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Abstract

Some cognitive functions exhibit multiple phases in old age, which mo-
tivates the use of a change point model for the individual trajectory. The
change point varies between individuals and is treated as random. Illus-
trating with an application to cognitive function in a Swedish sample, we
contrast the random change point model with models within the family of
linear random effects models. The focus is on the ability to capture trait
variability. We show that the models make different assumptions about the
trait variance over the age distribution, and demonstrate that the random
change point model is favourable in this respect. The performance of ap-
proximate maximum likelihood estimation based on first-order linearization
of the random change point model is evaluated. Through simulations we
show that the first-order linearization can produce biased parameter esti-
mates even in an ideal situation with many repeated measurements and a
balanced study design. We contrast the results with a Bayesian analysis,
based on Markov chain Monte Carlo simulation using Gibbs sampling.
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1 Introduction
The analysis of repeated measures of cognitive function in old age is nontrivial
because the development over time for an individual is often nonlinear. Several
studies have shown that some cognitive functions are maintained into old age,
and a more marked decline is an indication of impending death (McArdle and
Anderson, 1990; Schaie, 1996). This phenomenon is referred to as terminal drop
(Berg, 1996), and can potentially be captured by a random change point model
incorporating individual-specific change points. In this paper, we investigate the
properties of, and estimation procedures for, a random change point model with
two phases, both exhibiting a linear trend. Our model allows both the trend and
the age at transition from the first to the second phase to be individual-specific. In
the statistical analysis we focus on the variance of these random components and
model the total variance in cognitive abilities over age. We illustrate the model
with an application to cognitive data from the Swedish Adoption/Twin Study of
Aging (Pedersen et al., 1992).

Random change point models have previously been used in several bioscience
applications. These include studies of progression of HIV infection using CD4
T-Cell numbers (Lange et al., 1992; Kiuchi et al., 1995), development of prostate
specific antigen (PSA) levels as a marker for prostate cancer (Slate and Turnbull,
2000) and cognitive function in old age (Hall et al., 2003; Jacqmin-Gadda et al.,
2005). In the previous studies of cognitive function, the focus has been on the
mean trajectory in the pre-dementia phase. For example, Jacqmin-Gadda et al.
(2005) assess the overall effect of educational level on the cognitive evolution. In
contrast, the focus of this paper is on the ability of the random change point
model to explain variability in cognitive function, which has previously not been
explored.

Although the use of nonlinear mixed models, such as the random change point
model, has increased in many applied fields, linear mixed models, or linear random
effects models (Laird and Ware, 1982), remain very popular for modelling longi-
tudinal data in behavioral sciences. Linear mixed models allow the assessment of
the general trend over time as well as the individual variability. Often the main
interest is in the mean parameters and individual-specific random effects serve to
absorb variation and to give a clearer picture of the average population effect.

The main objective for the Swedish Adoption/Twin Study of Aging (SATSA)
is to assess the impact of genetic and environmental influences on the aging pro-
cess. This is possible through variance decomposition based on structural equation
models for twin data (e.g. Dominicus, 2003). Our analyses of data from SATSA
thus focus on the estimation of variance parameters. More specifically, we wish
to capture trait variability as a function of age. As noted by Verbeke and Molen-
berghs (2000), linear random effects models imply very specific assumptions about
the marginal trait variance. We compare the random change point model with
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the linear and the quadratic random effects models in their ability to explain trait
variability.

Due to the nonlinearity of the response function in the random change point
model, the likelihood does not have a closed-form expression, which complicates
maximum likelihood estimation. Possible solutions to this problem include ap-
proximate likelihood methods and sampling-based inference methods. The sim-
plest method for approximate maximum likelihood estimation is the ”first-order
algorithm”, described by Beal and Sheiner (1982). The procedure is a natural
extension of the linearization algorithm for nonlinear regression. Here, the like-
lihood is approximated by a first-order Taylor expansion of the response func-
tion with respect to the random effects about their expected values. Alternative
methods for approximate maximum likelihood include the ”conditional first-order
algorithm” proposed by Lindstrom and Bates (1990). In previous applications
of random change point models, both the first-order approximation (Cudeck and
Klebe, 2002) and the conditional first-order approximation (Slate and Turnbull,
2000) have been used.

