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Abstract

This thesis is concerned with the analysis of association be-
tween genetic markers and disease. We consider a scenario where
it is known that a genetic region of interest has a tendency to be
transmitted intact from parent to offspring. The region is said
to be linked. The hope is that a mutation involved in the causal
pathway of the disease is contained in the linked region, and that
we can pinpoint its exact location through association analysis.

We describe and assess existing methodologies, parametric
and non-parametric, for the testing and estimation of association
in the presence of linkage. Many genetic association studies have
complex ascertainment schemes. We develop a novel score test of
association in the presence of linkage for binary traits that takes
ascertainment, as well as population stratification, into account.
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Notation

H0 Null hypotheses

H1 Alternative hypotheses

Y Trait

M Offspring marker data

g Parental marker data

v Inheritance vector

P Probability

L Likelihood

I Fisher Information matrix

S Score function

θ Recombination fraction

r2 Correlation coefficient

A/a Marker alleles (biallelic)

D/d Disease susceptibility alleles (biallelic)

n Number of families
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Abbreviations

DNA Deoxyribonucleic acid

SNP Single Nucleotide Polymorphism

LD Linkage Disequilibrium

QTL Quantitative Trait Locus

VCM Variance Components Model

FBAT Family-Based Association Test

RL Rabinowitz Laird

GRE Gamma Random-Effects

HWE Hardy-Weinberg Equilibrium

IBD Identity-By-Descent

IBS Identity-By-State

DS Disease Susceptibility

MGRR Matched Genotype-based Relative Risk

GHRR Genotype-based Haplotype Relative Risk

HHRR Haplotype-based Haplotype Relative Risk

TDT Transmission Disequilibrium Test

LRT Likelihood Ratio Test

ML Maximum Likelihood

GLM Generalized Linear Model

GLMM Generalized Linear Mixed Model

IWLS Iterative re-Weighted Least Squares

6



1 Introduction

This thesis is concerned with statistical methodology for finding genes that
are associated with a trait, either binary or continuous. Attention is re-
stricted to a specific scenario where it is known that the genetic region of
interest has a tendency to be transmitted intact from parent to offspring. We
say that there is linkage in that region and that we analyse association in
the presence of linkage. The hope is that a mutation involved in the causal
pathway of the disease is contained in the linked region, and that we can
pinpoint its exact location. We may see this as a conditional analysis which
requires specific statistical methodology. The null and alternative hypotheses
can be written as

H0 : Linkage, but no association.

H1 : Linkage and association.
(1.1)

We discuss two existing methodologies; one non-parametric, and one para-
metric, to test and to model association in the present of linkage. The para-
metric model is a normal mixed effects model for testing association in the
presence of linkage for continuous traits, the Variance Components Model
(VCM) of Fulker, Cherny, Sham & Hewitt (1999). It is designed to take into
account that the study population may be stratified into subgroups with dif-
ferent genetic backgrounds (population stratification), but it does not take
the ascertainment scheme into account. The non-parametric test statistic,
the Family-Based Association Test (FBAT), takes the ascertainment scheme
into account, as well as the population stratification. The FBAT has the
additional advantage that it tests for association in the presence of linkage
for both continuous and binary traits.

In this thesis, we develop a new score test for association in the presence of
linkage for binary traits, which takes ascertainment and population stratifi-
cation into account.

In Section 2 we present material which serves as a background to the topic
of this thesis. Section 2.1 defines some fundamental genetic concepts. In
Section 2.2 we define Linkage Disequilibrium and Linkage, and discuss their
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relatedness. In Section 2.3, as means of a historical background, we describe
tests of hypotheses closely related, but not identical, to the null and alterna-
tive hypotheses in (1.1). The aims and the structure of the main part of the
thesis are presented in Section 3. Section 4 describes two existing methods
for testing association in the presence of linkage in family-based studies: the
VCM in Section 4.1 and the FBAT in Section 4.2. In Section 5 we give a
short introduction to the Generalized Linear Mixed Models and in Section
6 the novel score test from a gamma random effects model is developed for
testing association in the presence of linkage for binary traits. Section 7 is
a discussion. Two papers have been extracted from the main text and are
attached in Appendix C.
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2 Background

2.1 Genetic Primer

Humans carry genetic information in double helix strings of nucleotides,
called DNA (deoxyribonucleic acid). These strings of DNA are called chro-
mosomes. There are 46 human chromosomes, forming 22 pairs and two sex
chromosomes. If a certain location (locus, pl. loci) on a chromosome carries
information on a specific trait (for example eye colour) then the complimen-
tary location on the other chromosome in the pair also carries information
about the same trait (eye colour).

