be-
cause not all possible contacts are known. Information regarding vaccination
status of non cases was unfortunately not available. We only know that they
were given boosters after contact tracing. We assume no asymptomatic cases
(i.e infected without symptoms) existed, since this is very unlikely for small-
DOX.

Short summary of data concerning cases is shown in Table 1.



Variable Number of
observations
Vaccination status 27 24 vaccinated
Family size 27 (1—-4)
Hospital ward size 27 (27 — 51)
Time period Mean | Standard deviation
Infection to onset of fever 26 11.73 | 4.47
Onset of fever to rash 23 3.17 | 1.61

Table 1: Short summary of data for cases
2.3 Smallpox in general

Smallpox also known as Variola Major or Variola Minor, is a disease which
is eradicated worldwide since 1979. It was a much feared infectious disease
and the first vaccines were developed in the 19th century.

The virus transmits through air and body fluids and often through close
contacts with infectious individuals.

The typical presentation of disease is that first symptoms appear two weeks
after infection in the form of high fever. This lasts for about three days after
which a rash appears on the body, which is similar to chickenpox or acne
in the beginning. These rashes last 2-3 weeks and the person is bedridden
during this stage.

Variola Major can be of four different types: ordinary (more than 90% of
cases), modified (mild, common for previously vaccinated persons), flat and
hemorrhagic.

The case fatality rate (CFR) for Variola Major of ordinary type is approxi-
mately 30%. For flat and hemarrhagic it is almost 100%, modified is rarely
lethal. For Variola Minor CFR is approximately 1%.

Protection against smallpox can be acquired in two ways, immunity follow-
ing infection or through vaccination. The vaccine is called Variola and gives
protection for a certain period, the protective effect decreasing with time.
One advantage is that it decreases the severity of infection, i.e individuals
will develop Variola Major modified as opposed to Variola Major ordinary.
This gives a much higher probability of survival given infection.



In Sweden vaccination was a part of the childhood vaccination program until
1976, with an indicator of successful vaccination being a circular scar. After
the virus was eradicated from the world, vaccination ceased. The last known
case was diagnosed in Somalia october 1977. Global eradication was certi-
fied by World Health Organisation in 1979. A laboratory associated smallpox
death occurred at University of Birminghan, England 1978.

The long term protection of the vaccine is questionable, with some studies
having shown protection after 20 years (Eichner [2003]).

2.4 Progress of infection

We will give a crude sketch of both of how the infectious disease and the
infection spread develops in theory (Giesecke [2002]).

As an infectious disease it can be viewed in the following stages, see also
Figure 1:

1. Healthy: The person has not yet been infected and is not protected
against it.

2. Incubation period: A susceptible person gets infected by an infectious
individual. Incubation period is the period of time between initial
infection and the onset of clinical disease (these manifestations may
not always be clinically visible).

3. Clinical disease: Appearance of visible symptoms

4. Resistant: The person has recovered from the disease, or has been
successfully immunized through vaccination.

How infection is spread differs from the above because an individual can be
infectious before the stage of clinical disease, see also Figure 2:

Healthy

Infected accination

Incubation — Clinical disease — Resistant

Figure 1: Progress of infectious disease
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Susceptible
|

Infected Vaccination

Latent ——— Infectious —— Resistant

Figure 2: Progress of infection
1. Susceptible: The person has not yet been infected and is not protected
against it.

2. Latent period: When a person becomes infected by an infectious indi-
vidual.

3. Infectious period: The person is now infectious and can transmit the
disease to others

4. Resistant: The person has recovered from the disease, or has been
successfully immunized through vaccination.

This is modeled by assuming that there is a certain amount of transition
between the different states. The transition in our case is in one direction:

For infectious agents like influenza the recovered person can be susceptible
again, depending on which type of influenza is circulating the next influenza
season. But in our case everyone who is resistant will remain resistant.

Infected persons are assumed to meet other individuals in the population
according to a Poisson process. This implies that the number of contacts in
any time period is a Poisson distributed random variable. If a proportion of
the population is immune the number of contacts that will result in a new
infection will reduce in correspondence to this.

