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Abstract

Rating of non-life insurance contracts commonly employs multiplicative models that are
estimated by Generalized Linear Models (GLMs); another useful tool for rate making is
credibility models. The main goal of this paper is to demonstrate how these can be com-
bined to solve important practical problems, in particular the car classification problem in
motor insurance. This is achieved by reformulating the credibility models as multiplica-
tive random effects models, where the GLM estimates are used as “a priori differences”.
Our models have various elements in common with, in cronological order, Sundt (1987),
Dannenburg, Kaas & Goovaerts (1996), Nelder & Verall (1997) and Bühlmann & Gisler
(2005, Chapter 4.13). The methods are illustrated on data from a Swedish insurance
company.
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2 1 INTRODUCTION

1 Introduction

Credibility estimators are useful in the process of rating non-life insurance contracts, but in

our experience, credibility is not used as much in practice as it deserves. Non-life actuaries

commonly employ multiplicative models, where a number of rating factors are estimated by

GLMs (Generalized Linear Models). Most texts on credibility theory tend to ignore this fact,

giving little or no guidance on how to use credibility estimators in this multiplicative GLM

enviroment. To bridge the gap between GLMs and credibility, we suggest here that credibility

models are stated as multiplicative random effects models. Credibility and GLMs can then

easily be combined to mixed models (GLMMs) with the familiar multiplicative structure for

the mean (log-link).

Another fact that “hampers the acceptance of credibility techniques by practicioners” was

noted by Dannenburg, Kaas & Goovaerts (1996): that “credibility is currently taught in a

needlessly complicated way” and that credibility is “set in a Bayesian framework”. They sug-

gest replacing the Bayesian setting, with an abstract risk parameter Θ, by variance component

models (additive random effects models). We find this a very clever and useful reformula-

tion of credibility theory, but we prefer using multiplicative models, since these are common

practice in GLM rating.

The idea of combining credibility and GLMs is not new: it was introduced by Nelder & Verall

(1997), using the HGLMs (Hierarchical Generalized Linear Models) of Lee & Nelder (1996);

however, their approach uses the concept of hierarchical likelihood which, presumably, is not

familiar to most actuaries. We prefer here to stay with the distribution-free and simple BLP

(best linear predictor) approach that is standard in credibility theory.

One might say that the present paper combines an idea by Dannenburg et al.—deriving

traditional credibility estimators by using random effects models—with an idea by Nelder &

Verall: combining GLMs and credibility.

In the basic Bühlmann-Straub case, even though our model is stated different, our results have
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a connection to those of Bühlmann & Gisler (2005, Proposition 2.11 and Section 4.13) on using

a priori information in credibility—as will be explained in Section 3. In the hierarchical case,

there are similarities between our results and Sundt (1987). What is new here, in relation to

these two texts, is the connection to GLM and the implication this has on the estimators.

In summary our goal is to

• present new theory on the use of a priori information from GLMs in credibility, in

particular in hierarchical credibility;

• demonstrate to the practicing actuary how credibility can be be a useful tool within the

standard multiplicative GLM framework;

• show how credibility can be taught to actuarial students in a simple way, within the

framework of multiplicative models and GLMs.

Section 2 presents our reformulation of the standard Bühlmann-Straub model. Section 3

discusses the use of GLM estimates as a priori information in credibility. The results are

extended to the hierarchical case in Section 4. Finally, Section 5 presents an application to

so called car model classification in private motor insurance, on data from Länsförsäkringar

Alliance, Sweden.

2 The Bühlmann-Straub model

In non-life insurance rating, one works with some key ratio Y ; this may be the risk premium—

the ratio Y = X/w of observed claim cost X to exposure w measured in policy years. With

GLMs it is customary to carry out separate analyses with the key ratios claim frequency

and average claim severity, respectively. Our exposition below covers all these cases, but for

simplicity, we will mostly mention the risk premium only.

In the Bühlmann-Straub model, we only have one rating factor, dividing the collective into

J groups. We observe Yjt, where j is the group and repeated observations are indexed by
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t. Let µ be the overall mean for the collective and let uj be the price relativity for group j;

j = 1, 2, . . . J ; measuring the departure of the group mean from µ. With sufficient data, the

uj ’s can be estimated by standard GLM techniques. Credibility theory, on the other hand,

consideres the case when we do not have enough observations in all groups for the uj ’s to

be estimated with accuracy, but still want to make the best use of the information we have.

Credibility estimators can be derived under the assumption that price relativities are random

effects Uj . The basic multiplicative model is then

E(Yjt|Uj) = µUj ,

where E(Uj) = 1, in order to avoid redundancy in the parameters. As we shall see, this

reduces the number of parameters to estimate from J + 1 in the GLM case, to only 3 (µ plus

two variance components).