In the simplest case when two individuals mate, one randomly selected chro-
mosome gets transmitted from each parent to the offspring. In the more
complex case, the chromosomes in a pair recombine at (supposedly) random
locations, and form new chromosomes, that then are transmitted from the
parent to the offspring. The probability of a recombination occurring be-
tween two loci depends on chromosome length, chromosome type and sex.
The recombination fraction is defined, such that a recombination fraction of
1/2 means that the probability of recombination is 1, whilst a recombination
fraction of 0 means that the probability of recombination is zero.

Most human DNA is identical for the whole population, but at some loci
different variants exist. Variants at a locus are called alleles and if there
are only two alleles in the population it is said that the locus is biallelic.
Each human carry two alleles, one at each chromosome. The unordered
combination of alleles is called the genotype, whilst the ordered combination
is called the haplotype. By ordered we mean that the alleles at different
loci can be differentiated with respect to the chromosome on which they are
carried. Sometimes the alleles are referred to as the maternal and paternal
allele, implying knowledge of the transmission of alleles from the mother and
father of the offspring. If the variant is defined on a single nucleotide the
variant is called a Single Nucleotide Polymorphism (SNP). We often make
the simplifying assumption that the genotypic frequencies are the product
of allele frequencies. When that assumption is met, we say that the locus is
in Hardy-Weinberg Equilibrium (HWE). It can be shown, theoretically, that
in a closed population a locus reach HWE after a single round of random
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mating, assuming no stratification or admixture.

In genetic association studies interest lies in finding a locus involved in a
disease or trait. Such loci are called Disease Susceptibility (DS) loci. In
order to pinpoint the location of the DS locus we find the genotypes of
a set of variant loci. This procedure is called genotyping and the loci we
genotype are called markers. Assume for simplicity that the DS locus is
biallelic and denote the alleles D and d, d being the disease susceptibility
allele. We denote the (unknown) frequency of the disease susceptibility allele
by pd (pD = 1 − pd). If it is also assumed that the marker locus is biallelic
and denote the alleles by A and a. We denote the frequency of a in the
population by pa (pA = 1− pa). Our hope is that at least one of the markers
will be in such close vicinity to the DS, or that one of the markers is the
DS, locus that no or little recombination occurs between the loci, and that
we therefore see a co-transmission of the two. The desired endpoint, from a
biological point of view, is to find the exact location and to investigate the
biological consequence of the disease causing variant.

There are many different approaches for the testing and estimation of genetic
association. Some base the analysis on studies of unrelated individuals, for
example case-control studies. Others base the analysis on a cluster (or clus-
ters) of related individuals, so called family-based studies. Both areas have
seen an explosive methodological advancement. This thesis focus on studies
of nuclear families, but most methods discussed are easily adapted to more
complex family structure (or pedigrees).

We will often use graphs to represent family structure of observed data.
Figure (2.1) summarises the form of the graphs we have used.

When studying co-transmission of alleles in families, it is common to refer
to allele similarities between siblings in terms of Identity-By-State (IBS) and
Identical-By-Descent (IBD). If two sibs share an allele IBS this means that
they both have the same allele type, but if they share it IBD then it means
that they share the same allele from the same parental chromosome. Siblings
can share, either 0,1 or 2 alleles IBD. When the mode of inheritance is known
we enumerate the parental alleles, so that the paternal alleles are enumerated
as 1 and 2, and the maternal alleles are enumerated as 3 and 4. We can also
keep track of co-transmission by defining an inheritance vector where each
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Figure 2.1: Form of graphs used, in this thesis, to represent family (or pedi-
gree). Any additional information about genotype and trait, will be given
under the corresponding circle or box. Note that boxes and circles are used
to denote male and female sex, respectively. Since sex is not a factor in any
of the analysis made in this thesis, we arbitrarily denote the offspring as
females.

sib contributes to two cells in the inheritance vector. The first cell indicates
which paternal (1 or 2 ) allele was transmitted and the second cell indicates
which maternal (3 or 4 ) allele was transmitted. So an offspring contributes
the vector;
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
(1, 1) if alleles 1 and 3 were transmitted,
(0, 1) if alleles 2 and 3 were transmitted,
(1, 0) if alleles 1 and 4 were transmitted,
(0, 0) if alleles 2 and 4 were transmitted.