2.4.1 Fitting distributions to observed time observations

The data used will be the available data for the periods. These transition
periods investigated are the following: infected to onset of fever and fever
to onset of rash. The time from onset of rash until discharged has not been
analyzed since it does not measure how long time a person is infectious. We
want to emphasize that we are not estimating these parameters through our
epidemic model. Each phase in infection will be analyzed separately.
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2.4.2 Time spent in different states

When trying to model the transitions between different states the time spent
in different states, many times it is assumed to be exponentially distributed.
This allows the possibility to use Markovian properties to calculate, for ex-
ample, the size of the epidemic. Many studies have used or are using this
distribution. The limitation is that no diseases have shown to follow an ex-
ponential distribution in the different states, making this approach mostly of
academic interest.

Another approach is to assume that the time spent in the different states
is constant or to find a suitable balance between the exponentially and con-
stantly distributed transition times.

We will be using an approach by assuming the occupation times to follow a
gamma distribution.

2.4.3 Basic reproductive number R,

A parameter of interest in this case is the so called "basic reproductive num-
ber", denoted Ry. This is a crude measure of how many infected persons
are generated by one infectious individual entering a totally susceptible pop-
ulation. If Ry < 1 no large outbreaks will occur, only a small outbreak is
possible. If Ry > 1 there will be a positive probability for a large outbreak,
meaning that a considerable proportion of the population could get infected.

2.5 The epidemic model used

As in (Eichner and Dietz [2003]) we are using a SEIR model to describe the
progress of the disease.

e S =Susceptible

E =Exposed (latent period)

I =Infectious period, which is divided into two parts:

— I peyer = Fever to onset of rash
— Ig.sn = Rash until recovered / death

e R = Resistant / death

12



Given infection the person will first be in the exposed (latent) period for
about two weeks. This is followed by the fever phase which last about three
days. Then a rash starts to appear and recovering from this stage takes an
additional 1-3 weeks. There are two possible outcomes, namely death or re-
covery. Schematically this model is showed in Figure 3.

When establishing the model we are also interested in any differences in "in-
fectiousness" in the states I peye and I gy, this ratio being denoted by b.

2.6 Notations

The following notation is used:

o 1 cctod = Time point for infection, when several days exist we have
taken their mean value.
e ti = Time point for onset of fever

e tin .. = Time point for onset of rash

o "Isflated = Time point for isolation / recovery (recovery for cases not
1solate

N =population size

e 1 = number of cases

2.7 Calculation of infectiousness

We have adopted the approach to calculate the infection pressure on individ-
uals in the population. This is done by calculating the number of individuals
who are in the fever or rash period at a certain point in time. The effect of
different infectiousness in the fever and rash period is also taken into account

S

|

E——1Ireer —>Ipasn —> R
Figure 3: Epidemic model used
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through the variable b.

Let h;(t) measure the infectious status of person j at time j. These are
Irever, IRrasn and not infectious. Let J be an indicator function.

hi(t) =03 e+ T e

Ras ash —="— Isolated}

To calculate the total "infection pressure" individual 7 is exposed to, A;(t) at
a certain time point t. The h;(t) for all cases j are summarized and multi-
plied by the number of infectious contacts per day.

27
Ai(t) =D hj(t) * number of infectious contacts per day
j=1

2.7.1 Population structure

A number of different structures for the population is possible. We have
assumed two different models for dynamics in our population. One assumes
homogeneous mixing, that is no family or hospital effects are taken into
account. The second approach takes into account the effect of family and
hospital on infectious contacts.

In the homogeneous mixing model a number of contacts per day x is as-
sumed and this is spread uniformly within the rest of the population. If the
population size is N, one infectious individual is in mean transmitting =

N-1
infectious contacts to any other individual.

