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Abstract

In phylogenetic inference the support of an estimated phylogenetic tree
topology and its interior branches are usually measured either with non-
parametric bootstrap support values (BS) or with Bayesian posterior
probabilities (BPP). Extensive empirical evidence indicate that BPP val-
ues are systematically larger than BS when measured on the same data
set, but there are no theoretical results supporting such a systematic dif-
ference. In the present note we give a heuristic mathematical argument
supporting the empirically observed phenomenon. A simulation study is
performed to investigate the heuristic arguments and The heuristic argu-
ments are supported in a simulation study evaluating different steps in
the argument.

Keywords: Bayesian posterior probability, bootstrap support, marginal
likelihood, phylogenetic inference, profile likelihood.

1 Introduction

The present paper is concerned with phylogenetic inference based on aligned

DNA-sequences from a set of species of interest. The aim is to draw conclu-

sions about the phylogenetic tree specifying the evolution of the species. Beside
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coming up with an estimated phylogenetic tree it is also of interest to express

the support, or belief, in the estimated tree. Here we study and compare two

common ways to perform such an analysis.

The first method is to estimate the phylogenetic tree using maximum like-

lihood methods for an evolutionary model, and to estimate the support for the

estimated tree by the corresponding non-parametric bootstrap support. The

second method estimates the phylogenetic tree with the tree-topology having

largest Bayesian posterior probability, where an evolutionary model and a prior

parameter distribution is used in a Bayesian setting.

The analysis is performed assuming that we have the true evolutionary model

and that the sequences are perfectly aligned without any gaps – it is beyond

the scope of the present paper to study what effect deviations from the evolu-

tionary model and misalignments have on the two support values. Further, we

restrict our attention to support values for the whole phylogenetic tree and not

for interior branches, although our findings extend also to this case. Under these

assumptions we compare bootstrap support values (BS) with Bayesian poste-

rior probabilities (BPP) for the same sequence data and the same evolutionary

model.

Extensive empirical evidence suggest that, generally BPP>BS (e.g. Wilcox

et al., 2002, Alfaro et al., 2003, Douady et al., 2003, and Erixon et al., 2003).

However, there are to our knowledge no theoretical arguments supporting this

systematic difference. In fact, a paper by Efron et al. (1996) has been used

as an argument to why the two support measures should be approximately

equal (e.g. Larget and Simon, 1999, Cummings et al., 2003, Simmons et al.,

2004). Svennblad et al. (2006) explain why this argument is misleading and

why the two support measures need not be equal, but they present no argument

for the empirically observed systematic difference. In the present paper we

give a mathematical argument, admittedly not fully rigorous, to why BPP>BS.

The argument uses the fact that BS is strongly related to the relative profile

likelihood of the most likely phylogeny, and that BPP approximately equals the

relative marginal likelihood of the most likely phylogeny. When we have long
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sequences the two relative likelihoods mentioned are approximated by normal

distributions and the conclusion is drawn by showing that the maximal relative

marginal likelihood is larger than the corresponding profile likelihood for the

normal distribution.

In Section 2 we present the evolutionary model and type of data consid-

ered. Sections 3 and 4 present how bootstrap supports and Bayesian posterior

probabilities, respectively, are obtained. In Section 5 we give the mathematical

argument to why BPP>BSA and in Section 6 a simulation study is performed

to investigate and illustrate the support for the arguments.

2 Model and data

Consider an evolutionary model in which sites are assumed to evolve indepen-

dently and identically (we will use the simple Jukes & Cantor (J-C) model, Jukes

and Cantor, 1969, in our examples). Suppose we have k aligned DNA sequences,

all of length n. From the data we want to estimate the underlying unrooted

tree topology which we denote by τ . For k ≥ 4 species, or terminals, there are

(2k − 5)!! different topologies to choose between. The smallest non-trivial case

is k = 4 when there are 3!! = 3 · 1 = 3 different possible tree topologies τ1, τ2

and τ3.