Even though price relativities like Uj are standard in GLM rating, it will be more convenient

in our derivations to work with the variable Vj
.= µUj . By assumption on Uj , E(Vj) = µ, and

E(Yjt|Vj) = Vj . (2.1)

In rating with GLMs, it is usually assumed that the data follow a Tweedie model. The most

important part of this assumption is that the variance is proportional to the p:th power of

the expectation. In our case we must condition on the random effect; the Tweedie variance

is then

Var (Yjt|Vj) =
φV p

j

wjt
, (2.2)

where φ is the GLM dispersion parameter. For p = 1 we get the (overdispersed) Poisson

distribution used for the claim frequency; with p = 2 we get the gamma distribution case,

often used for claim severity; for 1 < p < 2 we have a compound Poisson distribution,

suitable for the risk premium, cf. Jørgensen & Paes de Souza (1994). For more imformation

on Tweedie models, see Jørgensen (1997). In general, it is a very natural assumption in

premium rating that the standard deviation of Yjt is proportional to some power of the mean

(and inversely proportional to the exposure weight w).
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Assuming that the Vj are identically distributed, we may introduce σ2 .= φE[V p
j ], independent

of j. From (2.2) we then have

E [Var (Yjt|Vj)] =
σ2

wjt
, (2.3)

This is really the only fact about the variance of Yjt that we need here. We now collect all

our assumptions for the reformulation of the Bühlmann-Straub model, some of which have

already appeared. Without further notice, any random variable X in this text will be assumed

to have finite second moment, E(X2) < ∞.

Assumption 2.1 (a) The groups are independent, i.e. (Yjt, Vj) and (Yj′t′ , Vj′) are inde-

pendent as soon as j 6= j′.

(b) The Vj ; j = 1, 2, . . . , J ; are identically distributed with E[Vj ] = µ > 0.

(c) For any j, conditional on Vj, the Yjt’s are mutually independent, with mean given by

(2.1) and variance satisfying (2.3).

By part (b) we may write

τ2 .= Var(Vj) . (2.4)

Note that

Var (Yjt) = Var[E(Yjt|Vj)] + E[Var(Yjt|Vj)] = τ2 +
σ2

wjt
. (2.5)

indicating that we actually have a variance component model.

With enough data, we would treat the rating factor as a fixed effect and an obvious estimator

of Vj would be the weighted mean

Yj· =
∑

t wjtYjt∑
t wjt

. (2.6)

If, on the other hand, there where no data at all, a reasonable risk premium would be just µ.

A credibility estimator is a compromise between these two extremes, viz.

V̂j = zjYj· + (1− zj) · µ, (2.7)
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where the credibility factor zj satisfies 0 ≤ zj ≤ 1. To be more precise, one defines the

credibility estimator as that linear function of the observations h(Y ) which minimizes the

mean square error of prediction (MSEP)

E
[
(h(Y )− Vj)

2
]
. (2.8)

Even though our setting is a bit different, the solution to this minimization problem is, of

course, nothing but the famous estimator by Bühlmann & Straub (1970).

Theorem 2.1 (Bühlmann-Straub) Under Assumption 2.1, the credibility estimator of Vj

is given by (2.7) with

zj =
wj·

wj· + σ2/τ2
. (2.9)

For the sake of completeness, a proof is given in the appendix. For a proof in the standard

setting see, e.g., Bühlmann & Gisler (2005, Theorem 4.2).

Note. Some authors would call V̂j a predictor, since Vj is a random variable and not a

parameter; in this context it is the BLP – best linear predictor. The credibility tradition is,

however, to call it an estimator, and we adhere to this terminology.

Finally, a credibility estimator of the random effect Uj is, of course, given by Ûj = zjYj·/µ +

(1− zj). It remains to estimate the parameters, of which µ might be given a priori, e.g. by a

tariff; else it could be estimated by a weighted mean of all observations. Unbiased estimators

of the variance parameters σ2 and τ2 can be found in Bühlmann & Gisler (2005, Section 4.8).

2.1 Comparison with other notation

In a traditional text, such as Bühlmann & Gisler (2005), there is no random effect, but rather

an abstract (random) risk parameter Θj . The task is then to estimate µ(Θj) = E[Yjt|Θj ]. The

correspondence to our notation is µ(Θj) = Vj . Since no inference is made on the parameter

Θj itself, there is no loss in generality in our approach and the estimator is the same.
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Our model is close to the one in Dannenburg et al. (1996), with the random effects ANOVA

model

Yjt = µ + Ξj + Ξjt ,

where Ξj are independent and identically distributed with E[Ξj ] = 0 and Var[Ξj ] = τ2,

and Ξjt are independent and identically distributed with E[Ξjt] = 0 and Var[Ξjt] = σ2/wjt.

The resulting estimator in their Theorem 2.2.2 is the same. This has the merit of being

a familiar ANOVA model, while our approach was designed for the use in another familiar

setting: multiplicative models and GLMs, which is the topic of the next section.

3 Credibility estimators in multiplicative models

In practice, we often have a large number of rating factors, especially in the private lines. In,

e.g., motor insurance these might include the age and gender of the insured person, the age

of the car, the annual mileage, etc. Some of these rating factors are categorical with just a

few classes, e.g. gender, while others are continuous or ordinal and can be grouped into new

variables, like age class or mileage class.

There are also categorical variables with a large number of levels that can not be grouped a

priori by risk homogeneity. One example is car model, which in Sweden has about 2 500 levels.

Even though cars may be grouped by technical variables such as weight or engine power, there

is typically a lot of residual differences left within such groups, see Section 5. Since data are

usually too sparce for the vast majority of models there is a need for credibility estimators.

Furthermore, running a GLM with the 2 500 car models cross-classified by all the other rating

factors may be impractical. A rating factor such as this will be called a multi-level factor

(MLF).

Other examples of MLFs are geographical region (defined by e.g. zip codes), and the customer

herself (experience rating and bonus/malus systems).