See figure (2.2) for an example with two sib pairs.

Figure 2.2: Example to illustrate the concepts of Identical-By-State (IBS),
Identical-By-Descent (IBD) and inheritance vector. The sib pair to the left
share allele a IBS, whilst the sib pair to the right share allele a IBD. Both sib
pairs share allele A IBD. The inheritance vectors are (1, 1, 1, 0) and (1, 1, 1, 1)
for the left and the right sib pair, respectively

2.2 Definitions and the Relatedness of LD and Linkage

The concepts of Linkage Disequilibrium (LD) and Linkage, which are key to
the subject of this work, are closely related. We will, in this section, define
and discuss the relatedness between the two concepts.
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Linkage is defined as a concept of biology, more specifically a concept related
to the transmission of genes from parents to offspring. It is defined to be the
non-random co-inheritance of alleles at two loci. In terms of recombination,
linkage between loci means that the recombination fraction θ is less than
0.5. For example, assume that the genotypes of parent 1, parent 2 and the
offspring are AD/ad, ad/ad and aD/ad respectively (figure 2.3). In this
example, we know that the offspring has to inherit D from parent 1 and
from that we can deduct that there has occurred a recombination in parent
1, which means that the two loci in this example are not linked.

The purpose of linkage analysis is to use information about transmission and
disease status to identify loci, either in themselves functional, or linked to
functional loci.

Figure 2.3: Example where two loci are unlinked

In contrast to linkage, LD is a population level concept. Two loci are said to
be in LD if their alleles are statistically dependent. Let pAD, pA (pa = 1−pA)
and pD (pd = 1−pD) be population frequencies of haplotype AD, and alleles
A and D, respectively. In mathematical terms, the marker locus and disease
locus are said to be in LD if, pAD 6= pA · pD. A measure of LD is therefore
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A a Total
D 0.5 0 0.5
d 0 0.5 0.5

Total 0.5 0.5 1

Table 2.1: Example of perfect LD

usable for a test of independence. One measure of LD is the correlation
coefficient,

r2 =
(pAD − pApD)2

√
pApapDpd

. (2.1)

For example, assume that the frequency of haplotypes AD, Ad, aD and ad
are 0.5, 0, 0 and 0.5 respectively (see Table (2.1). The allele frequencies in
this example are 0.5 for all allele. The LD measure r2 will then be 1, which
indicates perfect LD.

In Population-Based association studies, we test for LD between a set of
marker loci and a putative disease locus by comparing the distribution of
alleles across trait values. In Family-Based studies of association, our aim
is to estimate and test LD, but not by comparing allele frequencies. There
can be a number of reasons why an association between marker and trait is
found:

1. The marker locus may be linked to a disease locus.

2. The marker locus may be a DS locus.

3. There may be population stratification or population admixture in the
study population.
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In association studies (1) or (2) are what we hope to find, (3) is spurious
association.

2.3 A Review of Statistical Methods for Testing Asso-
ciation and Linkage in Family-Based Studies

The topic of the present thesis is testing and estimation of association in the
presence of linkage. Many of the Family-Based tests developed today are,
however, either for analysing association or linkage separately, or association
and linkage jointly. Although these latter tests are not the topic of this thesis,
we provide a short review of these tests with the purpose of providing a gen-
eral background of statistical methods for analysing family-based association
and linkage studies.

We focus predominantly on the scenario where two parents and an affected
offspring have been successfully genotyped at one biallelic marker. We as-
sume that the trait of interest is binary and that all offspring in the sample
are affected. We assume that there exists an underlying disease locus with
alleles D and d and that only offspring with genotype dd are affected, i.e.
P(Y = 1|dd)=1 and P(Y = 1|Dd)=P(Y = 1|DD)=0. Let n be the number
of families which are in the study.

Now, we will suppose that parent 1 carries alleles 1 and 2 and transmits
allele 1 to it’s affected offspring, and that parent 2 carries alleles 3 and 4 and
transmits 3 to it’s affected offspring. The alleles of the affected offspring are
1 and 3. Rubinstein, Walker, Carpenter, Carrier, Krassner, Falk & Ginsberg
(1981) and Falk & Rubinstein (1987) propose using the two non-transmitted
alleles, 2 and 4, to define a pseudo control individual (Figure 2.4). We use
Tij to denote the number of pairs of cases and pseudo-controls which carry
specific genotypes where: index i denotes the allele carried by the case, and
index j denotes the allele carried by the pseudo-control. That is, i and j
take values 1 for allele A (i.e. genotypes AA and Aa) or 2 for allele a (i.e.
genotype aa), and

∑
i,j Tij = n.