In a Bayesian perspective, the marginal posterior distribution of model param-
eters is the target, involving integrations over the joint posterior distribution. In
sampling-based Bayesian procedures, numerical integration is avoided by taking
repeated samples from the conditional posterior distributions for each parameter
(or subset of parameters) in turn. One technique for doing this is to use Markov
chain Monte Carlo (MCMC) through Gibbs sampling (Geman and Geman, 1984).
It involves the construction of a Markov chain that has the posterior distribution
of interest as the stationary distribution. Bayesian approaches have been used in
several previous applications of random change point models (Smith, 1975; Carlin
et al., 1992; Kiuchi et al., 1995; Slate and Turnbull, 2000).

In this paper we compare the performance of the first-order approximation and
the Gibbs sampler for estimation of random change point models. The first-order
approximation is appealing due to its simplicity. It can easily be used for estima-
tion of extended random change point models, incorporating structured random
effects, e.g. for modelling twin data. Although it is known that linearization
methods for nonlinear mixed models can yield biased estimates, the severity and
the direction of the bias for the random change point model have yet not been
assessed.

In section 2 the random change point model is described, and different param-
eterizations are compared. The first-order linearization method for approximate
maximum likelihood estimation is described in section 3 and Bayesian analysis
based on Gibbs sampling is described in section 4. In section 5 we illustrate fea-
tures of the random change point model by analysing cognitive data from SATSA
based on both first-order approximation and Gibbs sampling. A simulation study
comparing the performance of the two procedures is presented in section 6. The
findings are summarized and discussed in section 7.
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2 Random change point model
The random change point model with two phases, both exhibiting a linear trend,
can be expressed as

E(yij) =





b01i + b11itij if tij ≤ τi,

b02i + b12itij if tij > τi,

where E(yij) is the expected value of the response, yij, at the jth measurement
for the ith individual at time tij. The random effects b01i and b11i describe the
individual-specific intercept and slope for the ith individual in the first phase,
before the change point at time τi, and b02i and b12i describe the corresponding
parameters in the second phase. For many behavioral traits the transition from the
first to the second phase will exhibit no jump. Hence, the trajectory is continuous
at τi, which requires that b01i + b11iτi = b02i + b12iτi. One of the parameters is thus
redundant and can be solved in terms of the other, e.g. b02i = b01i + b11iτi− b12iτi.
The original five-parameter model becomes a four-parameter model

E(yij) =





b01i + b11itij if tij ≤ τi,

b01i + b11iτi + b12i(tij − τi) if tij > τi.

Bacon and Watts (1971) note that this parametrization is not sensitive for detect-
ing changes in slope and suggest a reparametrization to

E(yij) = b0i + b1i(tij − b3i) + b2i(tij − b3i)sign(tij − b3i),

where sign(z) = −1 if z < 0, sign(z) = 0 if z = 0, and sign(z) = +1 if z > 0.
Under this parametrization, the slope is equal to b1i− b2i before the change point,
and equal to b1i + b2i after the change point. For individual i, the change point is
denoted b3i, b0i is the expected value of the response at the change point, b1i is the
average of the two slopes, and b2i is half the difference of the two slopes. Figure 1
explains the model parameters geometrically. In the analysis of cognitive decline
in old age, we want to assess the variability in cognitive function as a function of
age. Letting eij denote the residual error, our model is of the form

yij = b0i + b1i(ageij − b3i) + b2i(ageij − b3i)sign(ageij − b3i) + eij. (1)

The parameters which describe the individual trajectories are specified as the pop-
ulation mean plus an individual-specific random effect measured as a deviation
from the mean, e.g. b0i = β0+η0i. In vector notation, the population mean param-
eters are denoted β = (β0, β1, β2, β3)

T . The random effects ηi = (η0i, η1i, η2i, η3i)
T

are assumed to follow a multivariate normal distribution with mean zero and
variance-covariance matrix Ψ. In principle Ψ can be unstructured. In our ap-
plication to cognitive decline (section 5), however, we use a constrained model
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Figure 1: Parameters in the change point model for a singel individual.

leading to a block-diagonal structure of Ψ. The residual errors in (1) are assumed
to be independent of each other and of the random effects, and normally dis-
tributed with mean zero and constant variance σ2

e . The latter assumption seems
plausible in our analysis of cognition in old age, but could be relaxed to allow for
heterogeneity in residual errors (e.g. Davidian and Giltinan, 1995).