At any given site, there are 4k possible nucleotide “patterns”, which we label

somehow from 1 to 4k (if there are k = 4 terminals we could give the pattern

AAAA label 1, AAAC label 2, ..., TTTT label 256). Because we assume that

different sites are independent and identically distributed, an alternative way

to summarise the sequence data is by n = (n1, . . . , n4k), where ni denotes the

number of sites in the data that have pattern i. We call data on this form pattern

data. In statistical terms, the pattern data of the form n = (n1, . . . , n4k) is a

sufficient statistic for the parameters of the model. From now on we therefore

consider this as our data.

If the tree topology τ and its branch lengths b(τ) are known it is, at least in
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principle, possible to compute the probability

pi = pi(τ,b
(τ)) = P (pattern i occurs at a given site) i = 1, . . . , 4k.

Because sites are assumed independent and identically distributed it follows

that the probability to observe a specific data pattern n = (n1, . . . , n4k) follows

the multinomial distribution with parameters n (=the sequence length) and

p(τ,b(τ)) = (p1(τ,b
(τ)), . . . , p4k(τ,b(τ))):

P (n1, . . . , n4k |τ,b(τ)) = P (n1, . . . , n4k |p(τ,b(τ))) =

(

n

n1 . . . n4k

)

pn1
1 ·. . . ·pn

4k

4k .

We stress that this formula is true for both likelihood based inference and

Bayesian inference presented below. The Bayesian analysis differs only in that

τ,b(τ)) are treated as random variables, but conditional on their values the out-

come probabilities are identical for the two methods of analysis. The central

limit theorem (e.g. Ross, 2006) implies that if n (the sequence length) is large,

the multinomial distribution is well approximated by the normal distribution

having mean vector np(τ,b(τ)) and variance elements npi(τ,b
(τ))(1−pi(τ,b

(τ)))

and off-diagonal covariance elements −npi(τ,b
(τ))pj(τ,b

(τ)).

3 Likelihood inference

Suppose that we have observed a pattern data n and want to make some conclu-

sions about our parameters (topology, branch lengths and model parameters)

by using the likelihood. The likelihood is simply the probability defined above,

but treating it as a function of the parameters:

L(τ,b(τ)) = P (n1, . . . , n4k |p(τ,b(τ))) =

(

n

n1 . . . n4k

)

pn1
1 · . . . · pn

4k

4k . (1)

By definition, the ML-estimate of (τ,b(τ)) is obtained by maximising the

likelihood L(τ,b(τ)) with respect to τ , b(τ) and model parameters if there are

any. This is done by maximising L(τi,b
(τi)) with respect to b(τi) and possible

model parameters for each topology τi and comparing which of the topologies

{τi} had the largest maximized likelihood. This is equivalent to comparing

4



which topology has the relatively largest maximised likelihood. Define b̂
(τi)
ML to

be the set of branch lengths maximising the likelihood for topology τi: b̂
(τi)
ML =

argmaxb(τi)L(τi,b
(τi)). The ML-estimate for the topology is then given by

τ̂ML = argmaxi

L(τi, b̂
(τi)
ML)

∑

j L(τj , b̂
(τj)
ML)

. (2)

On the right hand side we have inserted the denominator, which is constant

with respect to i and is hence irrelevant, for latter use. The terms in the nu-

merator and denominator above are called profile likelihoods. The ML-estimate

for topology is hence the topology having largest profile likelihood. To actu-

ally compute τ̂ML and its corresponding branch lengths b
(τ̂ML)
ML numerically is a

non-trivial numerical task, but it is outside the scope of the present paper and

is not discussed further.

A common measure of support for an estimated tree topology is to use

non-parametric bootstrap (Felsenstein, 1985). This is done by repeatedly gen-

erating new “pseudo” pattern data n∗ from the original observed pattern n

data by sampling n patterns (i.e. the same length as the original data) with

replacement from the original data. The resulting pattern data vector will then

be an outcome of the multinomial distribution, but now with parameters n and

(p∗1 = n1/n, . . . , p∗4k = n4k/n). For each such “pseudo” pattern data, a max-

imum likelihood estimate τ̂∗
ML is computed using the method just described.