Rubinstein et al. (1981) suggest treating the two genotypes, of the affected
offspring and the pseudo-control offspring, as being dependent (matched).
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Figure 2.4: Family-trio with one affected child and a pseudo-control

Control
Case A present A absent Total
A present T11 T12 T1·
A absent T21 T22 T2·
Total T·1 T·2 n

Table 2.2: Matched cases (transmitted) and controls (non-transmitted) on a
genotype level

The data can then be summarized as in table 2.2. The data can be ana-
lyzed using Mc Nemar’s test (McNemar 1947). In this setting Rubinstein
et al. (1981) renamed the test as the Matched Genotype-based Relative Risk
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(MGRR) test. The test statistic is written as

MGRR =
(T12 − T21)

2

T12 + T21

(2.2)

Falk & Rubinstein (1987) suggest breaking down the matching in Table 2.2.
Instead of looking at the pairs of genotypes, they separate the genotypes car-
ried by cases and pseudo-controls. The un-matched data can be summarized
as in Table 2.3.

A present A absent Total
Case T1· T2· n
Control T·1 T·2 n
Total T1· + T·1 T2· + T·2 2n

Table 2.3: Non-matched cases (transmitted) and controls (non-transmitted)
on a genotype level

Falk & Rubinstein (1987) propose analyzing this data using the Genotype-
based Haplotype Relative Risk (GHRR) test statistic,

GHRR =
(T12 − T21)

2

(2T11 + T12 + T21)(T12 + T21 + 2T22)/2n
. (2.3)

The difference between the MGRR and the GHRR tests lies in the variance
estimator of (T12 − T21)

2, i.e. in the denominator of (2.2) and (2.3). Both
test statistics are tests of linkage and association, jointly.

An alternative approach, to the MGRR and GHRR tests, which analyse
transmission of genotypes, is one which considers transmitted alleles individ-
ually, as haplotypes. Ott (1989) and Terwilliger (1992) propose a matched
analysis, parallel to the MGRR, for transmitted (1 or 3 ) and non-transmitted
(2 or 4 ) alleles (Figure 2.4). Instead of considering pairs of transmitted geno-
types, it is possible to consider pairs of case (transmitted) and pseudo-control
(non-transmitted) alleles. Let tij denote the number of pairs of alleles defined
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by: index i denotes the allele transmitted to the case, and index j denotes
the allele transmitted to the pseudo-control. That is, i and j takes possible
values 1 for allele A and 2 for allele a, and

∑
ij tij = 2n. The data can be

summarized as in Table 2.4.

A a Total
Transmitted allele t1· t2· n

Non-transmitted allele t·1 t·2 n
Total t1· + t·1 t2· + t·2 4n

Table 2.4: Non-matched cases (transmitted) and controls (non-transmitted)
at the allele level

To analyse the data in table 2.4, Ott (1989) and Terwilliger (1992) proposed
using the Haplotype-based Haplotype Relative Risk (HHRR) test statistic, a
test similar in spirit to the test statistic (2.2),

HHRR =
(t12 − t21)

2

(2t11 + t21 + t12)(t12 + t21 + 2t22)/4n
. (2.4)

The HHRR test was the precursor of the Transmission Disequilibrium Test
(TDT). Instead of considering pairs of alleles carried by cases and pseudo-
controls (HHRR), the data can be categorized into alleles transmitted among
cases and pseudo-controls separately (Table 2.5).

Non-transmitted alleles
Transmitted allele A a Total

A present t11 t12 t1·
A absent t21 t22 t2·

Total t·1 t·2 2n

Table 2.5: Matched cases (transmitted) and controls (non-transmitted) on
an allele level

18



The data in Table 2.5 can be analysed using the TDT test statistic

TDT =
(t12 − t21)

2

t12 + t21
. (2.5)

The TDT was first introduced as a test of linkage only (as were the tests
MGRR, GHRR and HHRR). The test has, however, been shown to be a test
for linkage and association simultaneously (see Sham (1998) and on page
20 herein). If all individuals come from a single pedigree with a common
ancestor, then the TDT will be a test of linkage only and as generations go
by the amount of LD will increase (Sham 1998). As with the MGRR and
the GHRR test statistic, the difference between the MGRR and the GHRR
test statistic lies in the different variances of the matched and unmatched
test statistics ((2.4) and (2.5)] respectively).