3 First-order linearization for approximate maxi-
mum likelihood inference

We express all repeated measurements for the ith individual from ni time points
as the vector yi = (yi1, yi2, ..., yini

)T , and write the random change point model
(1) as

yi = f i(agei, ηi,β) + ei, (2)
where ei = (ei1, ei2, ..., eini

)T . The function f i is nonlinear in both the fixed effects
β and the individual-specific random effects ηi. The likelihood expression for a
sample of m individuals is

m∏

i=1

∫
p(yi|agei,ηi; β,Ψ, σ2

e)p(ηi|Ψ)dηi. (3)

Since the outcome yi is a nonlinear function of ηi there is no analytic expression
for the marginal distribution of yi in (3). In the first-order linearization, Beal and
Sheiner (1982) approximate (2) with the first terms in a Taylor expansion about
the expected value of the random effects, i.e. about ηi = 0. Retaining the first
two terms in the expression gives

yi ≈ f i(agei,0, β) + Fi(agei,0,β, )ηi + ei, (4)
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where Fi(agei,0,β) is the matrix of the first partial derivatives of f i(agei,ηi, β)
with respect to ηi, evaluated at ηi = 0. Expression (4) is linear in the random
effects ηi, and a nonlinear function of the fixed effects β. The important con-
sequence of (4) is that the marginal mean and covariance of yi may be specified
readily as:

E(yi) ≈ f i(agei,0, β), (5)
Cov(yi) ≈ Fi(agei,0,β)ΨFi

T (agei,0,β) + σ2
eIi, (6)

where Ii is the ni × ni identity matrix. If ηi and ei are normally distributed,
it follows from (4) that the marginal distribution is approximately normal with
moments given by (5) and (6). Numerical techniques such as the Newton-Raphson
algorithm and its variants can be used for maximum likelihood estimation of the
approximate model (4). Under approximation (4) and the assumption that the
random effects and the residual errors are normally distributed, inference may be
based on standard asymptotic theory for maximum likelihood. For example, the
asymptotic variance-covariance matrix for model parameters may be estimated by
the inverse of the information matrix evaluated at the estimates.

Numerical estimation is facilitated when the mean function is differentiable,
so the transition from the first to the second phase is usually smoothed (Seber
and Wild, 1989). Bacon and Watts (1971) suggest replacing sign(·) by a smooth
function and they describe certain conditions that such a function should obey. We
smooth the change point model by replacing sign(tij−b3j) by tanh

(
tij−b3j

γ

)
, where

γ is a small positive smoothing parameter. The values of γ that we consider, all
less than one, give similar results, and we use γ = 0.1 in the analyses of empirical
and simulated data. In the random change point model for cognitive decline, the
smooth transition from the first to the second phase agrees with the clinical belief
of a progressive decline.

4 Gibbs sampling for Bayesian inference
An alternative to the likelihood approach is to take a Bayesian perspective and
perform Markov chain Monte Carlo (MCMC) simulations to approximate the
posterior distribution of the parameters. This involves constructing a Markov
chain with the required posterior distribution as its stationary distribution. We
use a Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) to
construct Markov chains. The Markov chains are run for a long time, after which
samples from the required distribution can be assembled. We use a Metropolis-
within-Gibbs algorithm for which the full conditional distributions only need to
be known up to a normalizing constant. Full Bayesian analysis is conceptually
straightforward, albeit computationally demanding.
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In the three-stage hierachical change point model, the first and second stage
models defined in section 2 take the form

yi|agei,bi, ωe ∼ MVN(f i(agei,bi), ωeIi)

bi|β,Ω ∼ MVN(β,Ω),

where ωe (σ−2
e ) is the residual precision parameter and Ω (Ψ−1) is the (4 × 4)

precision matrix for the random effects. In the third stage, we use the following
prior distributions:

β ∼ MVN(β∗,H) (7)
Ω ∼ Wishart((ρΩ∗)−1, ρ)

ωe ∼ Gamma(λ1, λ2).

