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Abstract

We study bias of predictors when a multivariate calibration procedure
has been applied to relate a scalar y (concentration of an analyte,
say) to a vector x (spectral intensities, say). The model for data is
assumed to be of latent factor regression type, with multiple regression
models and errors-in-variables models as special cases. The calibration
procedures explicitly studied are OLSR, PLSR and PCR. When y has
been more or less systematically selected in the calibration in order
to achieve increased variation (overdispersion), a practical device to
increase precision, this leads to biased coefficients in the predictor,
possible to see when observed y is regressed on predicted ŷ(x) for a
separate validation set. Another bias effect is a sample size effect,
increasing with reduced calibration sample size and with increasing
dimension of x (absent when x is univariate). Formulae are given
for these bias effects, both separately and in combination, and the
formulae are illustrated and compared with simulation results. As a
qualitative example, PLSR and PCR are less sensitive than OLSR to
small samples, but equally sensitive to selection.
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1 Introduction

In multivariate calibration, practice is dominated by explicit or implicit mul-

tiple regression models and latent factor models relating, say, concentration

y of a substance linearly to a measurement vector x of absorbances measured

at specified wavelengths. Typical statistical methods used are ordinary least

squares (OLS) multiple regression for low-dimensional x, and latent variable

methods such as PCR and PLSR for higher-dimensional x. Such methods are

justified in the so-called natural calibration setting, when we regard unknown

concentrations as quantities to be predicted, corresponding to chemical spec-

imens randomly sampled from a natural infinite population of possible such

samples. This assumption implies a joint randomness of x and y, and hence

that prediction of unknown y from measured x is justified. The best linear

predictor of y would be the population linear regression of y on x. In a la-

tent factor model we can extend this result, by explicitly allowing additional

measurement errors and similar uncertainty in both x and y.

If the underlying relationship between x and y were known, nothing would

be controversial with such a procedure. However, complications appear as

soon as the relationship between x and y must be estimated from training

(calibration) data. Admittedly, the classical univariate results by Lindley

(1947) indicate that if the calibration specimens are sampled from the same

population as the future specimens, whose concentrations are to be predicted,

we need not worry. However, it will be seen below that this is not true for OLS

in a multi-dimensional setting. The result to be shown is strongly related to

those of Copas (1983, 1987), who demonstrated that the OLS predictor in a

multiple regression model should be shrunk, and who proposed estimators of

the shrinkage factor. The main aim of the present paper is different, namely

to investigate the shrinkage appearing when the calibration specimens do not

represent the natural prediction population. In the context of a structural

linear model and with applications to different seismological measurements in

mind, this bias was discussed by Ganse et al. (1983). In a multiple regression

model setting, Jones & Copas (1986) investigate the robustness of Copas’

shrinkage estimator to differences between the calibration population and

the validation population. More generally, however, the situation appears to

have been largely neglected in the literature.

In chemometrics, we may be tempted to select calibration specimens with

a larger spread in concentrations than natural, because the more widely
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spread the data points are, the more precisely can a linear relationship be

estimated. It is particularly likely to occur in calibrations where the con-

centrations of the training samples can be completely controlled, but even

otherwise it is quite common with some kind of “pseudo-selection” aimed

at increasing variation and precision. However, the bias caused by selection

can be substantial, as we will see, and it will not be detected in leave-out

cross-validation. Therefore, the reader is warned against uncritical use of se-

lection in calibration, and against sloppy statements such as “don’t bother,

it’s just to run a PLS”, which have been heard in the context of multivariate

calibration.

We start the theory parts with the univariate case, which allows us more

easily than in the multivariate case to express and to understand the basic re-

lationships. After that, we turn to OLS and latent factor regression methods

in the multivariate case. The bias formulae derived will be compared with

the results of simulations from a model representing a multivariate data-set

from fat-grading in pig slaughteries. The same pig grading data were used

more directly in a companion paper (Sundberg, 2006), where the effects were

illustrated by sampling from this dataset, but no formulae discussed.

2 Univariate linear calibration,

without and with selection

2.1 Natural calibration

In a natural calibration situation, calibration specimens are randomly selected

from the target population for the calibration. This makes both x and y

inherently random, through an underlying latent linear relationship. We

additionally allow random measurement type errors in both x and y in the

statistical model for data:

xi = ξi + δi , δi ∼ N(0, σ2
δ ),

yi = ηi + εi , εi ∼ N(0, σ2
ε ), (1)

ηi = α + βξi , ξi ∼ N(µ, σ2).

i = 1, ..., n.

We think of xi as the observed instrument response for specimen i, and yi as

a concentration (or some other property) determined by a reference method
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for the calibration specimens. Symbols δ and ε represent unobservable con-

tributions of measurement error type, mutually uncorrelated, with variances

σ2
δ and σ2

ε , respectively. In classical calibration, ε is assumed to vanish, i.e.

σ2
ε = 0. Symbols ξ and η represent linearly related latent random variables,

or equivalently here, in the univariate case, interpreted as being the same

latent variable on different scales. It means that ξ has an unknown expected

value µ and a variance σ2, and σ2
η = β2σ2. The model terms in (1) are also

assumed normally distributed, partially for notational convenience. This is

not a crucial assumption, see below.

We should have two possible interpretations of model (1) in mind. In

practice we could have a mixture between these two pure situations:

• η is the true concentration of the specimen, y is a determination of η

with measurement error ε, and ξ is the ideal, error-free instrumental

response according to the Lambert–Beer law. Without the assumption

of a randomly sampled specimen, this is the classical errors-in-variables

regression (EIVR) model, see for example Gleser (1991).

• Alternatively, y is the true concentration and η (or equivalently ξ) is

some other intrinsic property of the specimens, which relates concen-

tration imperfectly to instrument response.

If all model parameters are known, the theoretically best predictor of y

or η from x for a new specimen from the same population is the conditional

expected value, given x, E(y|x). ‘Best’ means unbiased with least variance.

This is the same as the theoretical regression of y or η on x. A sufficient

condition for this theoretical regression to be automatically linear in x is

that ξ and δ be normally distributed, so that x and ξ are jointly normal.