This is repeated many (e.g. 10000) times and the so-called empirical bootstrap

support for τ̂ML is defined as the proportion of bootstrap replicates having the

same ML-topology as the original ML-topology:

BS(τ̂ML) = Bootstrap support for τ̂ML =
# replicates with τ̂∗

ML = τ̂ML

# replicates in total
.

The bootstrap replicates are generated independently, so as more replicates

are taken the (empiricial) bootstrap support above converges to the theoretical

bootstrap support defined by

BSTh(τ̂ML) = P (τ̂∗
ML = τ̂ML)

It is intuitively clear that a higher bootstrap support should indicate a
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stronger belief in the estimated topology since fewer observed site-patterns then

talk in favor of other topologies. However, the absolute value of the support has

no obvious biological interpretation, and to compare the value of a bootstrap

support with other support measures can therefore be misleading.

4 Bayesian inference

In Bayesian analysis we use the same evolutionary model but we also need a

prior distribution for τ and b(τ). In principle one could specify a prior for the

p-vector instead, but since the evolutionary model for the sequences is defined

given the topology τ and branch lengths b(τ), it is more natural to define the

prior in terms of τ and b(τ). If no prior knowledge about the topology and

branch lengths is available a common choice is to have a uniform distribution

for the tree topology (all topologies are equally likely prior to the analysis) and

to let the branches have independent, exponentially distributed branch lengths

(these are the default priors in MrBayes 3.0, Ronquist and Huelsenbeck, 2003).

This will induce a prior on the p-vector but it will not be a uniform distribution.

In fact, no matter what topology and set of branch lengths are the true ones,

certain patterns will always be more likely than others. For example, in the

J-C-model a pattern for which all terminals have the same nucleotide (e.g. A) is

always more likely than any other pattern, because, for an edge having A at one

end the most likely nucleotide at the other end is A, irrespective of the length

of the edge.

Given the model and a prior distribution π(τ,b(τ)) for the topology and

branch lengths, Bayesian inference summarizes the knowledge about the param-

eters in the posterior distribution π(τ,b(τ)|n). By Bayes’ theorem the posterior

distribution is proportional to the prior distribution multiplied by the likelihood:

π(τ,b(τ)|n) ∝ L(τ,b(τ))π(τ,b(τ)), (3)

where the proportionality factor depends on the vector n but not on the pa-

rameters. As more and more data is collected and/or the prior distribution
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π(τ,b(τ)) is close to uniform/flat, the likelihood plays the dominating role on

the right hand side of (3) implying that

π(τ,b(τ)|n) ≈ const × L(τ,b(τ)). (4)

If we are only interested in the topology parameter τ our conclusions should

be based on the posterior distribution for τ , which is the marginal posterior

distribution simply obtained by integrating out the branch lengths: π(τ |n) =
∫

π(τ,b(τ)|n)db(τ). We now assume that we have long sequences thus justifying

the approximation (4). This assumption together with the fact that a posterior

distribution is a proper distribution summing to unity, implies that

π(τ |n) ≈
∫

L(τ,b(τ))db(τ)

∑

j

∫

L(τj ,b(τj))db(τj)
.

We would have exact equality above if the integrals contained the prior distri-

butions π(b(τ)) in the numerator and π(b(τj)) in the denominator.

Our Bayesian point estimate for τ is hence the most probable value in the

posterior distribution:

τ̂B = argmaxiπ(τi|n) ≈ argmaxi

∫

L(τi,b
(τi))db(τi)

∑

j

∫

L(τj ,b(τj))db(τj)
.

The Bayesian estimator is hence the topology having largest relative marginal

likelihood.

Further, the Bayesian support for τ̂B is simply its posterior probability:

BPP(τ̂B) = π(τ̂B |n) = max
i

π(τi|n) ≈ maxi

∫

L(τi,b
(τi))db(τi)

∑

j

∫

L(τj ,b(τj))db(τj)
. (5)

The interpretation of the Bayesian support is clear. Given the Bayesian view-

point and that the prior distribution and evolutionary model is correct, the

Bayesian support for τ̂B is the probability that our estimate is correct. The

more data we have, the less influential is the choice of prior.