Our key ratio is now denoted Yijt, where the i refers to a cell in the tariff given by the ordinary
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rating factors, i.e. the non-MLFs. This tariff cell is the cross-tabulation of R different rating

factors. If γi
j denotes the price relativity for factor number j for insurances in cell i, the

multiplicative model is,

E(Yijt|Uj) = µγi
1γ

i
2 · · · γi

RUj ,

generalizing (2.1). Note that µ is now the so called base premium, the rating in the base cell,

where γi
r = 1; r = 1, . . . , R. By initially disregarding Uj , we can estimate µ and the γi

j ’s by

standard GLM methods. Given such estimates, we now look for a credibility estimator of Uj .

For simplicity in notation we introduce

γi = γi
1γ

i
2 · · · γi

R ,

and again Vj = µUj , so that the multiplicative model can be written

E(Yijt|Vj) = γiVj . (3.1)

As discussed in connection to (2.2), the standard GLM models for Yjt|Vj are Tweedie models,

and so we have

Var(Yijt|Vj) =
φ (γiVj)p

wijt
.

Again let σ2 .= φE[V p
j ], so that

E[Var(Yijt|Vj)] =
γp

i σ2

wijt
. (3.2)

We have the following generalization of Assumption 2.1.

Assumption 3.1 (a) The groups are independent, i.e. (Yijt, Vj) and (Yi′j′t′ , Vj′) are inde-

pendent as soon as j 6= j′.

(b) The Vj ; j = 1, 2, . . . , J ; are identically distributed with E[Vj ] = µ > 0 and again we

write τ2 .= Var[Vj ].

(c) For any j, conditional on Vj, the Yijt’s are mutually independent, with mean given by

(3.1) and variance satisfying (3.2).



9

Note. The γi act as a priori information in the sense of Bühlmann & Gisler (2005, Section

4.13); however, in their setting, all insurances in group j have the same a priori information.

This may well be the case in some applications, e.g. in experience rating of large businesses

based on their claims history, where j is a single business. In many cases, though, insurances

in group j may occur among several a priori tariff cells i. In motor insurance, e.g., drivers

of different age and sex drive the same car model j, and so the observations for that car are

spread over many cells in the a priori tariff. In cases like this, there is a need for our slightly

more general setting.

Furthermore, Bühlmann & Gisler use the weight µi, where we allow µp
i for some p ≥ 0. In fact,

they motivate their choice of weight partly by looking at the Poisson case—corresponding to

p = 1 here. Since p = 2 is standard for analysing claim severity, and 1 < p < 2 can be used

for risk premium, our generalization has a bearing in practice.

Next we transform the observations so that we can bring back this situation to the classical

Bühlmann-Straub model in Section 2.

Ỹijt =
Yijt

γi
w̃ijt = wijtγ

2−p
i . (3.3)

Note that

E(Ỹijt|Vj) = Vj , (3.4)

and

E[Var(Ỹijt|Vj)] =
σ2

w̃ijt
. (3.5)

By this and Assumption 3.1, the entire Assumption 2.1 is fulfilled for Ỹijt with the weights

w̃ijt and we get the following result from (2.6), (2.7) and (2.9).

Corollary 3.1 Under Assumption 3.1, the credibility estimator of Vj is

V̂j = zj Ỹ·j· + (1− zj)µ , (3.6)

where

zj =
w̃·j·

w̃·j· + σ2/τ2
, (3.7)
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and

Ỹ·j· =
∑

i,t w̃ijtỸijt

w̃·j·
=

∑
i,t w̃ijtYijt/γi∑

i,t w̃ijt
. (3.8)

with Ỹijt and w̃ijt defined in (3.3).

Consequently,

Ûj = zj
Ỹ·j·
µ

+ (1− zj), (3.9)

and the rating for insurances with MLF level j in a priori tariff cell i is µγiÛj .

Note. When Yijt is claim frequency, with wijt as the number of insurance years, we use

the Poisson distribution (p = 1) in a GLM, so that w̃ijt = wijtγi, a quantity that is called

“normalized insurance years” in Campbell (1986). Then

Ỹ·j·
µ

=
∑

i,t wijtYijt∑
i,t wijtµγi

,

i.e. the number of claims in group j divided by the expected number of claims in the same

group: a very natural estimator of Uj .

For the case when Yijt is claim severity and wijt is the number of claims, the standard

approach is to use a GLM with p = 2, corresponding to a gamma distribution. Here

Ỹ·j·
µ

=
∑

i,t wijtYijt/(µγi)∑
i,t wijt

,

i.e. a weighted average of the observed relative deviance of Yijt from its expectation µγi,

again a simple and natural estimator of Uj .

Throughout this derivation, µ and γi were supposed to be known a priori. Recall that γi

is the product of the price relativities γi
1, . . . , γ

i
R in cell i; these can be estimated by GLM,

treating Ûj as a known offset variable. So we must know Ûj to estimate µ and γi and vice

versa. The solution to this dilemma is to use an iterative procedure as described in the next

section.

Note. Ohlsson & Johansson (2006) derived the estimator in Corollary 3.1 as a so called

exact credibility estimator, viz. by assuming that the observations are drawn from a Tweedie
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GLM and the random effect follows the natural conjugate prior distribution. The present

section can be seen as a non-parametric counterpart of that result.