In the heterogeneous mixing we have attempted to set up a population struc-
ture with households and hospitals taken into account. If a persons belongs
to multi households he will be exposed to two rates, x and kr. Here kg
is an addition per family members. If he belongs to a single household his
exposure is the rate x. If a person belong to a hospital he is exposed to a
rate k. We assume only infectious contacts within hospitals.

e ik = Number of infectious contacts per day with any person in a popu-
lation with hospitals and households

14



e x = Number of infectious contacts per day with any person in a popu-
lation with hospitals and households

e xr = Number of infectious contacts per day with a certain family
member

e kg = Number of infectious contacts per day with any person in a
hospital

e N = Population size

e n’; = Number of people in the hospital ward where person i is situated

Letting h;(t) denote in which infectious state person j is at a certain time
point we can describe the population structure. Assuming an homogeneously
mixing population the force of infection \;(¢) follows as:

a0 =05

J=1

If a heterogeneously mixing population is used:

Ai(t) = ;hj(t)J(hOSPi(t) =0) (J(fj = fi) <Nﬁ_1 + HF) +J(f; # fz‘)NR_ 1
+ ihj(t)J(hospi(t) — 1)(n;f11)

Here f; is the family identity for person i, hosp;(t) is an indicator if person
¢ is in hospital at time t. The procedure is to first check if person ¢ is in
hospital. If yes (hosp;(t) = 1), he is exposed to certain number of infectious
contacts. If no (hosp;(t) = 0), he is exposed to some other infectious contacts
on which family he belongs to. J is an indicator function.

2.7.2 Calculation of R,

Assuming that we know the parameters of interest, this allows us to calcu-
late Ry, the expected number of infectious contacts during the infectious time
period. We define it as a product of number of infectious contacts per day
multiplied with the total length of the two infectious periods. Using the same
notations as before, the parameters of interest are the scale factor b, number
of infectious contacts per day k, kr, kg and the length of the infectious time

15
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periods (prodromal + rash).

Concerning the length of the infectious periods, the prodromal period ( fever
to rash) has the mean length based on our data. The rash period is probably
overestimated in this data, and this is the reason for including other time
periods as well. We are assuming that the two time periods are distributed
as a gamma distribution.

IFever ~ F(O‘faﬁf)

(6%
E[IF@/UeT] = B; = HUFever
IRash ~ (ara ﬁr)
E[IRash] = ﬁ = HRash

Now Ry can be estimated in the situation with homogeneous or heterogeneous
mixing assumptions:

Homogeneously mixing population:

~

R

Ro= (N~ 1)

1 (bﬂFever + NRash) - %<b,uFever + ,U/Rash>

Heterogeneous mixing population with a single household:

RO = (N - 1>N <bMFever + MRash) = H<b,uFever + MRash)

Heterogeneous mixing population with a multi person household:
Let f; and f; be family indicators for person ¢ and j. Calculate the number
of infectious contacts caused by person 7. J is an indicator function. Let ng
denote the number of additional family members in a household.

RE = g( = Flyy + 30 = fr ) (e + o) =
n

= (N r 15 + nFK:F) (b,uFever + /JJRash>
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Heterogeneous mixing population with within hospital infection:

Let hosp(i) and hosp(j) be hospital ward indicators for person ¢ and j. Cal-
culate the number of infectious contacts caused by person ¢. J is an indicator
function.

K . ‘
RY = <ng > J(hosp(i) = hosp(j))) (bppever + uRash> =
i

5 )
= <nZH 7’L7H> (b,uFever + H}Rash) = KH <b,UFever + MRash)
H

We note that in the case of heterogeneous mixing the calculation is made
as an expected value, not as most often the largest eigenvalue of a mixing
matrix.

2.7.3 Likelihood calculations

The infectious contacts are assumed to follow a Poisson process with inten-
sity A;(t) where \;(t) is calculated in Section 2.7. The probability to become

infected at time s, given no infection before is A;(s)e™ Jo X0 1f e know
the time of infection t7,,recteq and the vaccine efficacy v we can calculate
the likelihood for the cases and non cases as follows:

e v = vaccine efficacy.