Ott (1989) derived the transmission probabilities in Table 2.5 for the specific
scenario we described in the first paragraph of Section 2.3. For simplicity
of notation, we let q = pA and p = pd. We let θ denote the recombination
fraction and δ be a measure of LD, equal to pAdpaD − padpAD, were pAd,
paD, pad and pAD are frequencies of haplotypes Ad, aD, ad and AD, respec-
tively. We do not need to make any assumptions about distribution of the
trait, conditional on genotype, since they cancel out in the derivations of
the transmission probabilities (Ott 1989). Assume that we are interested in
deriving the transmission probabilities for Parent 1 (Figure 2.4). The trans-
mission probabilities are defined as the probability of the parent transmitting
allele 1, and not allele 2, conditional on the offspring being affected. Since the
affected child has to have disease genotype dd, the Parent 1 has to transmit
a haplotype consisting of alleles 1 and d, and Parent 2 also has to transmit
the d allele. If Parent 1 is heterozygote at both loci, then the transmission
probabilities will include the recombination fraction, since the transmitted
haplotype is not necessarily equal to the haplotype carried by the parent.
The transmission probabilities as derived by Ott (1989) are presented in Ta-
ble 2.6. The expected squared difference between t12 and t21 can be expressed
in terms of the difference between the expected squared difference between
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the proportions in the off-diagonals in table 2.6 (equation (2.6)),

{(
q +

δ

p

)
(1− q)− θδ

p
−
(

1− q − δ

p

)
− θδ

p

}2

=

{
δ

p
(1− 2θ)

}2

. (2.6)

Equation (2.6) equals zero if and only if θ equals 0.5 or δ equals zero, i.e.
only if there is no linkage or if there is no association. Alternatively, equation
(2.6) differs from zero only if there is linkage and association. Therefore, it
is clear that the TDT and HHRR test are tests of linkage and association
jointly.

Non-transmitted
Transmitted A a Total

A (q + δ
p
)q (q + δ

p
)(1− q)− θ δ

p
q + (1− θ) δ

p

a (1− q − δ
p
)q + θ δ

p
(1− q − δ

p
)(1− q) 1− q − (1− θ) δ

p

Total q + θ δ
p

1− q − θ δ
p

1

Table 2.6: Transmission probabilities by Ott

All of the tests which have been presented up until now, are based on test
statistics which, under a null hypotheses of linkage but no association, are
asymptotically distributed as a χ2 variable with one degree of freedom.

The TDT has been used extensively in family based studies of association
and linkage. Many extensions of the original TDT have been proposed. For
example, extensions to allow for multiple markers, multiple alleles, multiple
sibs, quantitative traits etc, have been described in the statistical literature
in the last one and a half decade. We mention some of these below, with
references.
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• Allowing for multiple sibs: the Sib-TDT, or S-TDT is a test of
association in the presence of linkage that allows for multiple sibs, but
at least one has to be affected (Spielman, McGinnis & Ewens 1993).

• Multiple alleles and multiple sibs with no missing parental
genotypes: TDT-SE (Spielman & Ewens 1996). As pointed out by
Sham (1997), Schaid (1996), Lazzeroni & Lange (1998), the TDT-SE
does not account for covariances and tends to be anti-conservative.

• Multiple markers: ETDT (Extended-TDT) Sham & Curtis (1995);
Self, Longton, Kopecky & Liang (1991); Schaid (1996)

• Missing parental genotypes: Sham & Curtis (1995)

• Unresolved haplotype phase and missing parental genotypes:
Clayton (1999)

• Method based on haplotypes - similarity measures: Clayton &
Jones (1999)

• Allowing for genotyping errors: Chen & Deng (2001); Gordon,
Heath, Liu & Ott (2001)

• Continuous traits: Allison (1997), Rabinowitz (1997), Abecasis, Car-
don & Cookson (2000a) and Abecasis, Cookson & Cardon (2000b).

• Gene-environment interaction: Cordell, Barratt & Clayton (2004)

• General pedigrees: Martin, Monks, Warren & Kaplan (2000)
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Other approaches

Thomson (1995) proposes comparing frequencies of transmitted alleles to
affected offspring, to frequencies of non-transmitted alleles. The test is called
the Affected Family Based Controls (AFBAC) (Thomson 1995).