3.1 Iteration between GLM and credibility

The above considerations suggest the following algorithm for simultaneous rating of ordinary

factors γ1, γ2, . . . , γR by GLMs and a multi-level factor Uj by credibility, in the multiplicative

model µγi
1γ

i
2 · · · γi

RUj .

(0) Initially, let Ûj = 1 for all j.

(1) Estimate the parameters for the ordinary rating factors by a Tweedie GLM (e.g. Pois-

son or Gamma) with log-link, using log(Ûj) as an offset-variable. This yields µ̂ and

γ̂i
1, . . . , γ̂

i
R.

(2) Compute σ̂2 and τ̂2 as described in Section 3.2 below, using µ̂ and γ̂i
1, . . . , γ̂

i
R from Step

1.

(3) Use (3.9) to compute Ûj , using the estimates from Step 1 and 2.

(4) Return to Step 1 with the new Ûj from Step 3.

Repeat Step 1–4 until convergence. In our experience this is a matter of something like 3–5

iterations, if there are no extreme outliers in the data.

Note. Suppose that in reality we had enough data to use Uj as an ordinary rating factor in

our GLM; then we would have a large exposure weight w·j·, resulting in high credibility, with

zj close to 1. Then Ûj would be approximately equal to Ỹ·j·/µ; it is not hard to show that the

resulting equation Ûj = Ỹ·j·/µ, defines the maximum likelihood estimating equation for Uj in

the corresponding GLM; hence the estimate would be the same that would be obtained with

standard GLMs. This is a nice property, with the practical implication that we do not have
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to worry about whether a few Uj ’s should better be altered from random to fixed effects—the

estimates will stay the same anyway.

3.2 Estimation of variance parameters

It remains to estimate the variance parameters σ2 and τ2. Unbiased estimators can be

obtained from the corresponding estimators in Bühlmann & Gisler (2005, Section 4.8); note,

though, that they assume that nk—the number of observations for group j—is equal for all

groups. The straight-forward extension of σ2 to the case with different nk can be found in

Remark 2.3.4 of Dannenburg et al. (1996), while the formula for τ2 remains unchanged. Let

σ̂2
j =

1
nj − 1

∑

i,t

w̃ijt(Ỹijt − Ỹ·j·)2 . (3.10)

Then

σ̂2 =
∑

j(nj − 1)σ̂2
j∑

j(nj − 1)
, (3.11)

and

τ̂2 =
∑

j w̃·j·(Ỹ·j· − Ỹ···)2 − (J − 1)σ̂2

w̃·· −
∑

i w̃
2
·j·/w̃···

. (3.12)

where Ỹ··· is the w̃·j·-weighted average of the Ỹ·j·’s. Note that in our case these estimators are

strictly unbiased only if γi is known, while in practice we plug in a GLM estimate here.

4 Hierarchical credibility in multiplicative models

In the example with 2 500 car models, data indicate that cars of the same brand (Renault,

Volvo, etc.) have some risk characteristics in common, even if they represent different models

(Renault Megane, Renault Laguna, etc.); see Figure 2 in Section 5.1 below. We like to include

brand as a rating factor in our models; this is of particular importance when a new model

of a well-known brand is introduced on the market, with no insurance data available. For

some brands (say Volvo) we have lots of data, while for others (say Subaru) we have very few

insurances in our data files; hence brand, like car model, is an MLF, for which we want to use

credibility estimation.
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Since the car models are hierarchically ordered under the brands, this is a case for using

hierarchical credibility, as suggested already by Sundt (1987). As in the previous section,

we like to take into account a priori information from the standard rating factors (age, gen-

der, mileage, etc.) estimated by GLM and generalize our estimators from Section 3 to the

hierarchical case.

Note. Another hierarchical MLF in motor insurance is the geographical zone, where we

may have three or more levels, such as zip codes within counties, within states. For the sake

of simplicity, we only consider two-level hierarchical models here, though.

Let Yijkt be the observed key ratio, with denominator (weight) wijkt, in a priori tariff cell i,

for sector j (e.g. car brand, county) and group k (e.g. car model, zip code area) within sector

j. Note that while k is hierarchical under j, a particular i can be combined with any j, k and

is hence not part of the hierarchical ordering. The full multiplicative model is now, with Uj

as the random effect for sector and Ujk as the random effect for group within sector

E(Yijkt|Uj , Ujk) = µγi
1γ

i
2 · · · γi

RUjUjk .

Here we assume E[Uj ] = 1 and E(Ujk|Uj) = 1. As before, we use an abbreviated notation for

the standrad rating factors, γi = γi
1γ

i
2 · · · γi

R. We need credibility estimators of both Uj and

Ujk, but again find it easier to work with Vj = µUj , and also with Vjk = µUjUjk = VjUjk, so

that

E(Yijkt|Vj , Vjk) = γiVjk . (4.1)

If, given the random effects, Y follows a Tweedie GLM model, then

Var(Yijkt|Vj , Vjk) =
φ(γiVjk)p

wijkt
,

where φ is the dispersion parameter. From this we get

E[Var(Yijkt|Vj , Vjk)] =
γp

i σ2

wijkt
, (4.2)

where σ2 = φE[V p
jk]. We now generalize Assumption 3.1 to the hierarchical case.
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Assumption 4.1 (a) The sectors are independent, i.e. (Yijkt, Vj , Vjk) and (Yi′j′k′t′ , Vk′ , Vj′k′)

are independent as soon as j 6= j′.