The hyperparameters β∗,H, ρ,Ω∗, λ1 and λ2 are assumed to be known. Here, λ1

and λ2 are the shape and rate parameters of the Gamma distribution. This choice
of priors correspond to proper conjugate distributions, which have the desired
property of leading to posterior distributions of known form (e.g. Gelman et al.,
2004).

In the model given by (1), the random effects are bi = (b0i, b1i, b2i, b3i)
T . This

parametrization aims at minimizing the correlation between model parameters
when drawing from the conditional posterior distributions. In our applications,
we also consider restrictions on the covariance structure for the random effects bi.
For effects that are assumed to be independent of other effects, we use a normal
distribution for the mean parameter, and a Gamma distribution for the precision
parameter, as priors. The specific values used for the hyperparameters are given
in section 5 and 6.

5 Application to longitudinal data on cognitive de-
cline

5.1 Description of the data

We analyze data on cognitive function, measured by the Symbol Digit test, which
taps the ability to quickly and accurately compare numbers and symbols (Ped-
ersen et al., 1992). The assessment of cognitive function is part of the Swedish
Adoption/Twin Study of Aging (SATSA), a longitudinal twin study of aging that
includes both questionnaire assessments and in-person testings of cognitive and
functional capabilities, personality and health. The base population of SATSA
comprise all twin pairs in the Swedish Twin Registry (Lichtenstein et al., 2002)
who indicated that they had been reared apart, and a control sample of twins
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reared together, matched to those reared apart on gender, age and county of birth
(3838 individuals). The first in-person testing took place in 1986-1988 and follow-
up data were obtained after three, six, thirteen, and sixteen years. SATSA has
been described in detail by Finkel and Pedersen (2004).

To avoid the issue of clustered sampling in this illustration, we choose one
twin at random from each twin pair. In this sample of 438 individuals, 60% are
women and 40% are men. The data are highly unbalanced in that individuals
are measured at very different ages. The mean age at the first test occasion (in
1986-1988) for this sample is 62 years, all individuals being in the range of 37–88
years.

Because some participants are lost to follow up, or have a late entry into the
study, only 98 of the 438 individuals have test scores from all five test occasions.
Further, 58 have data from four test occasions, 106 from three test occasions, 102
from two test occasions, while 74 only from one single test occasion. Individuals
with few measures contribute with little information in the estimation of param-
eters in a random effects model. Predictions of individual-specific random effects
for these individuals will be close to the population mean estimates. In the anal-
yses, we assume that the missing data mechanism is ”ignorable”, in the sense of
Little and Rubin (2002). Although this is a questionable assumption (Pedersen
et al., 2003), expanding on this issue is beyond the scope of this paper.

45 55 65 75

20
30

40
50

60

Age (in years)

Te
st

 s
co

re

Figure 2: Symbol Digit test scores for 10 participants in SATSA, randomly selected among
participants with five repeated scores.
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Figure 2 shows test score trajectories for 10 individuals randomly selected from
those having five repeated scores from the Symbol Digit test. The figure indicates
a high within- and between-individual variability, but lacks a clear indication of
a particular functional form for a population curve besides an overall decrease in
test scores with age.

5.2 Random change point model for cognitive decline

The random change point model (1) is applied to cognitive data from SATSA and
estimated using both the first-order approximation and the Bayesian approach.
Initial analyses suggest that the change point model with a full covariance struc-
ture between all random effects is overparameterized, but indicates a strong cor-
relation between the difference between the two slopes, b2i, and the level at the
change point, b0i. We adapt a random change point model including this corre-
lation, and assume independence for all other random effects, leading to a block
diagonal structure for Ψ. Age was centered at 65 years. In the Bayesian approach,
we use prior distributions for the mean and precision parameters, as follows:

β∗02 ∼ MVN
(

(40, 0),

(
0.01 0
0 0.01

))

β1 ∼ N(0, 0.01)

β3 ∼ N(5, 0.1)

Ω∗
02 ∼ Wishart


2

(
100 0
0 0.5

)−1

, 2




ω1 ∼ Gamma(0.1, 0.1)

ω3 ∼ Gamma(0.1, 0.1)

ωe ∼ Gamma(0.1, 0.1).