Bickeboller & Clerget-Darpoux (1995) propose using a test statistic based
on the marginal differences di = ti+ − t+i, where ti+ =

∑k
j=1 tij and ti+ =∑k

j=1 tji.

Sham & Curtis (1995) propose a logistic regression model of the probabil-
ity that a particular marker allele is transmitted by a heterozygous parent.
Curtis (1997) looks at siblings as controls and developed a test based on con-
ditional logistic regression model. These methods extend easily to include
gene-environment interaction.

Boehnke & Langefeld (1998) propose non-parametric tests for discordant
sib pairs, but their tests are not for more than two sibs. Horvath & Laird
(1998) look at any number of sibs, using a different non-parametric test than
Boehnke & Langefeld (1998).

Horvath & Laird (1998) describe a sign-test for discordant sib ships.

Clayton (1999), and Whittemore & Tu (2000) developed a likelihood-based
theory for testing association.

Continuous traits

In previous sections, we have described methods for testing linkage and asso-
ciation to binary traits. The TDT was first developed for binary traits, but
Allison (1997) and Rabinowitz (1997) have generalised the TDT for contin-
uous traits.
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3 Aims and Structure of Thesis

The aim of this thesis is to study statistical methods for analysing association
in the presence of linkage in family-based studies. Note the difference between
the null hypotheses of no association and no linkage in Section 2.3 and the
null hypotheses of no association in the presence of linkage in the sequel
of this work. Analysis of binary as well as continuous traits are relevant
and needed. Most methods, however, have been developed for continuous
traits, with the exception of Family-Based Association Test (FBAT) (Horvath
& Laird (1998), Lake & Laird (2004)), which can handle both binary and
continuous traits.

We develop a novel parametric model for binary traits, based on a Gamma-
Random-Effects (GRE) model. The GRE model is similar in spirit to the
VCM and to an recently proposed method for time to event data (Zhong &
Li 2004). We develop a likelihood-based Score test for testing association
in the presence of linkage which deals with all of the common sources of
nuisance; linkage, population stratification and ascertainment. In Paper I an
early version of the GRE is presented, where ascertainment is not dealt with
and where a simplifying assumption is made in the likelihood calculations.

We also discuss two existing methods for analysing association in the pres-
ence of linkage for continuous traits: the Variance Components Model (VCM)
(Fulker et al. 1999) and the Family-Based Association Test (FBAT) (Hor-
vath & Laird (1998), Lake & Laird (2004)). The VCM uses a parametric
framework for estimating and testing the degree of association, while simul-
taneously modelling linkage in the covariance structure. The FBAT is a
non-parametric test statistic for association that allows for linkage by using
an empirical variance estimate. In Paper II, we study the VCM properties
under different types of mis-specification. We also, suggest simulations that
could be carried out to further investigate interesting features of the VCM.
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4 Tests of Association in the Presence of Link-

age

It is reasonably common for researchers to use a two-stage strategy for genetic
association mapping. In the first stage (i) large regions of the genome are
sequenced and linkage analysis is used to identify regions of potential linkage.
In the second stage (ii) marker density is increased in the identified regions
and methods to analyse association are applied.

There are a number of advantages of the approach:

1. Linkage analysis is typically performed on a less dense map, thereby
potentially decreasing the number of not associated loci investigated.

2. Testing association in the presence of linkage may increase the power
for finding association (in comparison to ”association only” analysis).

3. Search for association is possible without prior biological hypotheses.

When using this strategy multiple testing needs to be handled appropriately.
Tests may not be independent, which makes correction of p-values complex.

One of the advantages with a family design is that it is straightforward
to construct valid tests for association that are robust against population
stratification.

There have been two lines of methodological development. One is the Vari-
ance Components Model (VCM) (Fulker et al. 1999) and the other is the
Family Based Association Test (FBAT) (Rabinowitz 1997). In section 4.1
we present the parametric Variance Components Model (VCM), which has
been described for multivariate normal traits. The VCM allows for a fixed ef-
fect of genotypes on the trait (association) and co-variability within families,
which is a function of IBD-sharing (linkage). In section 4.2 we present the sec-
ond line of methodological development, the non-parametric Family-Based
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Association Test (FBAT) for association, which treats linkage as nuisance
through a robust empirical within family covariance matrix.