Bayesian methods have been increasingly used recently because of the pow-

erful numerical Markov chain Monte Carlo (MCMC) method (e.g. Gilks et al.,

1996) used for obtaining approximations of posterior probabilities even in very

complicated settings, and implemented for phylogenetics in MrBayes 3.0 (Ron-

quist and Huelsenbeck, 2003) for example.
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5 Comparison of the two estimation methods

Before our main task, to compare the two support measures BS and BPP for an

estimated tree topology, we first note that the two methods need not even give

the same estimated topology. Recall that τ̂ML was obtained by maximizing

the profile likelihood whereas τ̂B was obtained by maximizing the marginal

likelihood (assuming long sequences). Since the two methods have different

estimators, the actual estimates for a given data set are not necessarily the

same (see Svennblad et al, 2006). When this occurs there is of course no reason

at all to expect the two support measures to be the same. In practice however,

the two estimates most often coincide.

Assume from now on that the two methods gave the same estimated topol-

ogy, i.e. that τ̂ML = τ̂B , from now on denoted τ̂ . Recall that the BS for τ̂ equals

the probability that the topology having largest relative profile likelihood of a

bootstrap replicate coincides with τ̂ (which had largest relative profile likeli-

hood of the original data set). Recall further that the BPP for τ̂ equals the

largest relative marginal likelihood. There is hence a clear difference between

the two support measures in that they use the profile and marginal likelihoods

respectively. From this point of view there is no reason to expect that the two

support measures should be approximately equal (see Svennblad et al, 2006, for

a further discussion). In what follows we give an argument to why BPP>BS.

5.1 A mathematical argument why BPP> BS

Our argument to why BPP> BS for an estimated tree topology τ̂ contains the

following steps

BS(τ̂) ≈ BSTh(τ̂)
(A)
≈ maxi

L(τi, b̂
(τi)
ML)

∑

j L(τj , b̂
(τj)
ML)

(B)
< maxi

∫

L(τi,b
(τi))db(τi)

∑

j

∫

L(τj ,b(τj))db(τj)
≈ BPP(τ̂).

(6)

The first approximation relies on that enough bootstrap replicates are taken and

was motivated in Section 3, and the last approximation, motivated in Section

4, relies on the sequences being long and/or the prior distribution being close
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to uniform so that the prior can be neglected (if the prior is uniform it is an

exact equality). There are hence two remaining steps needing motivation. The

first part, labelled (A) in equation (6), is that the theoretical bootstrap support

approximately equals the largest relative likelihood and the second part, labelled

(B) in equation (6), is that the largest relative profile likelihood is smaller than

the largest relative marginal likelihood.

We start with (A) in equation (6) which is our weakest point in the argu-

ment both on theoretical grounds and empirically in our simulation studies in

the next section. Recall that τ̂ML was defined in (2) as the topology having

largest relative profile likelihood, and BSTh(τ̂ML) = P (τ̂∗
ML = τ̂ML), i.e. the

probability that the topology of the maximized relative likelihood of a boot-

strap replicate is the same as the topology of the maximised relative likelihood

of the original data. We have no strong argument to why this probability should

approximately equal the maximized relative profile likelihood. However, since

both the estimate and support values use the profile likelihood we find it more

plausible that BSTh(τ̂ML) should resemble this relative profile likelihood rather

than the corresponding relative marginal likelihood, since neither the estimate

nor the BS uses the latter. Our motivation for (A) is thus that if we were

to approximate BSTh(τ̂ML) by the maximized relative profile likelihood or the

maximized relative marginal likelihood, we would recommend the former.

We now motivate inequality (B) in equation (6), which has stronger mathe-

matical grounds as well as strong empirical support from simulations in Section

6.