When the theoretical regression is linear, the best predictor (ŷ or η̂) can be

expressed as

ŷ(x) = η̂(x) = E(y) + b (x− E(x)), (2)

where

E(y) = α + β E(x) = α + β µ (3)

and

b = cov(y, x) var(x)−1. (4)

Here, expressed in terms of (1)

cov(y, x) = cov(η, ξ) = β σ2,
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var(x) = σ2 + σ2
δ ,

so

b = β/(1 + σ2
δ/σ

2). (5)

The deflation of β seen in (5) precisely compensates for the random “error”

in x. Note the important interpretation of this regression: ŷ (and η̂) is a

conditional expected value over the joint randomness in ξ, δ and ε, and the

regression coefficient b depends explicitly on the relationship between the

variances of ξ and δ.

This does not only imply that formula (2) will be the best predictor, but

also that it is an unbiased predictor for each given (observed) x,

E(ŷ(x)− y|x) = E(η̂(x)− η|x) = 0. (6)

Note that the predictors η̂ and ŷ are the same, so the predictor of the

true concentration is the same, whether this concentration is represented by

η or y. On the other hand, η̂ and ŷ will have different predictor variances,

but precision is not the primary topic of the present study.

In practice the parameters of the predictor (2) are unknown, of course,

so they must be estimated from training data in a calibration, typically by

forming the linear OLS regression of y-data on x-data. This is the same as

saying that we estimate the unknown population quantities E(y) = E(η),

E(x) = µ and b by the calibration sample means ȳ and x̄, and the sample re-

gression coefficient b̂ (via the sample covariance and x-variance), respectively.

In particular, the calibration sample yields

ŷ(x) = η̂(x) = ȳ + b̂(x− x̄) (7)

Note the crucial implicit appearance of the population quantities in the pre-

dictor above. If the calibration sample is taken from the same natural pop-

ulation, then E(b̂) = b, but otherwise we must expect problems. In later

sections, we will examine bias effects caused by selection in the calibration.

The calibration can be checked by use of a test set intended to represent

the population in question. We may compare RMSEP values (or similar

measures of predictive ability) for the test set with the corresponding leave-

one-out cross-validation values from the calibration, and we may regress y

on ŷ for the test set, to check if this simple regression is reasonably close to

the ideal regression line y = ŷ, so it can be taken to represent the relation

E(y|ŷ) = ŷ. (8)
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As is well-known, calibration data satisfy the ideal regression relation-

ship y = ŷ, when ŷ are the OLS-fitted values from the calibration, because

regression residuals are uncorrelated with predicted values (and this holds

irrespective of any population or model). Under cross-validation (leave-one-

out or leave-k-out), approximately the same relationship will be seen. Hence,

from the calibration data alone it will not be possible to see if the predictor

construction is biased, even if we use cross-validation or some similar method

for predictor testing. In order to have a chance to see a bias when plotting

y against ŷ, a separate validation sample is required, taken from the same

population as the one in which the predictor will be used.

For an infinitely large validation set, the (population) regression of y on

ŷ has the coefficient (cf. (4))

cov(y, ŷ)

var(ŷ)
=

b̂ cov(y, x)

(b̂)2 var(x)
=

b

b̂
, (9)

for a fixed calibration sample having the regression slope b̂. Coefficient (9)

will of course differ from 1, because no calibration is perfect. For saying that

the predictor lacks systematic error, it should be enough to require that the

distribution of (9) over the randomness in the calibration is centered at 1. If

the calibration sample is taken from the same population as the validation

data, b̂ has median (and mean) b, so the median of (9) is 1, as desired. Since

b̂ appears in the denominator of (9), we should be a bit careful when talking

about the mean value of (9) itself, because this mean value does not exist

under a strict normality assumption. We will return to the mean value in

Section 3, when for higher-dimensional x it will be seen that the quantity

corresponding to (9) can suffer from a serious shrinkage effect even though

the calibration sample represents the population desired.

Conclusion: In univariate natural calibration, the OLS predictor ŷ(x)

is median-unbiased for each x.

2.2 Selective calibration in the univariate case

Now suppose the calibration sample is aimed at yielding a higher spread in

y-values or in the underlying η, and in this way to achieve less randomness

in the estimate of the b-value. Such selection could be carried out in different

ways, and a model interpretation of the selection depends on what y and η

represent in model (1). Selection could be in terms of an intrinsic property
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of the specimens, strongly related to the true concentration. We take it to

be represented by η, but in principle this intrinsic property could be just

correlated with η. However, unless it is also correlated with δ or ε, it is

enough to consider its influence on η in terms of selection.

Alternatively a selection could be in terms of the true concentration itself

(represented by either y or η). Typical in practice would be when there

are standards to choose from, or when the calibration specimens can be

prepared in the laboratory to have specified concentrations. Another relation

to model (1) occurs when y represents a determination subject to substantial

measurement error, and we imagine that selection is in terms of the y-values.

This latter type of selection is perhaps less natural.

Selection can either be deterministic, typically represented by use of stan-

dards with predetermined concentrations, or be of a more or less random or

haphazard character. The latter is almost necessarily the case if selection is

in terms of an intrinsic property. In any case the important feature will be

the spread of concentration values in the calibration, and the origin of that

spread will be less important. Therefore we will assume that calibration can

be regarded as random also under selection, but with an increased variance

(overdispersion) in y or η, quantified by a variance inflation factor θ2. We

will focus on the effects of an increased variance, but temporarily we will

also allow the mean value of y or η to differ from that of the natural popu-

lation. We will not unnecessarily make assumptions about the form of the

distribution of the calibration concentration values. In particular, we need

not assume that they are normally distributed.

2.2.1 Selection in η

The model for the calibration data is assumed the same as (1), except for

the distribution of ξ and η. We use suffix c to denote calibration mean and

variance for ξ, that is µc and σ2
c = θ2σ2, respectively. The linear regression

that represents the special population, from which the calibration sample is

(assumed) selected, is obtained by simply substituting µc for µ in (1) and bc

for b in (2), where in complete analogy with (4) and (5),

bc = covc(y, x)varc(x)−1 = β/(1 + σ2
δ/θ

2σ2). (10)

If any of these population characteristics, µc or bc, differs from the natural

population, the predictor will be systematically misleading, and we will say
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that it is biased. More precisely, given an observed instrument response

x for a new specimen, the predictor (2) formed with parameters from the

calibration will have a bias that may be expressed as

bias(ŷ(x)|x) = E(ŷ(x)− y|x)

= α + βµc + bc(x− µc)− {α + βµ + b(x− µ)} (11)

= (β − bc)(µc − µ) + (bc − b)(x− µ).