This choice of priors is fairly noninformative for both mean and variance-covariance
parameters. We find that the choice of hyperparameters in the prior distributions
for β and Ω have little influence on the marginal posterior distributions. We
run two independent parallel chains of the Gibbs sampler, with different start-
ing values. After a burn-in of 100000 iterations, each sequence was taken to
500000 iterations. The posterior distributions for the mean parameter in β and
the variance-covariance parameters in Ψ were obtained by mixing the two se-
quences. The convergence of the Markov chains was assessed visually and based
on Geweke’s convergence diagnostic criterion (Geweke, 1992).

The parameter estimates from first-order approximation and MCMC are given
in Table 1. The estimates from the two procedures are rather similar, with some
important exceptions. The estimates of mean and variability in the difference in
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slope before and after the change point, β2 and ψ2, are both estimated to be lower
based on the first-order approximation compared to MCMC. Estimates of the
variability in level at the change point, ψ0, and the variability in change points,
ψ3, are also different for the two methods. None of the discrepancies are very
large in relation to the uncertainty in parameter estimates, though. The following
discussion of parameter estimates will be based on the MCMC results. Kernel
density plots of the marginal posterior distributions are displayed in Figure 3.

Table 1: Random change point model for cognitive function in SATSA.
First-order approx. MCMC

Parameter Estimate SE Median Mean SE
β0 34.6 0.6 35.2 35.3 1.5
β1 -0.81 0.03 -0.81 -0.81 0.04
β2 -0.14 0.04 -0.16 -0.16 0.05
β3 6.84 0.21 6.39 6.22 1.65
ψ0 88.3 15.8 106 106 13
ψ1 0.038 0.035 0.036 0.038 0.014
ψ2 0.083 0.051 0.15 0.15 0.04
ψ3 35.7 21.5 7.57 11.8 12.5
ψ02 -2.30 0.56 -2.66 -2.68 0.69
σ2

e 23.2 1.3 22.8 22.8 1.3

The estimates of the population mean parameters, β0, β1, β2 and β3, reflect
a general decline in cognitive function measured by the Symbol Digit test. The
mean age for the change point is 71 years, the mean slope is -0.65 scores/year
before the change point and -0.97 scores/year after the change point. The corre-
lation between an individuals level at change point and difference in slope before
and after the change point is equal to -0.67. The negative correlation suggests
that individuals having a high level at the change point have a larger (negative)
difference in slope for the two phases.

The goodness-of-fit of the random change point model is illustrated by the
observed versus predicted score ratio in Figure 4. The prediction of scores is
fairly good, except for very small values, suggesting that low test scores are more
difficult to predict. Figure 2 suggests that there is indeed a fairly large variability
in individual trajectories making accurate predictions difficult.

To contrast the results from the random change point model, we refit the
linear and the quadratic random effect models, which have previously been used
to analyze cognitive data from SATSA. Model estimation was based on ML. The
left plot in Figure 5 displays the observed mean test score for the SATSA sample
as a function of age together with the results from the linear and the quadratic
random effects models, and the first-order linearization of the random change
point model. The observed mean trajectory is obtained as a moving average.
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Figure 3: Marginal posterior distributions for parameters in the random change point model.
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Figure 4: Observed/Predicted versus predicted scores based on one draw from the posterior
distribution of the individual-specific random effects in the change point model for Symbol Digit
scores.
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Figure 5: Observed and predicted mean score trajectories for cognitive function.

The predicted mean trajectories for the linear and the quadratic random effects
models were calculated based on the ML estimates of the fixed effects in these
models. The predicted mean trajectory based on the first-order approximation
of the random change point model was derived from (5) using the estimates in
Table 1. The right plot in Figure 5 displays the observed mean score trajectory
together with four different predicted mean score trajectories obtained from four
draws from the posterior distribution of the individual-specific random effects in
the random change point model. From Figure 5 it is clear that the observed overall
trend is close to linear, and the predicted mean trajectories are all close to the
observed mean trajectory.