(b) For every j, conditional on the sector effect Vj, the groups are independent, i.e. (Yijkt, Vjk)

and (Yi′jk′t′ , Vjk′) are conditionally independent as soon as k 6= k′.

(c) All the pairs (Vj , Vjk); j = 1, 2, . . . , J ; k = 1, 2, . . . , Kj ; are identically distributed, with

E[Vj ] = µ > 0 and E(Vjk|Vj) = Vj .

We use the notation

τ2 .= Var[Vj ] and ν2 .= E[Var(Vjk|Vj)] .

(d) For any (j, k), conditional on (Vj , Vjk), the Yijkt are independent, with mean given by

(4.1) and with variance satisfying (4.2).

We first look for a credibility estimator of Vj , and in the same vein as (3.3) and (3.8) we

introduce

Ỹijkt =
Yijkt

γi
, w̃ijkt = wijktµ

2−p
i , and Ỹ·jk· =

∑
i,t w̃ijktỸijkt∑

i,t w̃ijkt
. (4.3)

By (4.1) and Assumption 4.1 (c)

E(Ỹ·jk·|Vj , Vjk) = Vjk and E(Ỹ·jk·|Vj) = Vj . (4.4)

As for the variance we find, by the rule of calculating variance by conditioning and (4.2)

Var(Ỹ·jk·|Vj) = E[Var(Ỹ·jk·|Vj , Vjk)|Vj ] + Var[E(Ỹ·jk·|Vj , Vjk)|Vj ]

⇒ E[Var(Ỹ·jk·|Vj)] = E[Var(Ỹ·jk·|Vj , Vjk)] + E[Var(Vjk|Vj)]

=
∑

i,t w̃2
ijktE[Var(Yijkt|Vj , Vjk)]/γ2

i

w̃2
·jk·

+ ν2 =
σ2

w̃·jk·
+ ν2

If we define

zjk =
w̃·jk·

w̃·jk· + σ2/ν2
, (4.5)

this can be rewritten as

E[Var(Ỹ·jk·|Vj)] =
ν2

zjk
.
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Note also that by Assumption 4.1(b), the Ỹ·jk· are independent for different k, given Vj . Now

all parts of Assumption 2.1 are fulfilled with Yjt, wjt and σ2 replaced by, respectively, Ỹ·jk·,

zjk and ν2, and we get the following result from Theorem 2.1.

Theorem 4.1 Under Assumption 4.1, the credibility estimator of Vj is

V̂j = qj Ỹ
z
·j·· + (1− qj)µ , (4.6)

where

Ỹz
·j·· =

∑
k zjkỸ·jk·∑

k zjk
and qj =

zj·
zj· + ν2/τ2

. (4.7)

Note that the mean Ỹz
·j·· is weighted by z instead of w. If the group variance ν2 is small then

zjk ≈ ν2w̃·jk/σ2 and so

qj ≈ w̃·j·
w̃·j· + σ2/τ2

,

so that qj , as it should, is the credibility factor in a model with no groups within the sectors,

cf. (3.7). If, on the other hand, τ2 ≈ 0, then qj ≈ 0 and so V̂j ≈ µ, indicating that the sector

level may be omitted, as it should when not contributing to the model variance.

We now turn to the estimation of Vjk. Conditional on Vj , the situation in a sector is very

much as if we had a Bühlmann-Straub model with a priori differences γi and mean V̂j . For

the moment, this may serve as a motivation for the following theorem; the proof is postponed

to the appendix.

Theorem 4.2 The credibility estimator of Vjk is

V̂jk = zjkỸ·jk· + (1− zjk)V̂j , (4.8)

where Ỹ·jk·, zjk and V̂j are given in (4.3), (4.5) and (4.6), respectively.

By the simple relation between the U ’s and V ’s we finally note that the random effects in the

multiplicative model µγi
1γ

i
2 · · · γi

R UjUjk can be estimated as follows,

Ûj = qj

Ỹz
·j··
µ

+ (1− qj) ,



16 5 APPLICATION TO CAR MODEL CLASSIFICIATION

Ûjk = zjk
Ỹ·jk·
V̂j

+ (1− zjk) .

4.1 Estimation of variance parameters

It remains to estimate the parameters σ2, τ2 and ν2. Traditionally, iterative so called

pseudo-estimators are suggested in the literature for the hierarchical case, but recently direct,

unbiased-type estimators where derived by Gisler & Bühlmann (2005, Section 6.6) and Ohls-

son (2005), independently. These can easily be extended to the case with a priori differences

with the following result, where Tjk is the number of observations i and t for the group (j, k),

Kj is the number of groups in sector j and J is the number of sectors.

σ2 =
1∑

j

∑
k(Tjk − 1)

∑

j

∑

k

∑

i

∑

t

w̃ijkt(Ỹijkt − Ỹ·jk·)2 ; (4.9)

ν̂2 =
∑

j

∑
k w̃·jk·(Ỹ·jk· − Ỹ·j··)2 − σ̂2 ∑

j(Kj − 1)
w̃···· −

∑
j(

∑
k w̃2

·jk·)/w̃·j··
; (4.10)

τ̂2 =
∑

j zj·(Ỹz
·j·· − Ỹz····)2 − ν̂2(J − 1)
z·· −

∑
j z2

j·/z··
. (4.11)

where Ỹ·jk· is given by (4.3), Ỹz
·j·· by (4.7), and

Ỹ·j·· =
∑

k w̃jkỸ·jk·∑
k w̃jk

and Ỹz
···· =

∑
j zj·Ỹz

·j··∑
j zj·

.