0; = Vaccination status for case number ¢, 1 if vaccinated, 0 otherwise

Infectea = Day of infection for case number .

Ai(t) = Force of infection on individual ¢, day number t.
e N, = set consisting of all cases

° N; = set consisting of vaccinated non cases cases not belonging to a
household or hospital during the epidemic

e N, = set consisting of non vaccinated non cases cases not belonging to
a household or hospital during the epidemic

e N = set consisting of non cases belonging to a household but not
belonging to a hospital during the epidemic

17



e N}; = set consisting of vaccinated non cases not belonging to a house-
hold but belonging to a hospital during the epidemic

e Ny = set consisting of non vaccinated non cases not belonging to a
household but belonging to a hospital during the epidemic

The likelihood functions can be calculated as follows (Eichner and Dietz
[2003]):

ti
Infected /\l (’T)dT

Pyease) = (1= 0)"Niltingectea)e”
P;(non case) = (1-— v)‘;ie_focx> Ai(r)dr
L = [ Picase) 11 P;i(non case) =
1€{cases} ie{non case}
= ][ Pi(case) J] Pi(non case) J] Pi(non case)
i€NC ieNy ieNp

I Pi(non case) J[ Pi(non case) J[ Pi(non case)
iENF ieNy ieENH

0

logL = > d;log(1—v) —|—Zlog)\ Z/Iﬂf&md T)dT +
i=1

+ Zlog( (1—v)eJo X T)—i—
iENY

+ > log (v + (1 —v)e” o Ai(T)dT) +
iENp

+ Y log <v+ (1 —-w)e MT)dT) -
iENF

- > / T)dT — /oo Xi(T)dT

i€ENp zeNH 0

The likelihood for the cases is calculated by taking the family- and hospital
place at different times into account. This is included in the calculation of
A(t). For non cases there is a division made depending if they are in a multi
person household or hospital. In a household due to the high vaccination
proportion in the population all are considered to be vaccinated. In a hospi-
tal the number of vaccinated and unvaccinated are rounded off to the closest

18



Time period | « G | Expected value | Std | n
infected to fever | 7.58 | 0.64 | 11.73 4.26 | 26
fever torash | 4.05 | 1.28 | 3.17 1.58 | 23

Table 2: Parameters for duration in different states

integer.

The likelihood for non cases is depending on the proportion vaccinated prior
the epidemic. We have assumed this to be the same as the proportion for
cases. This is of course questionable, sensitivity analysis could be made or an
implication of the the EM-algorithm to estimate the “expected proportion”.

To estimate the parameters of interest profile likelihood methods have been
used. This is done by fixing one parameter and varying the others. The
maximum of these is taken as the likelihood for the fixed parameter. Then
the fixed parameter is given a new value and it is maximized again over the
other ones. The maximum likelihood estimation for the fixed parameter will
be the point at which the maximum value for the likelihood is obtained.

3 Results

3.1 Times spent at different states

Assuming that the amount of time spent in different states follows a I'(«, (3)-

distribution with expected value % and variance % The parameters «

(shape) and (B (scale) are estimated through maximum likelihood. The
yielded estimates are shown in Table 2.

The times for rash to recovered are overestimated since the recorded recovery
date is probably over-exaggerated in order to ensure that the patient is no
longer infective.

The infected to fever period and the prodromal period (2 weeks and 3 days
respectively) are similar to those found in other studies.

When comparing this with an exponential distribution we know that the
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variable | value | 95% confidence interval
scale | 0.51 | (0.1 - 1.5)
vaccine efficacy | 0.98 | (0.95 - 0.99)
k| 0.47 | (0.25 - 0.85)
ki | 054 | (0.31-0.92)
kp | 0.057 | (0.015 - 0.12)

Table 3: Estimates for parameters of interest, heterogeneous mixing

shape parameter o should be around 1 in the I'-distribution. Following our
estimations this value is far from one, indicating that an exponential distri-
bution is not suitable in the case of smallpox. This is enough only if we are
interested in how big the outbreak will become.