Hence, as soon as the calibration and natural population mean values differ,

i.e. µc 6= µ, and provided σδ > 0, the selection will induce a systematic error

in the predictor. If bc = b, i.e. θ2 = 1, the bias is independent of x. The

constant part of the bias is relatively trivial, and we will devote our interest

towards the x-dependent last term of (11). This term may be expressed as

(bc − b) (x− µ) =

(
1

(1 + σ2
δ/θ

2σ2
− 1

1 + σ2
δ/σ

2

)
β(x− µ)

=
(θ2 − 1)

(σ2 + σ2
δ )(θ

2σ2 + σ2
δ )

β(x− µ)

The bias can be expressed in a quite different way. Let us from now on

concentrate on the effects of overdispersion in the calibration, and assume

µc = µ. If we consider a plot of y against ŷ for specimens from a popula-

tion represented by (x, y), when calibration has resulted in (a fixed) b̂c, the

population linear regression of y on ŷ will be

E(y|ŷ) = E(y) +
cov(y, ŷ)

var(ŷ)
{ŷ − E(y)} (12)

The population regression coefficient is

cov(y, ŷ)

var(ŷ)
=

b̂c cov(y, x)

b̂2
c var(x)

=
b

b̂c

=
1 + σ2

δ/θ
2σ2

1 + σ2
δ/σ

2
. (13)

If the calibration is precise, so b̂c = E(b̂c) = bc, and if the (x, y) population is

the same as the population used in the calibration, so that bc = b, then the

regression line (12) is the 45◦ line through the origin. On the other hand, if

the calibration sample is overdispersed, the regression coefficient (13) for the

precise calibration will be b/bc = (1 + σ2
δ/θ

2σ2)/(1 + σ2
δ/σ

2).

Conclusion: Overdispersion in η by a variance inflation factor θ2 will

yield a systematic error in the predictor ŷ(x), quantified by the shrinkage
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factor
1 + σ2

δ/θ
2σ2

1 + σ2
δ/σ

2
(14)

in the regression of y on ŷ.

2.2.2 Selection in y, ξ or x

We now think of a selection that has taken place with respect to y. Model

(1) is still assumed for the relation between x and ξ on the one hand and

y and η on the other. We first assume that y is the true concentration of

the specimen, so η is some concentration-related intrinsic property of the

specimens. Since y and η have the same mean values, we need not further

discuss change in mean value. Thus, suppose selection is used only to increase

the spread in calibration y-values, and that var(y) is increased by the factor

θ2. If the true concentration is thus affected, it might be natural that also

var(η) = σ2 is increased by the same factor θ2, or approximately so, and

likewise for var(ε) = σ2
ε . However, σ2

ε does not enter the calculations of the

previous section, or the result (14), so the results derived for selection with

respect to η also hold for selection with respect to y, under the assumptions

formulated above. It is not even required that var(ε) is increased by the same

factor, if only var(η) is increased by approximately the same factor as var(y).

A somewhat different and perhaps not as realistic scenario would be se-

lection with respect to y when y is the measured concentration, with mea-

surement error. If measurement errors are not very large (and typically in

analytical chemistry they are small), then var(η) and var(y) should be ap-

proximately equal even in this case, because var(y) cannot be much increased

without a corresponding increase in var(η). Hence the previous result will

still hold approximately, under mild assumptions.

Since there is a linear relation between ξ and η, selections with respect

to ξ and η are equivalent. Selection with respect to instrumental response x

is different. Assume that an increased variance in x, by such selection, cor-

responds to increased variances σ2 and σ2
δ by the same factor. The formulae

above then show that no bias will be generated by the selection. Another,

apparently quite different variation is provided by Andersen et al (2003),

who investigate in a simulation study of a univariate calibration situation

if it pays to modify the least squares predictor, when it is known that the

error variance σ2
δ in x is different in calibration than in prediction (and val-

idation). More precisely they think of averaging over different number of
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replicated measurements in calibration and in prediction. In the univariate

case here, however, reducing σ2
δ is equivalent to increasing the variance σ2

for ξ by the same factor, so their situation actually falls within the present

set-up, provided that θ2 is given the correct interpretation.

3 Latent factor models in multivariate cali-

bration

We now extend the univariate latent factor model (1) to multivariate calibra-

tion situations, with a multi-dimensional instrument response x. The latent

structure in x is then naturally multi-dimensional, too. We will formulate

two versions of a model equivalent with the special case dim(y) = 1 of the

general latent variable multivariate regression (LVMR) model of Burnham et

al. (1999, 2001), but also found for example in Martens & Næs (1989). In

common chemometric notation it might be written:

xi − E(x) = P ′ ti + δi , δi ∼ N(0, Σδ),

yi − E(y) = ηi + εi = q′ ti + εi , εi ∼ N(0, σ2
ε ), (15)

ti ∼ N(0, Ia), dim(t) = a < dim(x).

Here xi and yi represent observation i, ti is the underlying latent vector, P

is a coefficients matrix, q is a coefficient vector, and δi is now a random error

vector with covariance matrix Σδ (replacing the variance σ2
δ of the univariate

model (1)). It is no restriction to assume that the model components of t

are standardized and uncorrelated. Note also that the model is not unique,

in the sense that a random contribution to x, uncorrelated with y, can be

added to t, accompanied by an increase in dim(t), or added to δ. Even more,

it is no restriction to rotate the latent vector t, so that its first component

becomes proportional to q′t. Then we may introduce the previous notation

ξ for this component, and write the model as

xi − E(x) = ξi γ + δi , δi ∼ N(0, Σδ),

yi − E(y) = ηi + εi , εi ∼ N(0, σ2
ε ), (16)

ηi = β ξi , ξi ∼ N(0, 1).

Here γ is a theoretical regression coefficient vector, whose dim(x) components

represent the relative scales of the components of x in their degree of relation
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with η. The vector δ is not the same as in representation (15), but now also

incorporates the complementary, residual part of t, that is uncorrelated with

ξ and η. It means that Σδ in (16) does not only contain (small) instrument

measurement errors, but also part of the latent structure in x.

In the next section we will assume that the number of observations is

larger than dim(x), so the OLS method for multiple regression can be ap-

plied. In later sections we will turn our interest to regression methods more

appropriate when dim(x) is large and when there are near-collinearities in x,

in particular to the PLSR and PCR methods.

4 Multivariate calibration by OLS regression

4.1 Small sample shrinkage in natural calibration with
OLS multiple regression

In this section we combine model (16) with an implicit assumption that

ordinary multiple regression of y on x will be a reasonable method for con-

structing the predictor. A population multiple regression of y on the vector

x would yield the predictor

ŷ(x) = η̂(x) = E(y) + b′ {x− E(x)}, (17)

where now

b′ = cov(y, x) var(x)−1 = β γ′ (γγ′ + Σδ)
−1. (18)

Here γγ′ is a rank one matrix, and b corresponds to B0 of Burnham et al

(2001).