In equation (1) it was shown that L(τ,b(τ)) = P (n1, . . . , n4k |p(τ,b(τ))),

where n is multinomially distributed with parameters n (the sequence length)

and the vector p(τ,b(τ)). The multinomial distribution can be approximated by

the normal distribution when n is large. As a consequence we have that the like-

lihood L(τ,b(τ)) (approximately) equals a high-dimensional normal distribution

in terms of n. It can clearly not be normal in the parameters τ and b(τ) since

τ is a discrete nominal parameter. Assume instead that we can reparametrise

the vector (τ,b(τ)) into a continuous vector y such that we move between the
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topologies τ1, τ2, . . ., as the components of y vary continuously. Assume further

that the different topologies split up the new parameters space into symmetric

regions. One way of doing this reparametrisation obeying both assumptions is

to let the components of y express the distance between each pair of terminals.

This vector has unnecessary high dimension and there are many numeric choices

of y for which there is no matching values for (τ,b(τ)). However, each choice

of (τ,b(τ)) is mapped on to a unique y-vector y(τ,b(τ)), and it is possible to

move between topologies as components of y vary continuously.

Under this assumption the likelihood L(y) still approximately equals a nor-

mal distribution in terms of n, where the mean vector and covariance matrix are

complicated functions of the vector y. Suppose now that the likelihood L(y)

also approximately equals a normal distribution in terms of the y-vector, so

L(y) = const × f(y) where f(·) is the normal density function of the right di-

mension. Because of the complicated structure of the vector function p(τ,b(τ)),

which is the parameter vector in the multinomial distribution for n, added with

the reparametrisation from (τ,b(τ)) to y this assumption is hard or impossible

to check. Admittedly, it is a rather strong assumption which we make without

proof. A simple univariate comparison, for which the assumption is true, is to

let x come from the normal distribution with mean parameter y and standard

deviation σ. Then, treating x as fixed, it follows that y is normally distributed

with mean x and standard deviation σ. With our assumption we have a vector

y of parameters which is normally distributed, and the y-regions corresponding

to different topologies splits up the parameter space into symmetric regions.

As before we label the topologies τ1, τ2, . . ., and somewhat incorrectly the

corresponding regions in the parameter space for y are also denoted τ1, τ2, . . ..

Let fi = supy∈τi
f(y), so fi equals the largest likelihood value within topology

τi, and let Fi =
∫

τi
f(y)dy, the probability for the parameter being in τi (see

Figure 1 for a 1-dimensional illustration).

To show inequality (B) in equation (6) is then equivalent to showing that

fimax
/
∑

j fj < Fimax
/
∑

j Fj . We show the result for the 1-dimensional case

but it can be extended to higher dimensions. Suppose the normal distribution
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Figure 1: In the figure the normal density is plotted and the regions τi are
marked. The value fi equals the maximal density value in the τi-interval, and
Fi is the corresponding area (the area of the density over τi).

has mean µ and standard deviation σ = 1 without loss of generality, and let

each topology correspond to an interval of length c (by symmetry all topologies

should have equal length). Relabel the topologies so that imax = 0 is the

interval/topology for which both fi/
∑

j fj and Fi/
∑

j Fj are maximized. Let

x denote the distance between µ and the right end-point of interval τ0 (so

0 ≤ x ≤ c) and consequently c − x (≥ 0) is the distance between µ and the

left end-point of τ0 (see Figure 1). We then have Fimax
/
∑

j Fj = F0/1 =

Φ(x)−Φ((−(c− x)), where Φ(·) is the standard normal distribution. Similarly,

the quantity fimax
/
∑

j fj equals

ϕ(0)

ϕ(0) +
∑

k≥0 ϕ(x + kc) +
∑

k≤0 ϕ((x − c) + kc)
,

where ϕ(y) = exp(−y2/2)/
√

2π is the standard normal density function. Below

we show that Fimax
/fimax

≥ Fj/fj for all j. This will prove our statement, since
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it then follows that fj = Fj
fj

Fj
≤ Fj

fimax

Fimax
implying that

∑

j

fj ≤ fimax

Fimax

∑

j

Fj ,

which is exactly the postulated statement. It remains to show that Fimax
/fimax

≥
Fj/fj , for all j > 0, which we do for the special case that x = c, the proof for

j < 0 and general x being similar. We have that

Fimax

fimax

=

∫ c

0
ϕ(x)dx

ϕ(0)
=

∫ c

0

ϕ(x)

ϕ(0)
dx,

Fj

fj

=

∫ c

0
ϕ(x + jc)dx

ϕ(jc)
=

∫ c

0

ϕ(x + jc)

ϕ(jc)
dx.