3.2 Estimation of parameters of interest

Estimating our parameters of interest are shown in Table 3.

The wide interval on the scale parameter b indicates that there is uncertainty
concerning a difference in infectiousness at different infectious states.

The vaccine efficacy v seems to be high. We are unsure of the number of
vaccinated individuals in the total population and how the protective effect
diminishes over time.

The number of infectious contacts are approximately 0.5 per day in commu-
nity and hospitals. We want to emphasize that by varying the population
structure these values can change considerably.

4 Discussion

The major finding is that although very detailed data, it is very hard to find
“good” estimates for even the most basic measures of interest. In our case
these are the number of infectious contacts per day and the length of the
infectious period.
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These two parameters are crucial to estimate Ry and are very sensitive to
the structure given to the population. We have also compared with a ho-
mogeneously mixing population and the results differ dramatically from the
values obtained in our heterogeneous population. Also when changing the
infectiousness within families, assuming some infectious contacts with all
population and extra infectiousness spread among family members, altered
the results. This means that interpreting and comparing R, values obtained
in different studies is very difficult since usually the population structures are
different. When simulating possible smallpox outbreaks the results should
vary. This also for the case with same value on Ry but different population
structures.

Testing infectiousness in the prodromal period with the rash period gives no
significant difference. The estimate is about 0.5. If we assume a homoge-
neous mixing population the infectiousness in the prodromal period is about
the same as with heterogeneous mixing. Still this is far from the assumption
used in (Halloran et al. [2002|) where a 10 times higher infectiousness is as-
sumed in the prodromal period.

Our calculations are also perturbated by the fact that a number of infectious
contacts occur in unexpected places. Some scenarios are hard to put into
the model. For example in the beginning of the outbreak a home visiting
nurse is infected. In the model she belongs to the first affected family in
the beginning but must at one time point be transfered to her own family
where she infects her relatives. Also the person transporting clothes from
the hospital and the embalmer are unusual occupations to include in a re-
alistic way. In our case these infectious contacts are taking place at a hospital.

We have also assumed that no more infectious contacts will take place while
a person is isolated in the infectious disease hospital. The embalmer is an
example that this is not a completely true assumption.

The largest error is probably the fact that in calculating "Ry" it is assumed
that the populations remain the same. But in the event of an epidemic sit-
uation people are probably much more attentive to their contacts thus the
structure could change dramatically. In our case the extensive vaccination
campaign of over 112 000 individuals vaccinate should also matter concerning
the proportion resistant in the population at different time points. Also the
fact that large populations surrounding the infected households were mass
vaccinated must affect the result. These events would decrease the number of
infectious contacts per day, suggesting that at the beginning the the number
of infectious contacts should be higher than at the end of the epidemic.

Our results show that on using values of Ry in simulations of possible small-
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pox outbreaks, great care should be taken when interpreting the meaning
of outputs. Are the assumptions similar to our model, if not how will they
change the outcome?

As noted in the beginning of discussion, only a small number of parameters
are possible to estimate reasonably. One can only raise the question in many
simulations where maybe more than 15 parameters are used. How reliable are
these? Probably only two are known and the rest are “estimated” through
some medical expertise. The known parameters may be the length of the
infectious period and the number of infectious contacts which are already
very unsure. Leading to the conclusion that we probably know nothing with
certain for these parameters. In such case it is probably wiser to use much
simpler models for more realistic situations, than using many values for the
unknown parameters as in (Kretzschmar et al. [2004] and E.H.Kaplan et al.
[2002]). An extreme example is (Epstein et al. [2004]) where 30 parameters
are used.

The inportant feature with the Stockholm outbreak was that a large part
of it occurred within households. It is a striking contrast with many other
study findings where hospitals have been the coins for infection transmission.
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Figure 4: Available data on infected persons after the onset of fever of the
first person. Scale on x-axis = Number of days.
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Figure 5: Schematic overview of the epidemic, how cases infected each other.
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