As in Section 2, the linear regression of y on ŷ for data from the same

population is E(y|ŷ) = ŷ, not only theoretically for the population, but also

as fitted to the training data used for estimation of b.

It was argued in Section 2.1 that we should demand the regression of y

on ŷ to have a population regression coefficient cov(y, ŷ)/var(ŷ) not system-

atically deviating from 1, over the randomness of the calibration. In the case

of univariate x, the median for the regression coefficient was seen to be 1,

so there was really no systematic error in the regression of y on ŷ. When

dim(x) is large, this is no longer true. In Appendix A1 it is demonstrated

that the mean value over the calibration randomness satisfies

E

{
cov(y, ŷ)

var(ŷ)

}
= E

{
b′var(x)b̂

b̂′var(x)b̂

}
≈ 1− dim(x)− 2

n− dim(x)− 2

σ2
ε

b′var(x)b
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= 1− dim(x)− 2

n− dim(x)− 2

σ2
ε

β2

{
1 + (γ′Σ−1

δ γ)−1
}

, (19)

and an illustration of this function of n is seen in Figure 1. The interpretation

of the term (γ′Σ−1
δ γ)−1 will be discussed in the next section. The mean value

of the ratio does not exist, in a strict sense, when dim(x) ≤ 2. In these cases

we must refer to the median or to the mean value of a linearization of the

ratio.

Formula (19) shows that for dim(x) large, and in particular when the

sample size n is not much larger, there can be a quite substantial system-

atic shrinkage effect in the regression of y on ŷ. This was noted by Copas

(1983), and an analogous approximation is found in his paper, but under the

somewhat inappropriate additional assumption that the calibration sample

variance matrix var(x) is identical with the population variance. In chemo-

metric prediction situations it is usual that dim(x) is large, even larger than

n, and formula (19) contains much of the reason why OLS does not work

satisfactorily in these cases and is better replaced by for example PCR or

PLSR (see Section 5 below).

Conclusion: When x is multi-dimensional, and most pronounced when

dim(x) is of the same magnitude as n, the OLS predictor ŷ has a systematic

error, quantified by the approximate mean shrinkage factor (19).

4.2 Selection under multiple regression

We concentrate here on the effect of an overdispersion in the calibration η-

values. For simplicity, the mean values are taken to be the same in both

populations. If they were not, the bias effect of their difference would be

given by a formula quite analogous to the univariate formula (11). Suppose a

selection is made in the calibration such that var(η) is increased by a variance

inflation factor θ2. This is equivalent to an increase of var(ξ) from 1 to θ2

in the calibration formulae. This will yield a b-vector bc for the calibration

population given by

b′c = covc(y, x) varc(x)−1 = βθ2 γ′ (θ2γγ′ + Σδ)
−1. (20)

instead of (18). If bc is used for prediction in the natural population, the bias

for given x will be

bias(ŷ(x)|x) = (bc − b)′ (x− µ), (21)
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in analogy with (11). The corresponding population regression of y on ŷ is

E(y|ŷ)− E(y) =
cov(y, ŷ)

var(ŷ)
(ŷ − E(y)) =

b′ var(x) bc

b′c var(x) bc

(ŷ − E(y)). (22)

The interpretation of (22) is as the relation seen when testing a calibration

on a large natural population when the calibration used a large sample from

a population characterized by the variance inflation factor θ2. Further down

we will allow smaller calibration samples.

When θ = 1, making bc = b, relation (22) simplifies to E(y|ŷ) = ŷ). For a

general θ the expression might appear complicated, but by use of the so called

binomial inverse theorem (Brown, 1993, App. D), (22) can be expressed in

complete analogy with the one-dimensional version (12):

E(y|ŷ)− E(y) =
1 + (γ′Σ−1

δ γ)−1/θ2

1 + (γ′Σ−1
δ γ)−1

(ŷ − E(y)). (23)

A demonstration is given in Appendix A2.

Even for moderate values of θ, =2 or =3 say, the second term of the

numerator of (24) is quite small in comparison with the corresponding term of

the denominator, and a useful upper bound to the selection effect is obtained

by neglecting the former term completely.

If Σδ contains large latent variation in x, it might appear as if the term

(γ′Σ−1
δ γ)−1 must also be large. This is not the case, however, as understood

from the following interpretations and alternative expressions.

By analogy with γ′Σδγ being the variance of γ′ δ, the expression (γ′Σ−1
δ γ)−1

can also be interpreted as a variance, more precisely as the conditional vari-

ance for γ′ δ/(γ′ γ), given the (dim(x) − 1)-dimensional orthogonal comple-

ment to γ′ δ in δ-space. This is an extension of the well-known fact that

the inverted diagonal elements of a Σ−1-matrix are the conditional variances,

given the other components of the random vector with the covariance ma-

trix Σ. The extension required here can be proved by making an orthogonal

transformation such that one basis vector becomes proportional to γ.

Remark: This interpretation of (γ′Σ−1
δ γ)−1 as a conditional variance is

important for understanding the influence of different sources of variation.

The marginal variance for γ′ δ is an upper bound for the conditional vari-

ance. The latter will typically be strictly smaller, because the orthogonal

complement need not be uncorrelated with γ′ δ. The relation between the

marginal and conditional variances can be expressed as follows by means of
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the total correlation coefficient ρtot, more precisely here the maximum corre-

lation between γ′δ and all linear combinations of variables in the orthogonal

complement to γ′δ. Also γ′γ = var(γ′ξ) is the variance of the part of x that

is correlated with y (or η). This yields the alternative expression

(γ′Σ−1
δ γ)−1 =

var(γ′δ/|γ|)
var(γ′ξ)

(1− ρ2
tot). (24)

Here γ′δ/|γ| is the projection of δ on the direction of the vector γ.

We now consider how the bias factor in 23 must be modified when the

training sample size is small or only moderately large, in combination with

overdispersion in the calibration. In analogy with formula (19) for the ex-

pected coefficient of the regression of y on ŷ(x), we need an approximation

for

E

{
cov(y, ŷ)

var(ŷ)

}
= E

{
b′var(x)b̂c

b̂′cvar(x)b̂c

}
, (25)

where b̂c notifies a difference from b̂ due to the selection. The same prop-

agation of errors type approximations as for (19) now yield a main factor

identical with the large sample factor

1 + (γ′Σ−1
δ γ)−1/θ2

1 + (γ′Σ−1
δ γ)−1

.