5 Application to car model classificiation

As an illustration of our methods, we present some results on car model classification in car

hull insurance, using data from the Swedish insurance group Länsförsäkringar Alliance. The

car model (such as Renault Scénic 1.8, Volvo V70 2.4) is an important rating factor in motor

insurance. As already mentioned in Section 3, car model is a multi-level factor (MLF): in

Sweden there are roughly 2 500 car models in a preliminary classification, and there is not

enough data to get useful estimates of price relativities for all these models. The conclusion

is that car model is a case for credibility estimation.
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We also have a large number of ordinary rating factors such as sex, age, annual mileage etc.,

and a specific car model j may appear in any a priori tariff cell i constructed from the ordinary

factors. The presence of both ordinary rating factors and an MLF makes the algorithm of

Section 3.1 appropriate for car model classification.

As is standard in GLM rating, we make a separate analysis of claim frequency using a Poisson

distribution (or rather a variance function µp with p = 1) and average claim severity using a

gamma distribution (or rather p = 2). Here we present results only from the claim frequency

part of the study.

The idea to use credibility theory in car model classification has been discussed earlier by

Campbell (1986) and Sundt (1987). The credibility models of these authors resemble ours;

however, these texts were written before GLM became a standard rating tool and so their

analysis is on risk premium—not claim frequency and severity—with weights corresponding

to the case p = 1 in (3.3), and they do not iterate as we suggest in Section 3.1.

An application of the algorithm in Section 3.1 with all the ordinary rating factors and car

model j gave the result shown by the non-filled bars (with the legend “No auxiliaries”) in the

histogram in Figure 1, where the bins are formed by rounding the Ûj ’s to the nearest first

decimal number. We find that almost 30% of the car models received Ûj ’s in the span 0.95

to 1.05, but in most cases, the car model really makes a difference: the extremes differ by a

factor of about 1.9/0.4 = 4.75 from each other.

Another approach to car model classification is to introduce a number of ordinary rating

factors that describe the car model technically, such as: the weight, the power of the engine,

the type of car (saloon, estate car, convertible), etc. We call these variables auxiliary classifi-

cation factors here, since they are not intended for separate use in the tariff, but only to help

in the car model classification. Let us call this the factor method of car model classification;

it has the advantage of not requiring large amounts of data for individual car models—a new

model can be rated with the same accuracy as an old one.
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Figure 1: Histogram of credibility estimators Ûj for car model, with and without auxiliary
classification factors in the model.

It is actually possible to have the best from both worlds, by combining the credibility method

and the factor method as follows. Add the auxiliary classification factors to the ordinary

factors in the GLM analysis and then again use the algorithm in Section 3.1. The resulting

Ûj ’s are graphed in Figure 1, with the legend “With auxiliaries”. Even though over 45% of

the car models now get Ûj ’s close to 1, there is still a considerable variation among them; this

shows that the factor method leaves a lot of residual variation, which can be estimated as a

(residual) random effect Uj . A possible explanation is that differences in claim frequency is

to a large extent a question of drivers behaviour and that different models attract different

kinds of drivers, not only due to technical differences.

On the other hand, the introduction of the auxiliary factors reduce the variation of the Ûj ’s.

This is an indication that we get a better tariff from inclusion of auxiliary factors in our

credibility car model classification: a brand new or rare car model will get Ûj = 1 because of

lack of data, but the auxiliaries still provide some information on this car, thus reducing the

non-explained variation in claim frequency. For models with large amounts of data, on the
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other hand, the introduction of auxiliary variables makes no difference.

This effect is shown in some detail in Table 5.1, for a sample of car models sorted by the

exposure weights w·j· (number of policy years). As expected, with large w·j·, the weighted

averages of the observations Ỹ·j· produce reliable estimates that are given high weight in the

credibility formula, and the rating of car models is hardly affected by the introduction of

auxiliaries, as seen by comparing the “No auxiliaries” Ûj to the “With auxiliaries” column cj ,

where the product of the auxiliaries’ price relativities is multiplied by the new Ûj from this

round (note that the auxiliaries are tied to the car model j and not to the tariff cell i).

j w·j· No auxiliaries With auxiliaries

Ỹ·j· Ûj zj Ỹ·j· Ûj zj cj

1 41275 0.74 0.74 1.00 0.98 0.98 0.99 0.75
2 39626 0.58 0.58 1.00 0.89 0.89 0.99 0.59
3 39188 0.59 0.59 1.00 0.86 0.86 0.99 0.60
4 31240 0.82 0.82 1.00 0.93 0.93 0.99 0.82
5 28159 0.49 0.50 1.00 0.74 0.75 0.98 0.50
...

...
...

...
...

...
...

...
...

401 803 2.08 1.95 0.88 1.43 1.35 0.82 1.99
402 802 0.97 0.97 0.86 1.11 1.08 0.70 0.95
403 801 1.77 1.66 0.86 1.54 1.40 0.74 1.62
404 799 0.74 0.78 0.86 0.83 0.88 0.69 0.79
405 798 1.32 1.27 0.86 0.73 0.78 0.82 1.41

...
...

...
...

...
...

...
...