With the original motivation of studying twins to decompose trait variability
into variability induced by genetic and environmental factors, the primary goal
of this study is to assess the variability in traits. Especially, we are interested
in the variability as a function of age. Figure 6 displays the observed variance
trajectories together with model induced variance trajectories. The trajectories
for the linear and the quadratic random effects models (left plot in Figure 6) were
derived analytically. Also the trajectory for the first-order approximation of the
random change point model was derived analytically based on the approximate
expression (6) using the mean and variance-covariance parameter estimates in
Table 1. Without linearizing the model, however, the variance cannot be obtained
analytically. Therefore, we use the four draws from the posterior distribution of
the random effects to obtain predicted outcomes for the random change point
model. Variance trajectories (one for each posterior draw) could then be obtained
by calculating the variance of the predictions and add the residual variance in
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moving age windows (right plot in Figure 6). Figure 6 indicates that the variability
in observed test scores increases in the range 60–70 years. Apparently, all the
models considered imply very different assumptions about the trait variability,
although the mean trajectories in Figure 5 are similar. The variance trajectory
predicted from the random change point model approximately follows the observed
variance curve. The only discrepancies are in the beginning and in the end of the
observed age range, where the available data is limited. In contrast, both the
linear and the quadratic variance trajectories are far from the trajectory based
on empirical data. The variance trajectory based on the first-order linearization
of the random change point model, mimics the observed variability fairly well,
except for a peak at the estimated mean age at change point.
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Figure 6: Observed and predicted variance trajectories for cognitive function.

6 Simulation study
We investigate the performance of the first-order approximation, implemented
in SAS PROC NLMIXED (Wolfinger, 1999), and Gibbs sampling, implemented
in WinBUGS 1.4 (Spiegelhalter et al., 2003), by means of Monte Carlo simula-
tion. Parameters used for data generation were chosen to approximately mimic
the cognitive decline observed in SATSA. For simplicity, we use a balanced data
design and assume the random effects to be independent. Four settings are con-
sidered, differing only in the number of repeated measurements and the variance
of individual-specific change points, ψ3:
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Setting Time points ψ3

1 −6,−5, ..., 6 4
2 −6,−3, 0, 3, 6 4
3 −6,−5, ..., 6 25
4 −6,−3, 0, 3, 6 25

Setting 1 is an ideal situation with all individual-specific change points being
within the observed time range, and the thirteen repeated measures being centered
around the mean change point. Setting 2 is similar to the first, except the data is
reduced to five repeated measurements. In setting 3 the variance of the individual-
specific change points is increased to 25 years. With time points centered around
zero, and individuals being observed once a year between -6 and 6, a standard error
of 5 means that on average only 31% of the individuals have their change point
inside the observed time range (individual-specific change points are assumed to
be normally distributed). Setting 4 is the worst case with both a large variability
in change points and only five repeated measures for each individual.

The simulations of the first-order approximation were based on 200 samples,
each including 500 individuals. The maximum number of iterations for estimation
of each sample was set to 200. The starting values were chosen to lie close to
the true values to improve convergence. Due to the computational burden of
estimation through MCMC simulation, the number of samples was reduced to
20 (each including 500 individuals) in the evaluation of the performance of the
Gibbs sampler. The prior distributions for the model parameters were chosen to
be vague:

β0 ∼ N(40, 0.01)

β1 ∼ N(0, 0.01)

β2 ∼ N(0, 0.01)

β3 ∼ N(0, 0.01)

ω1 ∼ Gamma(0.001, 0.001)

ω2 ∼ Gamma(0.001, 0.001)

ω3 ∼ Gamma(0.001, 0.001)

ω4 ∼ Gamma(0.001, 0.001)

ωe ∼ Gamma(0.001, 0.001).