The rest of the approximation becomes more involved, and in order to get a

formula simple enough for presentation we restrict to the limiting case θ2 →
∞. Then the following approximation formula is obtained, see Appendix A3

for a derivation and Figure 2 for an illustration.

Conclusion: In multivariate calibration by OLS multiple regression un-

der a latent factor regression model, overdispersion in η by a variance inflation

factor θ2 will yield a systematic error in the regression of y on the predictor

ŷ(x), for large calibration samples quantified by the shrinkage factor

1 + (γ′Σ−1
δ γ)−1/θ2

1 + (γ′Σ−1
δ γ)−1

(26)

in the regression of y on ŷ, and for smaller sample sizes approximated by at

worst (i.e. for θ2 →∞)

1

1 + (γ′Σ−1
δ γ)−1

[
1− dim(x)− 1

n− dim(x)− 2

σ2
ε

β2

{
1 + (γ′Σ−1

δ γ)−1
}]

. (27)
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4.3 Could the bias be adjusted for?

For the pure small-sample bias, discussed in Section 4.1 above, Copas (1983)

proposed that the shrinkage be estimated and adjusted for. Since we can

estimate σ2
ε /(b

′var(x)b) from the calibration, we can also estimate the sys-

tematic shrinkage factor. The simple straight-on estimate of σ2
ε /(b

′var(x)b)

can be expressed in terms of the coefficient of determination R2 as

n− 1

n− dim(x)− 1

1−R2

R2
.

Cross-validation, in which one or several observations at a time are left out of

the model-fitting, can also indicate small-sample bias, see Sundberg (2006)

for illustrations, and in principle be used to adjust for such bias. How-

ever, there is considerable randomness involved in the particular case, and

an imprecisely estimated shrinkage adjustment need not be better than no

adjustment at all. We could also cite Faber (2000, p. 368), who comes to

the same conclusion about possible correction for the estimation bias of the

regression coefficients of PLSR.

For the bias due to selection, the situation is different. Cross-validation

can of course not detect the bias (cf. Sundberg, 2006), since it uses only the

training data. In order to use formula (23) above in an adjustment, we would

have to rely on the underlying assumptions, for example that selection was

made in η itself, and not in some other latent factor, only correlated with η.

We must also have relatively accurate values of the parameters involved. As

seen from formulae (11) and (12), we need to know or estimate all parameters,

µ, µc, σ2, σ2
c , and σ2

δ , and these are implicit characteristics defined within a

latent structure. Therefore it is doubtful if we will ever have good enough

information about them to be sure that the bias adjustment improves the

situation.

Another possibility that might come to mind is to use the empirical re-

gression of y on ŷ for a validation set from the natural population, and to

adjust the coefficients of the predictor ŷ such that the fitted regression be-

comes y = ŷ. This would be equivalent to using only the direction of the

bc-vector from the calibration sample and the length of b from the validation

sample. That cannot be an efficient way of using the information in data.

When dim(x) = 1, it would imply throwing away the calibration sample

completely.
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5 Calibration by latent factor regression meth-

ods, such as PLSR and PCR

By latent factor regression methods, we refer to methods such as PLSR (here

preferably regarded as an acronym for Projection to Latent Structures Re-

gression) and PCR (Principal Components Regression), in which a typically

high-dimensional x, suffering from collinearity or near-collinearity, is replaced

by a low-dimensional t̃ = t̃(x), before OLS regression is applied. Thus the

predictor construction follows a two-stage procedure;

1. Estimation of the form and dimension of the latent vector t as a linear

function t̃ = t̃(x) of x, or rather of the latent subspace spanned by t.

2. When the function t̃(x) has been determined, OLS multiple regression

of y on t̃ yields the predictor.

The statistic t̃ is a method-specific estimate of the latent vector t in the un-

derlying latent model (15). As an example, in PLSR we successively select

a suitable number of mutually orthogonal normalized linear functions of x

having maximum covariance with y, whereas in PCR the criterion is max-

imum variance instead of covariance. For the present treatment, we need

not specify much more, but detailed descriptions and discussions of PLSR

and PCR are found for example in the books by Martens & Næs (1989)

and Brown (1993). Among other methods satisfying the procedure are vari-

ous more parsimonious variations of PLSR and PCR known under the name

of orthogonal signal correction, see Svensson et al. (2002) for a review and

comparisons.

The result of Stage 1 is a weights matrix W̃ saying how the vector t̃

should be calculated from the vector x, namely linearly as t̃ = W̃x. On the

other hand, W̃ may depend non-linearly on calibration data. The˜notation

is used to indicate that W̃ is estimated, i.e. depends on data, and does not

exactly match the model characteristic P . In the following we will argue as

if W̃ were predetermined and did not depend on the same data as used in

the regression stage (stage 2). This is a deliberate simplification, which is

not believed to have important effects on the bias question. In particular

it should be so if the estimation of the latent vector space is successful, so

that essentially all covariance between y and x is captured by the estimated

t̃. Alternatively this is expressed as cov(y, x|t̃) being negligible or that the
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vector γ is (almost) in the column space of W̃ ′. This argument holds equally

if the calibration sampling has been selective with respect to the component

η = q′ t.

More precisely, reduction of dimension by going from centred x-data to

t̃ = W̃ (x−E(x)) in model (15) yields the following lower-dimensional model:

t̃i = W̃ (xi − E(x)) = (W̃ P ′) ti + W̃ δi , δi ∼ N(0, Σδ),

yi − E(y) = q′ ti + εi , εi ∼ N(0, σ2
ε ), (28)

ti ∼ N(0, I), dim(t) = a < dim(x).

We again reexpress this by splitting the vector (W̃ P ′) t in one component

which is a function of η = q′ t, and a remainder term that is uncorrelated

with η and is brought into the δ-term:

t̃i = ξi γ̃ + δ̃i , δ̃i = W̃ δi ∼ N(0, Σ
δ̃
),

yi − E(y) = ηi + εi , εi ∼ N(0, σ2
ε ), (29)

ηi = β ξi , ξi ∼ N(0, 1).

Here γ̃ and δ̃i differ from the previous γ and δi by referring to the model with

t̃ instead of x. The condition for this reexpression to be possible is that the

vector γ̃ belongs to the span of W̃ ′, so that no information about ξ is lost in

the reduction to t̃. This also implies that

γ̃ = W̃γ. (30)

Model (29) is seen to be of the same type as the latent variable regression

model (16), except that t̃ is now replacing the original explanatory vector

x− E(x), and that γ̃ and δ̃ replace the previous γ and δ.