...
901 181 1.38 1.22 0.58 1.14 1.06 0.42 1.29
902 180 1.61 1.38 0.63 0.91 0.95 0.56 1.70
903 180 2.28 1.76 0.59 1.35 1.18 0.51 2.01
904 179 0.79 0.88 0.56 0.86 0.95 0.34 0.88
905 179 2.38 1.80 0.58 1.52 1.25 0.48 1.98

...
...

...
...

...
...

...
...

...
1801 7 2.39 1.07 0.05 2.05 1.03 0.03 1.22
1802 7 4.63 1.19 0.05 3.86 1.08 0.03 1.31
1803 7 0.00 0.96 0.04 0.00 0.99 0.01 0.55
1804 7 0.00 0.95 0.05 0.00 0.98 0.02 0.87
1805 7 0.00 0.94 0.06 0.00 0.98 0.02 0.58

...
...

...
...

...
...

...
...

...

Table 5.1: Selected car models j with number of policy years w·j·, weighted averages Ỹ·j·,
credibility estimators Ûj and credibility factors zj ; without and with auxiliary classification
factors; the classification variable cj is Ûj multiplied by the price relativities for the auxiliaries.
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At the other end of the table, with data from very few policy years, credibility is low and

the Ỹ·j·’s are shaky. Here one has to rely, to a large extent, on the auxiliary factors. Without

them, the classification would have been much closer to 1 for these cars.

Note. In applications we might have more than one MLF: in motor insurance, besides

car model, we may use a geographical area defined by zip code or parish, say. In principle,

the algorithm can be extended to the case with two or more independent MLFs in a rather

straight-forward fashion; nevertheless, in practice we find it easier to rate one MLF at a time.

5.1 The hierarchical case

As discussed at the beginning of Section 4, the car brand might contain valuable information

that is not contained in the auxiliary (technical) data on the car. Now, car brand is itself an

MLF: following Sundt (1987) we try an hierarchical credibility model for this situation. In

our case the multiplicative model includes: first the ordinary rating factors, then the auxiliary

factors based on technical properties of the car models, then the car brand stochastic effect,

and then finally the car model stochastic effect, cf. Table 5.2.

Rating factors Example Notation
Ordinary rating factors Age of driver γi

1, γ
i
2, . . . , γ

i
R

Auxiliary factors Engine power γjk
R+1, γ

jk
R+2, . . . , γ

jk
R+A

Car brand Volvo Uj

Car model Volvo V70 2.4 Ujk

Table 5.2: Variables in car model classification with hierarchical credibility and GLM.

Note that even though car brand is a random effect in the hierarchical credibility model,

from a practical point of view it serves the same purpose as the auxiliaries: to improve the

estimation of car model factors by extracting information that is common to several car

models and hence may be estimated more accurately than the car models themselves. The

full multiplicative model is then

E(Yijkt|Uj , Ujk) = µγi
1 · · · γi

R γjk
R+1 · · · , γjk

R+A UjUjk .
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This model can be estimated using a straight-forward hierarchical credibility extension of

the algorithm in Section 3.1, using the estimators from Section 4. Figure 2 displays Ûj for

the 96 car brands; we can see that there are substantial differences between many of the 96

car brands, but not as large as between car models. We conclude that it is worthwhile to

include the car brand level in our multiplicative model; this is especially important for the

classification of car models on which we have none or few data.

Figure 2: Histogram of credibility estimators Ûj for car brands.

After analysing claim frequency and claim severity by the above method, we multiply the

auxiliary factors, the car brand factor Ûj and the car model factor Ûjk, from each of these

two analyses and get

cjk = γjk
R+1 · · · , γjk

R+A ÛjÛjk .

The cjk’s for claim frequency and severity are then multiplied, giving a classification variable

for the risk premium. The classification is finalised by calibrating this variable to maintain

the total premium level, as is demonstrated in Sundt (1987, Section 3.4) and then forming

classes from the calibrated variable.
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Our overall conclusion is that the algorithm in Section 3.1, extended to the hierarchical case

with the estimators from Section 4, is an efficient tool for car model classification and that

the results are improved by the augmentation of the model with auxiliary technical variables

as well as the car brand, estimated by hierarchical credibility in combination with GLMs.

6 Appendix

Here we give proofs of Theorems 2.1 and 4.2. We start by restating, without proof, a well-

known lemma by Sundt (1980, Theorem 1(ii)). Recall that an estimator (predictor) ĥ of the

random variable Vj that is linear in the data Y = {Yjt}, is called the credibility estimator if

it minimizes the MSEP E[(h(Y )− Vj)2] among all linear estimators h(Y ).

Lemma 6.1 A linear estimator ĥ(Y ) of Vj is the credibility estimator, if and only if,

E(ĥ(Y )) = E(Vj) ; (6.1)

Cov(ĥ(Y ), Yj′t) = Cov(Vj , Yj′t); ∀ j′, t . (6.2)

Sundt also refers to a result by de Vylder, by which there always exists a unique credibility

estimator; hence it is correct to speak of “the credibility estimator”.

Below we will make repeated use of the following lemma, which is a simple extension of the

standard rule for computing variances by conditioning, given here without proof.

Lemma 6.2 Let X and Y be random variables, and Z a random vector, all with finite second

moment.

(a) Then

Cov(X, Y ) = E[Cov(X,Y |Z)] + Cov[E(X|Z), E(Y |Z)] .