From this we see that our statement follows if we can show that ϕ(x + y)/ϕ(y)

is a decreasing function of y. But d
dy

ϕ(x + y)/ϕ(y) = −xϕ(x + y)/ϕ(y) < 0

which completes the “proof” for inequality (B) in equation (6). The inequality

is strongly supported in the next section where we have simulated the two sides

a number of times.

To summarise, we have motivated all steps in equation (6) which hence gives

a mathematical argument to why BPP> BS.

6 Simulations

In order to investigate the approximations involved in equation (6) we have per-

formed simulations as follows. We have considered the 4 taxon case implying

that there are only three possible topologies. We have generated the topology

of the tree uniformly (each tree having probability 1/3). For the branch lengths

we have assumed independent exponential branch lengths, as is default in Mr-

Bayes 3.0, but varied the mean of the prior branch length. Given the tree, i.e.

topology and branch lengths, we have generated a data set of aligned sequences

according to the Jukes-Cantor model (Jukes and Cantor, 1969). Then, for this

data set we have estimated a tree and its support, using maximum likelihood

methods combined with bootstrap support as described in Section 3, and using

Bayesian methods as described in Section 4. The analyses were performed us-

ing Paup* (Swofford, 2003) and MrBayes 3.0 (Ronquist and Huelsenbeck, 2003)
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respectively. Additional to the two support measures we have also computed

the maximized relative profile likelihood (mrpl) numerically using Fortran sub-

routines. Thus, we have obtained the quantities BS(τ̂), maxi
L(τi,b̂

(τi)

ML
)

P

j
L(τj ,b̂

(τj)

ML
)

and

BPP(τ̂) in equation (6). To obtain the theoretical bootstrap support and the

maximized relative marginal likelihood is not feasible. So when investigating

part (A) in equation (6) in the simulation study we instead investigate if the

empirical bootstrap support more resembles mrpl than it resembles the Bayesian

support, and for part (B) if the maximized relative profile likelihood is smaller

than the Bayesian support. The simulation study hence investigates if

BS(τ̂)
(A)
≈ maxi

L(τi, b̂
(τi)
ML)

∑

j L(τj , b̂
(τj)
ML)

(B)
< BPP(τ̂). (7)

Simulations were performed for two sequence lengths, n = 100 sites and

n = 1000 sites. For the shorter sequence length, the mean of the prior branch

length distribution was varied from 0.025 substitutions per site up to 0.2 sub-

stitution per site. For each prior distribution 15 trees were generated. For

each such tree we simulated sequences (according to the model) and performed

the two statistical procedures and also computed the maximized relative profile

likelihood. In the Bayesian analysis we used the same prior distribution for the

branch lengths as the tree was generated from.

The results from the simulations are given in Table 1 for the shorter sequence

length (n = 100) and in Table 2 for the longer sequence length (n = 1000). To

investigate (A) in (7) we have, for each mean prior branch length, listed the

fraction of times the bootstrap support was closer to the maximized relative

profile likelihood than it was to the Bayes support (which approximately equals

the relative maximized marginal likelihood). Before comparing the support mea-

sures we have transformed the support values using the log-odds transformation

(ln(x/(1−x))). This transformation for example makes a support value of 98%

closer to 96% than to 99.9% which agrees with general opinion (the results are

very similar without the transformation). To investigate (B) we present the frac-

tion of times the mrpl is smaller than the Bayes support as suggested by (B).