In describing the VCM and the FBAT we assume n independent nuclear
families, consisting of parents and their offspring. Both methods, however,
extend to arbitrary pedigrees.

We let i denote family (i = 1, 2, ..., n) and j offspring within a family i
(j = 1, 2, ..., Ji). We have marker genotype data on parents (denoted gi) and
offspring (denoted Mi) and trait information on offspring (denoted Yi). The
trait, Yi, is either a vector of binary random variables (e.g. disease status
yes/no) or continuous random variables (e.g. BMI, insulin level etc). Unless
otherwise indicated, we use µi to denote the expected value of Yi.

4.1 Variance Components Models (VCM)

The original form of the Variance Components Model (VCM) is the well
known ANOVA (Fisher 1925) model. The VCM is aimed at data collected
from studies of many small families and is therefore most appropriate if the
underlying genetic effect is polygenic or oligogenic. We also assume that the
probability of ascertainment does not depend on the trait values. Such stud-
ies are not appropriate for identifying low penetrant genes. The VCM has
a long history of quantifying the importance of the genetic components for
quantitative traits. They were used prior to the availability of high through-
put marker genotype data to asses expected genotype similarity between
related individuals, for example in twin-studies (Neal & Cardon 1992).

Almasy & Blangero (1998) developed Variance Components methodology to
asses linkage between a marker and a quantitative trait. The name ’QTL
analysis’ (QTL = Quantitative Trait Loci), is used as a common name for
all analysis on quantitative traits, including Variance Components analysis.

Fulker et al. (1999) were the first to propose the use of the VCM to analyse
association and linkage jointly. The VCM that Fulker et al. (1999) propose,
is in effect a Generalized Linear Mixed Model (GLMM) with an identity
link function and normally distributed random effects. We write the model
for the trait, Yi, as linear in terms of the fixed effect, which is a function
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of the offspring genotypes, and the random effects. The random effects are
partitioned into parts accounting for individual specific and family specific
effects, as well as an effect accounting for the marker locus. The random
effects are assumed to be normally distributed. As well as being able to
test for association in the presence of linkage, it is possible to test whether
the QTL is functional or merely in Linkage Disequilibrium (LD) with a trait
locus, and whether there is population stratification (Fulker et al. 1999).
Sham, Cherny, Purcell & Hewitt (2000) and Sham, Cherny & Abecasis (2002)
developed this Variance Components model further to include dominance
effects in the mean. These authors have also described a simple method
to calculate approximative power of tests based on the model they described
(Sham et al. 2000). We proceed by describing the random effects, as described
in (Fulker et al. 1999), and the fixed effect in turn.

4.1.1 The Random Effects

Consider the case where three random effects affect the quantitative trait
vector in a sibship:

• A non-shared random effect, eij ∼ N(0, σ2
N). A random effect, unique

for each sib j in a family i that describes the environmental component
for that sib.

• A shared random effect, sij ∼ N(0, σ2
S), equal for all sibs j = 1, 2, ..., Ji

in family i.

• A random effect for the additive QTL effect aij ∼ N(0, σ2
A).

The co-variability between two sibs, j and j′, in family i depend on genetic
similarities of the QTL in terms of the expected proportion of alleles shared
Identical-By-Descent (IBD), π̂jj′ . The variance of the QTL random effect,
σ2
A, captures the proportion of the total variance attributable to the QTL.

Following Sham et al. (2000, page 1617), we partition the polygenic effect
into the shared and environmental random effects. We are not interested in
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quantifying the polygenic random effect per se, and it will therefore make no
difference if we assume it to be partitioned into σ2

N and σ2
S.

The random effects are assumed to act independently on the offspring trait.
The model can be written in terms of the three random effects, eij, sij and
aij, and the expected value as a fixed effect, µij,

Yij = µij + aij + sij + eij . (4.1)

Let 1(j = j′) be a variable indicating wether j = j′ or not. The covariance
between Yij and Yij′ can be written in terms of the covariances between the
random effects,



cov(aij, aij′) = π̂jj′σ
2
A

cov(eij, eij′) = 1(j = j′)σ2
N

cov(sij, sij′) = σ2
S

. (4.2)

The covariance between two sibs j and j′ in family i is thus


cov(Yij, Yij′) = π̂jj′σ

2
A + σ2

S , if j 6= j′

cov(Yij, Yij′) = σ2
A + σ2

N + σ2
S , if j = j′

(4.3)

Linkage is accounted for by letting the sib trait correlation depend on IBD
allele sharing. Let Σi denote the covariance matrix for family i. For a sib
pair i, the covariance matrix is written

Σi =

(
σ2
N + σ2

S + σ2
A σ2

S + π̂σ2
A

σ2
S + π̂σ2

A σ2
N + σ2

S + σ2
A

.