We can now see the consequences for PLSR and PCR in the small sample

and selection bias effects, discussed in Sections 4.1 and 4.2 for the OLS

predictor. In the bias factor formulae (19), (23) and (27) the only changes

are that dim(x) is replaced by dim(t̃) and that γ′Σ−1
δ γ is replaced by

γ̃′Σ−1

δ̃
γ̃ = γ′W̃ ′(W̃ΣδW̃

′)−1W̃γ (31)

As a first consequence, the small sample shrinkage of Section 4.1 will tend

to be much smaller for the PLSR and PCR predictors than for the OLS

predictor, simply because we have replaced the large dim(x) by the relatively

small dim(t̃).
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It remains to find the possible difference between γ̃′Σ−1

δ̃
γ̃ and γ′Σ−1

δ γ. We

have already made the assumption that γ belongs to the subspace spanned by

the rows of W̃ . Let W̃ ′ ∝
(

γ W̃ ′
res

)
, where W̃ ′

res consists of column vectors

spanning this space jointly with γ, and orthogonal to γ. Note that (31) is

invariant to any change of W̃ by a scalar factor. Inserting the expression for

W̃ ′ in formula (31) we obtain

γ̃′Σ−1

δ̃
γ̃ =

(
γ′γ 0

)( γ′Σδγ γ′ΣδW̃
′
res

W̃Σδγ W̃ΣδW̃
′
res

)−1 (
γ′γ
0

)
=

γ′γ

var(γ′δ/γ′γ|W̃resδ)
.

(32)

This is the same interpretation as for OLSR, see Section 4.2, except that we

are now conditioning on only the part W̃resδ of the residual part δres of δ (the

orthogonal complement to γ′δ). However, both PLSR and PCR are likely

to include most orthogonal variation having appreciable covariance with γ′δ

(which is the same as the covariance with γ′x), so we have reason to expect

var(γ′δ|W̃resδ) ≈ var(γ′δ|δres). (33)

When (33) is satisfied, (32) shows that the only essential difference from

OLSR is that dim(t) replaces dim(x).

For PLSR and similar methods it may happen that quite much orthogonal

variation is left out of the latent structure, but that will be variation that

has little covariance with γ′x, and therefore does not much influence the

conditional variance. An alternative way of seeing that we should expect

(33) to be satisfied is to consider the expression of the conditional variance

in terms of the the total correlation coefficient ρtot, see equation (24). The

population total correlation coefficient can be expected to be quite similar for

OLSR, PLSR, and PCR if we include sufficiently many factors in the latter

methods. (On the other hand, the corresponding sample correlation R may

differ considerably if n is not large enough.)

Theoretical summary: For latent factor regression methods such as

PCR or PLSR the same bias factor formulae (19), (23) and (27) as for OLSR

will hold approximately, except that dim(t) replaces dim(x), reducing the

small-sample bias (considerably).

6 A simulation study

For illustration and confirmation purposes a latent factor model for a data

set of 344 slaughter pigs was used. The parameter values of this model
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were used in the formulas, and simulations from the model were used to

generate corresponding empirical quantities. The data set is briefly described

in Section 6.1. These data were used also in Sundberg (2006), but differently.

In that paper variability was generated by resampling from the actual data

set, but here the data were utilized only to generate a model that may be

realistic in applications and is adequate for at least one set of real data.

6.1 A background model for pig grading data

The simulation model, of type (15), was based on a data set from the Danish

Meat Research Institute. In a study of a method called KC for grading of

slaughter pig carcasses, they used a sample of 344 pigs. The quantity η of in-

terest, to be predicted, was the lean meat percentage. A reference value y was

obtained by dissection. A linear regression model for prediction was fitted,

based on 11 x-variables (slaughter weight and some specific measurements of

fat thickness and muscles tissue thickness).

The data were found to be adequately described by a latent factor regres-

sion model with three latent variables. Gaussian distributions of the random

components seemed reasonable. Variance standardization of x was not ap-

plied, but variances were already of the same magnitude. Both PLSR and

PCR naturally stopped at this dimension. With the original data, OLSR

with full x explained R2 = 77.7% of the variation in y. PLSR explained

91% of the variation in x and 77.2% of the variation in y, i.e. little less than

OLSR. The first three eigenvalues of the covariance matrix of x were 145, 61

and 26, and the remaining eigenvalues were between 6 and 1. In the sim-

ulation model Σδ was taken to be diagonal with variances 4, and the three

large eigenvalues were correspondingly reduced. The data set is available at

www.math.su.se/∼rolfs/Publications.html.

6.2 Simulation results

The simulations were carried out by generating a calibration sample (training

set) ranging in size from n = 14 to n = 100, together with a validation sample

(test set) of size 1000. The calibration sample was either a pure random

sample from the model (the natural population), or else it was selected to

have an increased variance in η. The θ-value actually used was extremely

large, θ = 100, in order to mimic the worst case (θ = ∞), but it should

be noted that already for moderate θ, θ = 3 say, the deviation from the
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worst case is small. Each such simulation of a calibration set and a test set

was repeated 1000 times. In each simulation the predictor was determined

from calibration data using OLSR, PCR or PLSR, the two latter methods

with 3 factors, see the previous section. The predictor was tried on the

validation data and for this large set the regression coefficient of y on ŷ was

determined with high precision. These coefficient values were averaged over

all simulations and in this way gave a point in one of the diagrams. Figure 1

represents natural calibration samples whereas Figure 2 represents samples

selected to have a very large variation in the ξ and η directions. These points,

for varying calibration sample sizes, can be compared with the theoretical

curves according to formulas (19) and (27) for OLSR and the corresponding

formulas for PCR and PLSR.

The diagrams show first that the simulated points (with different mark-

ers) agree reasonably well with the corresponding curves, being large sample

approximations of the true (expected) bias factors. Only for very small cal-

ibration sample sizes, say n < 20, is the lack of fit substantial. That the

deviations from the curve are smaller in Fig. 2 than in Fig. 1 can mostly be

explained by the fact that the precision is higher when the calibration sample

is overdispersed. That PCR points in Figure 1 are clearly above the curve

is mostly an effect of a quite skew distribution of the regression coefficients

with PCR. If the median were plotted instead of the mean, most of this effect

would disappear. See next section for more discussion about the deviations

from the curve.