In Tables 1 and 2 we only present results from the trees for which the Bayesian
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posterior probability was larger than 0.5 (smaller support values are not very

interesting and when getting close to 1/3 they are also subject to rounding off

errors) and smaller than 0.99 (for higher support values the precision is of the

order of the support why the latter cannot be relied upon). This explains why

much less than 15 (and 50 respectively) analyses are presented for each prior.

Table 1: Simulation study of (7) for sequence length n = 100 sites. Approxima-
tion (A) is investigated by the proportion of times the bootstrap support lies
closer to the mrpl than it does to the Bayes support, and (B) is investigated by
proportion of times the mrpl is smaller than the Bayes support. See text for
further details.

Mean branch Frequency Frequency Frequency
length in prior BS closer to mrpl mrpl < BPP BS < BPP

0.025 5/5 (100%) 5/5 (100%) 5/5 (100%)
0.05 4/4 (100%) 4/4 (100%) 4/4 (100%)
0.075 4/4 (100%) 4/4 (100%) 4/4 (100%)
0.1 3/5 (60%) 3/5 (60%) 4/5 (80%)
0.2 3/5 (60%) 5/5 (100%) 3/5 (60%)

For shorter mean prior branch lengths than presented in the table the sup-

port for (A) is still strong, although branch lengths become short such that data

sequences of length 100 are not sufficient to estimate the tree topology with any

precision. For mean prior branch lengths longer than presented the support for

(A) decreases, but then branches are becoming saturated not containing much

signal.

For sequences length equal to n = 1000 the corresponding results are pre-

sented in Table 2. For shorter mean prior branch length not supported in the

Table 2 hardly no simulated trees hade Bayesian support between 0.5 and 0.99.

For longer mean prior branch length nearly all Bayesian support values were

close to 1 thus not very useful when investigating how our approximations per-

form.

From the simulations we see, from the second column of Table 1 and Table

2, that approximation (A) in (7) is empirically supported by simulations (for

n = 100 in particular when the prior generating the trees does not have too

long mean branch lengths). From the third column we can also see that in-
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Table 2: Simulation study of (7) for sequence length n = 1000 sites. Approxi-
mation (A) is investigated by the proportion of times the bootstrap support lies
closer to the mrpl than it does to the Bayes support, and (B) is investigated by
proportion of times the mrpl is smaller than the Bayes support. See text for
further details.

Mean branch Frequency Frequency Frequency
length in prior BS closer to mrpl mrpl < BPP BS < BPP

0.003 6/6 (100%) 6/6 (100%) 6/6 (100%)
0.004 7/8 (88%) 7/8 (88%) 7/8 (88%)
0.005 12/12 (100%) 12/12 (100%) 12/12 (100%)
0.008 8/8 (60%) 8/8 (60%) 8/8 (100%)
0.010 5/6 (83%) 5/6 (83%) 6/6 (100%)

equality (B) in (7) seems empirically valid irrespective of the mean prior branch

length. From the simulations we hence conclude that our mathematical argu-

ments are supported by our simulations. In Tables 1 and 2 we have also listed

the frequency with which the Bayes support exceeds the bootstrap support,

a frequency which is very high for both sequence lengths and all mean prior

branch lengths. This systematic difference, which the present paper tries to

give mathematical arguments for, also has strong empirical evidence from many

other studies (e.g. Wilcox et al., 2002, Alfaro et al., 2003, Douady et al., 2003,

and Erixon et al., 2003).

7 Discussion

We have given mathematical arguments indicating why BPP for estimated

topologies are larger than corresponding BS values. We admit that several as-

sumptions are made without proofs implying that the results are not rigorous,

but our hope is to trigger further research strengthening the arguments. Since

both estimation methods, maximum likelihood and Bayesian statistical infer-

ence, are consistent, the support values will both tend to 1 as the sequence length

n increases keeping everything else fixed. To show that BPP>BS could there-

fore for be formalized in a result like P ((1−BS(τ̂ML))/(1−BPP(τ̂B)) > 1) → 1

as n tends to infinity for a wide class of evolutionary models, but a complete

15



proof for this seems hard to obtain.
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