(b) When X is a function of Z this specializes to

Cov(X, Y ) = Cov[X, E(Y |Z)] .
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Proof of Theorem 2.1. We shall prove that the equations of Lemma 6.1 are fulfilled for

ĥ(Y ) = V̂j in (2.7). Now since E(Vj) = µ, and E(Yjt) = E[E(Yjt|Vj)] = E(Vj) = µ, equation

(6.1) is fulfilled.

Next note that because of the independence of groups, we have Cov(Vj , Yj′t) = 0 for j′ 6= j,

and since V̂j only includes Y -values from group j, equation (6.2) is trivially fulfilled as soon

as j′ 6= j, and we only have to consider the case j′ = j in the following.

We use Lemma 6.2(b) to show that

Cov(Vj , Yjt) = Cov[Vj , E(Yt|Vj)] = Var(Vj) = τ2.

For s 6= t we have by Assumption 2.1(c), this time using part (a) of Lemma 6.2,

Cov(Yjs, Yjt) = E[Cov(Yjs, Yjt)|Vj ] + Cov[E(Yjs|Vj), E(Yjt|Vj)] = 0 + Var[Vj ] = τ2.

For s = t, on the other hand, we have by (2.5),

Cov(Yjt, Yjt) = Var(Yjt) = τ2 +
σ2

wjt
;

hence by (2.9)

Cov(V̂j , Yjt) = zj

∑
s

wjs

wj·
Cov(Yjs, Yjt) = zj

(
τ2 +

wjt

wj·
σ2

wjt

)
= τ2zj

(
wj· + σ2/τ2

wj·

)
= τ2 .

This finishes the proof of Theorem 2.1.

Proof of Theorem 4.2. Again, we shall verify that the equations of Lemma 6.1 are fulfilled.

In the present setting these equations are, if we divide both sides of the second equation by

γi and recall that Ỹijkt = Yijkt/γi,

E(V̂jk) = E(Vjk) , (6.3)

Cov(V̂jk, Ỹijk′t) = Cov(Vjk, Ỹijk′t); ∀ i, k′, t . (6.4)

Here we have excluded the Ỹij′k′t-variables with j′ 6= j, since independence makes the corre-

sponding covariances equal 0.
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Now by Assumption 4.1(c), E(Vjk) = E[Vj ] = µ. By (4.4) we have E(Ỹ·jk·) = µ, which we

use in (4.6) to find E(V̂j) = µ. By inserting this in (4.8), we obtain E(V̂jk) = µ, proving that

(6.3) is fulfilled. We now turn to the covariances.

By (4.1), Assumption 4.1(b) and (c), Lemma 6.2 and (4.4),

Cov(Vjk, Ỹijk′t) = Cov[Vjk, E(Ỹijk′t|Vj , Vjk, Vjk′)] = Cov(Vjk, Vjk′)

= E[Cov(Vjk, Vjk′)|Vj ] + Cov[E(Vjk|Vj), E(Vjk′ |Vj)] =

{
ν2 + τ2, if k′ = k;
τ2, if k′ 6= k.

(6.5)

Next we turn to the the left-hand side of (6.4) where

Cov(V̂jk, Ỹijk′t) = zjkCov(Ỹ·jk·, Ỹijk′t) + (1− zjk)Cov(V̂j , Ỹijk′t) . (6.6)

But since V̂j is a credibility estimator of Vj , we have by Lemma 6.1,

Cov(V̂j , Ỹijk′t) = Cov(Vj , Ỹijk′t) = Cov[Vj , E(Ỹijk′t|Vj)] = Cov[Vj , Vj ] = τ2 . (6.7)

In the case k′ 6= k, by Assumption 4.1(b),

Cov(Ỹ·jk·, Ỹijk′t) = E[Cov(Ỹ·jk·, Ỹijk′t|Vj)]+Cov[E(Ỹ·jk·|Vj), E(Ỹijk′t|Vj)] = 0+Cov[Vj , Vj ] = τ2 ,

(6.8)

while in the case k′ = k we first note that

Cov(Ỹ·jk·, Ỹijkt|Vj) = E[Cov(Ỹ·jk·, Ỹijkt|Vj , Vjk)|Vj ] + Cov[E(Ỹ·jk·|Vj , Vjk), E(Ỹijkt|Vj , Vjk)|Vj ]

=
w̃ijkt

w̃·jk·
E[Var(Ỹijkt|Vj , Vjk)|Vj ] + Var[Vjk|Vj ] .

We now proceed as in (6.8) and get, by (4.2), (4.3) and (4.5),

Cov(Ỹ·jk·, Ỹijkt) = E[Cov(Ỹ·jk·, Ỹijk′t|Vj , Vjk)] + E[Cov(Vjk, Vjk|Vj)] + τ2

=
w̃ijkt

w̃·jk·
E[Var(Ỹijkt|Vj , Vjk)] + E[Var(Vjk|Vj)] + τ2

=
σ2

w̃·jk·
+ ν2 + τ2 =

ν2

zjk
+ τ2 .
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By inserting this, (6.8) and (6.7) into (6.6) we conclude

Cov(V̂jk, Ỹijkt) =





zjk

(
ν2

zjk
+ τ2

)
+ (1− zjk)τ2 = ν2 + τ2, if k′ = k ;

zjkτ
2 + (1− zjk)τ2 = τ2, if k′ 6= k .

But this is the right-hand side of (6.5); hence, (6.4) is fulfilled and the proof is complete.
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