7 Discussion

The present paper has derived and presented formulae for the bias of predic-

tions under a latent factor model when the predictor has been constructed

by OLS regression, or PLSR, or PCR. A lot of debate can be found in the

literature, largely closed by Faber (1999), concerning the biased character of

PLSR and PCR regression coefficient estimation methods, as being shrinkage

regression methods, in contrast to the unbiased estimation by OLSR, when

the latter can be used. Most of this discussion is regarded as irrelevant here,

when we consider the prediction error as function of the predictor variable

x and quantify the bias likewise, and when the OLSR-based predictor is in

fact found to be biased, and more seriously so than the other methods, for

small traning samples. The conventional bias of PLSR and PCR is due to
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the data-dependent choice of a limited number of factors to be used as re-

gressors, but this data-dependence has been neglected here. In this respect

we take as an assumption the statement by Faber (2000) about PLSR, that

“in typical chemometrics applications bias is likely to be small”, at the same

time as we stress the restricted applicability of this statement about bias, as

demonstrated by the present study.

In order to illustrate the influence of different sources of error, Martens

& Næs (1989, Sec. 4.1.3) presented some simulation results for calibration

by PLSR under various more or less artificial special cases of model (15),

and they show plots of ŷ(x) against y (the converse to our diagrams), for the

test set. Two of their settings yield regressions of y on ŷ(x) clearly differing

from the ideal identity function. Their Figure 4.2 (d) shows a regression

coefficient < 1, which is as expected from the theory for the small-sample

bias effect, because they have a positive σ2
ε in the generation of calibration

data. On the other hand, their Figure 4.2 (e) shows a coefficient > 1, as also

remarked by the authors as being a typical ‘least-squares effect’. In this case

Martens & Næs assume σ2
ε = 0, and σ2

δ = 0 for the test set, but σ2
δ > 0 for the

generation of the calibration data. The formulae of the theory presented here

might at first appear unable to give a coefficient > 1, but on close inspection

of formula (44) of Appendix 2 below, the result follows (since σ2
ε = 0, we

can go directly to Appendix 2 and take θ = 1). With σ2
δ = 0 for the test

set, var(x) = γγ′, whereas varc(x) = γγ′ + Σδ. Insertion yields an expected

regression coefficient of 1 + (γ′Σ−1
δ γ)−1, which is likely to explain the bias

seen in their Figure 4.2 (e).

Geladi et al (1999) discuss bias in PLSR prediction in terms of what they

call local bias, which would include the case of a bias factor. However, they

are primarily interested in such bias as a diagnostic for model errors due to

nonlinearities.

The influence of predictor bias on RMSEP or MSEP and similar measures

of prediction errors need not be so large as we might tend to fear. A bias

factor of 0.95 or even 0.90 typically does not change much, because MSEP is

an average over (the whole) natural population of items, and most of them

are in the centre of the population where the bias factor has little effect.

More precisely, multiplying the ideal predictor E(y|x) by a bias factor k ≥ 1

increases MSEP by a factor

1 + (k − 1)2 R2

1−R2
, (34)
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where the constant R2 is the squared population correlation coefficient be-

tween y and the regression E(y|x), so MSEP increases quadratically with

k−1 (and likewise RMSEP for k near 1). However, instead of primarily con-

sidering the effect on the average measure MSEP, we should rather regard

the bias formulae as saying that for not so typical items, i.e. items with y

and x relatively far from their population mean values, the predictor under

consideration will exaggerate their deviation from the mean.

A simple illustration of formula (34) can be found in the univariate con-

text of Andersen et al (2003). In their simulations they observe a rapid

nonlinear increase in RMSEP when their characteristic corresponding to θ

becomes large (their inverse number of replicates, see Section 2.2.2) . For-

mulae (34) and (14) in combination give at least a qualitative explanation

and understanding of the phenomenon they observed.

Even if we are given a random sample of training data from the natural

population, this does of course not by itself guarantee that this sample is

not variance-inflated by pure chance. If such variance inflation is suspected,

there may also be reason to suspect a bias factor in the predictor, as if the

variance inflation had been intended.

Finally it is worth stressing that cross-validation can help detecting the

small sample bias, but is unable to detect bias generated by variance inflation

in the sampling, since there is no independent test set from the population

to compare with.

In the univariate case dim(x) = 1 it was shown that the OLS predictor

ŷ(x) was median-unbiased for given x, whereas for larger dim(x) expressions

were given for the error in mean value. It might be asked if this error possibly

disappears if we go over to median instead. The answer is no. For OLSR

and PLSR the distribution is relatively symmetric, so mean and median differ

little. For PCR, on the other hand, the distribution can be quite skew and

this fully explains the difference between empirical points for PCR (crosses)

and the corresponding theoretical curve in Figure 1. Almost all difference

disappears if empirical means are replaced by medians. This leaves unex-

plained only the difference for PLSR, which goes in the opposite direction.

One explanation, cf. the last paragraph of Sec. 5, could be that with the ran-

domness of small samples, PLSR leaves too much variation in x unexplained,

and in particular more than PCR.
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Appendix. The expected value of cov(y, ŷ)/var(ŷ).

A1. Natural calibration, small sample shrinkage

It was found in Section 4.1 that the possible systematic error in the regression

of future y on ŷ(x) is given by the expected value over the random calibration

sample of the theoretical regression coefficient cov(y, ŷ(x))/var(ŷ(x)).

For the investigation in Section 4.1 of the bias effect for small calibration

samples on future predictions ŷ of y, we required the expected theoretical

regression coefficient

E

{
cov(y, ŷ)

var(ŷ)

}
= E

{
cov(y, x)b̂

b̂′var(x)b̂

}
= E

{
b′var(x)b̂

b̂′var(x)b̂

}
. (35)

The calibration sample, over which the expected value is calculated, is here

assumed to be a sample from the natural population, so E(b̂) = b. When

dim(x) = 1, the ratio simplies to b/b̂.