The results from simulations based on the first-order approximation (Table 2) re-
veal that both the mean and the variance of the difference in the two slopes, β2

and ψ2, are underestimated with up to 53% and 63%, respectively. The bias is
present even in the best situation, with thirteen yearly measurements for all indi-
viduals, and all individual change points being in the observed time range. When
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decreasing the number of repeated measurements, and increasing the variability
in change points, the bias increases. With large variability in individual change
points, the variability in average slope, and level at the change point, are over-
estimated. With only five repeated measurements, the variability in individual
change points is also overestimated. The mean of estimated standard errors and
the empirical standard errors are similar for most parameters, except for the mean
change point, β3, where the estimated standard error is substantially smaller than
the empirical standard error.

The simulation results based on the MCMC method, also given in Table 2,
suggest that the Gibbs sampler performs well in all four settings considered. The
means of the medians of posterior parameter distributions are all close to the
true parameter values even in the worst setting. As expected, the variability
in posterior medians for β3 and ψ3 increases as the variability in change points
increases.

7 Discussion
We have demonstrated the use of random change point models for modelling
variability in longitudinal data. Although neglected in many applications of linear
random effects models, it is well known that the form of the random effects model
has implications for the variance structure (e.g. Verbeke and Molenberghs, 2000).
This is especially problematic in applications where the primary interest is in the
trait variance, which is typically the case in family studies. Based on an empirical
study of cognitive function in old age, we showed that the random change point
model is very flexible in capturing the trait variability as a function of age. This
is in contrast to the linear and the quadratic models, which are often used in
analyses of longitudinal family data.

We evaluated two procedures for estimation of the random change point model,
the first-order linearization for approximate maximum likelihood estimation and
a Bayesian approach based on Gibbs sampling. Both procedures have previ-
ously been used in applications of random change point models, and are easy
to implement. Through simulations we showed that individual-specific trajecto-
ries are biased towards a linear curve when estimation is based on the first-order
approximation. As anticipated, the bias increased when the variability in the
individual-specific change points increased.

Refinements of the first-order approximation for approximate ML estimation of
nonlinear mixed models, such as the conditional first-order algorithm proposed by
Lindstrom and Bates (1990), are expected to reduce bias in parameter estimates.
The difference in results between the first-order and the conditional first-order
analyses will decrease as the number of observations per individual decreases,
however. The reason is that the empirical Bayes estimates of the random effects
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are ’shrunk’ towards the mean value of zero, and this shrinkage is greater the
smaller the amount of data is available for each individual.

A Bayesian analysis based on Gibbs sampling seems to be a useful alternative
for making inference about the random change point model. In our simulations,
the medians of the marginal posterior distributions of model parameters were all
close to the correct values, even with a moderate amount of data (500 individuals
observed at five occasions). However, it is yet not clear how noninformative prior
distributions for the variance-covariance parameters should be chosen. Gelman
(2005) argues that the inverse-gamma distribution typically used for being nonin-
formative for a variance parameter, may have problems. Instead, a uniform prior
on the hierarchical standard deviation is recommended. The generalization to
priors for a multivariate nonlinear hierarchical model, such as the random change
point model, merits further investigation.

In spite of the fairly complex structure of the random change point model, it
may still not capture all features of cognitive evolution. For example, censored
change points are not explicitly modelled. In studies of cognition in old age, loss to
follow-up is also a reality. If the dropout is ”non-ignorable” it has to be accounted
for explicitly to avoid selection bias. Jacqmin-Gadda et al. (2005) adapted a
random change point model for cognitive decline tied to a survival model for
dementia to address this issue.

The motivation for this work was a longitudinal twin study of cognition with
the ultimate goal of decomposing the variability in individual trajectories into
variability due to genetic and environmental factors. Neale and McArdle (2000)
describe a method for variance decomposition for nonlinear random effects models
for longitudinal twin data based on a first-order approximation of the response
model. This procedure is appealing since the approximate model is a structural
equation model, and standard procedures for ML estimation can be used. How-
ever, our results indicate that the first-order approximation of the random change
point model may yield biased estimates of both mean and variance-covariance pa-
rameters. A random change point model for twin data should therefore be based
on another approach, e.g. the Bayesian approach discussed in this paper. Open
questions for this extended model include the choice of priors, especially for the
covariance matrix. The implications of the distortion of the orthogonality of the
mean and covariance structure for the individual-specific random effects, due to
the nonlinearity of the regression model, will also have to be carefully assessed.
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