The expected value (35) exists in a strict sense for dim(x) > 2, but for

any value of dim(x), we may Taylor expand the ratio in (35) to second order

in b̂ around b. The constant term is 1, the first order term has expected value

zero, and the second order contribution simplifies to

2
{b′var(x)(b̂− b)}2

{b′var(x)b}2
− (b̂− b)′var(x)(b̂− b)

b′var(x)b
. (36)

The numerators of these second order terms have expected values

E{(b′var(x)(b̂− b))2} = b′var(x)var(b̂)var(x)b (37)

and

E{(b̂− b)′var(x)(b̂− b)} = E[tr{(b̂− b)′var(x)(b̂− b)}]
= E[tr{var(x)(b̂− b)(b̂− b)′}] = tr{var(x)var(b̂)} (38)

respectively, where tr denotes the trace. For both (37) and (38) we need an

expression for var(b̂). Since b̂ is conditionally unbiased, its variance can be

calculated via conditioning on the calibration x-data xc, as the calibration

sample sum of centered squares and products matrix Sxx matrix of x, which

is proportional to the inverse of the conditional variance of b̂:

var(b̂) = E{var(b̂|xc)} = σ2
ε E(S−1

xx ) = σ2
ε

var(x)−1

n− dim(x)− 2
. (39)
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Here Sxx is the calibration sample sum of centered squares and products ma-

trix, which is Wishart distributed and inversely proportional to the condi-

tional variance of b̂. For the expected value of the inverse Wishart distributed

matrix S−1
xx , see for example Brown (1993, Appendix A). Insertion of (39) in

(37) and (38) yields
σ2

ε b′var(x)b

n− dim(x)− 2

for the first term numerator, and

σ2
ε

n− dim(x)− 2
tr(Idim(x)) =

dim(x) σ2
ε

n− dim(x)− 2
(40)

for the second numerator (assuming n−dim(x)−2 > 0, of course). Together

they yield the simple approximation result

E

{
cov(y, ŷ)

var(ŷ)

}
≈ 1− dim(x)− 2

n− dim(x)− 2

σ2
ε

b′var(x)b

= 1− dim(x)− 2

n− dim(x)− 2

σ2
ε

β2γ′(γγ′ + Σδ)−1γ

= 1− dim(x)− 2

n− dim(x)− 2

σ2
ε

β2

{
1 + (γ′Σ−1

δ γ)−1
}

. (41)

The last identity in (41) is derived by using the so called binomial inverse

theorem (Brown, 1993, Appendix D) on var(x)−1 = (γγ′+Σδ)
−1, which yields

γ′(γγ′ + Σδ)
−1γ = γ′

{
Σ−1

δ − Σ−1
δ γγ′Σ−1

δ

1 + γ′Σ−1
δ γ

}
γ

=
γ′Σ−1

δ γ

1 + γ′Σ−1
δ γ

=
{
1 + (γ′Σ−1

δ γ)−1
}−1

. (42)

A2. Selective calibration

In Section 4.2 it was stated that for an infinitely large calibration sample,

overdispersed by a variance inflation factor θ2 in ξ or η, the regression co-

efficient of y on ŷ(x) to be seen for the natural population will suffer from

shrinkage by the factor cov(y, ŷ)/var(ŷ) < 1. We will here prove that this

shrinkage factor can be expressed as

1 + (γ′Σ−1
δ γ)−1/θ2

1 + (γ′Σ−1
δ γ)−1

. (43)
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First we note that

cov(y, ŷ)

var(ŷ)
=

1

β

cov(y, x)bc

b′cvar(x)bc

=
γ′bc

γ′varc(x)−1var(x)bc

1

θ2
, (44)

where b′c = βθ2γ′varc(x)−1. We will show that γ′varc(x)−1var(x) in the de-

nominator is proportional to γ′, and then the numerator will cancel an iden-

tical factor of the denominator. Again we use the binomial inverse theorem,

now on varc(x)−1:

varc(x)−1 = (θ2γγ′ + Σδ)
−1 =

(
Σ−1

δ − θ2Σ−1
δ γγ′Σ−1

δ

1 + θ2γ′Σ−1
δ γ

)
. (45)

Multiplication of (45) from the left by γ′ and from the right by var(x) =

γγ′ + Σδ yields γ′(1 + γ′Σ−1
δ γ). Combination of these formulae yields the

desired result.

A3. Combined effects

We here indicate how the approximate formula (27) for the small-sample

overdispersion shrinkage factor in Section 4.2 can be derived. If the derivation

in Appendix A1 is reconsidered for an overdispersed calibration sample, we

first replace b̂ by b̂c in (35) (three times). The constant term is no longer 1,

but is replaced by the factor (43) of Appendix A2, valid for very large sample

sizes. The second order terms are more complicated, and for simplicity we

restrict here to the limiting case θ →∞, in which we can apply the following

lemma:

Lemma: In the limit as θ →∞,

varc(x)−1 = Σ−1
δ − Σ−1

δ γγ′Σ−1
δ

γ′Σ−1
δ γ

, (46)

bc = Σ−1
δ γ

β

γ′Σ−1
δ γ

, (47)

and the matrix varc(x)−1var(x) is a projection matrix with trace dim(x)− 1,

that projects bc on zero.

Proof of Lemma: The limiting form of varc(x)−1 is obvious from (45). The

limiting form of bc = βθ2varc(x)−1γ requires a little more care, but is found by

again using the form (45). Finally, the properties of varc(x)−1var(x) are easily

checked by using the limiting form of varc(x)−1, but they are also natural
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from the construction of the calibration sample, being imagined as stretched

out indefinitely in one direction. Inserting these formulas for varc(x)−1, in

particular where it replaces var(x)−1 in (39), and for bc where it replaces b in

(35) and subsequent formulas, the desired result (27) appears. For example,

the Lemma makes (37) vanish and makes dim(x) in the numerator of (40)

be replaced by dim(x)− 1.
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Bias-factors in natural calibration for OLS (lower curve) and PLS, PCR (upper curve)

Figure 1: Small-sample bias-factor illustrated for natural calibration.
Theoretical and simulated data from latent factor regression model, see Sec.
6.1.
Lower curve: OLS, formula (19)
Upper curve: PLSR/PCR with 3 latent factors, see Sec. 5.
∗ Simulated data with OLSR for predictor construction
+ Simulated data with PLSR for predictor construction
× Simulated data with PCR for predictor construction
Points represent averaging over a test set of size 1000 and averaging over
1000 simulated datasets for each sample size n.
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Figure 2: Combined selection and small-sample bias-factor illustrated
Theoretical and simulated data from latent factor regression model, see Sec.
6.1.
Lower curve: OLS, formula (27) Upper curve: PLSR/PCR with 3 latent
factors, see Sec. 5.
∗ Simulated data with OLSR for predictor construction
+ Simulated data with PLSR for predictor construction
× Simulated data with PCR for predictor construction
Points represent averaging over a test set of size 1000 and averaging over
1000 simulated datasets for each sample size n.
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