)
.

Note that, in this model for the covariance, there is an implicit assumption
that the marker is in full linkage with the true DS locus, i.e. no recombination
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has occurred between the two loci. Thus σ2
A is the variance component

accounting for the variance at the QTL, but in constructing the covariance
matrix, we estimate π̂jj′ at the marker. There are approaches that avoid this
assumption, by conditioning on the alleles at the DS locus and modelling the
biological parameters directly (Hössjer 2005).

4.1.2 The Fixed Effects

Consider a biallelic QTL with alleles A and a. We assume a co-dominant
model, implying that the mean effects of genotype AA, Aa and aa are −a,
0 and a, respectively. We write the mean of Yij, µij, in terms of an overall
mean µ and the allele effect a,

µij = µ+ aXij . (4.4)

with Xij 1,0 or -1 for genotypes AA, Aa and aa, respectively. Model (4.4)
can include other covariates. We reparameterise the mean by splitting Xij

into two components, Xbi and Xwi:



Xi = [Xij]j=1,2,...,Ji

X i =
∑Ji
j=1Xij

Xbi = [X i]j=1,2,...,Ji

Xwi = Xi −Xbi

Note that Xbi + Xwi = Xi. With this notation, a · Xbi is a vector of the
mean allele effect for family i, and a ·Xwi is a vector capturing the difference
from a · Xbi for each offspring j. Since population stratification only affect
the mean allele effect in family i, Fulker et al. (1999) propose a mean model
where aXij is split into abXbi and awXwi, where the parameter aw is protected
against population stratification.

To illustrate, the elements of Xi, Xbi and Xwi for a sib pair are given in
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Table 4.1. As an example, consider a sib pair with genotypes AA and Aa,
for sib 1 and 2 respectively,

µi1 = µ+ 1
2
ab + 1

2
aw

µi2 = µ+ 1
2
ab − 1

2
aw

.

If there is no population stratification, then ab = aw = a and the mean
genotype effects is a for sib 1 and 0 for sib 2, consistent with our additive
allele mean model (4.4).

For a general family i, we write,

µi = µ+ abXbi + awXwi =
(

1 Xbi Xwi

) µ
ab
aw

 = X′
iβ . (4.5)

Genotype
Sib 1 Sib 2 XT XT

b XT
w

AA AA (1,1) (1,1) (0,0)
AA Aa (1,0) (1

2
,1
2
) (1

2
,-1

2
)

AA aa (1,-1) (0,0) (1,-1)
Aa AA (0,1) (1

2
,1
2
) (-1

2
,-1

2
)

Aa Aa (0,0) (0,0) (0,0)
Aa aa (0,-1) (-1

2
,-1

2
) (1

2
,-1

2
)

aa AA (-1,1) (0,0) (-1,1)
aa Aa (-1,0) (-1

2
,-1

2
) (-1

2
,1
2
)

aa aa (-1,-1) (-1,-1) (0,0)

Table 4.1: The elements of X, Xb and Xw for all possible sib pairs. Here
X is the vector of Xj’s for the two sibs. The elements of Xb are the mean
of the elements in X and Xw = X −Xb. Note that all indexes i have been
omitted and that T denotes transposition of the vectors.
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4.1.3 Likelihood Inference

We assume that the probability of ascertainment does not depend on the trait
values and use a prospective likelihood. The trait vector of the offspring in
family i, Yi, is multivariate normal with mean µi (4.5), variance Σi (4.3) and
likelihood

n∏
i=1

(2π)−Ji/2|Σi|−1/2 exp
(
−1

2
(Yi − µi)

′|Σi|−1(Yi − µi)
)
. (4.6)

The null and alternative hypotheses in (1.1) for testing association in the
presence of linkage are formulated as

H0 : Linkage and no association, σ2
A > 0 and aw = 0 .

H1 : Linkage and association, σ2
A > 0 and aw 6= 0 .

(4.7)

Let ψ denote the vector of parameters, (µ, ab, aw, σ
2
N , σ

2
S, σ

2
A). Based on the

likelihood (4.6), the Score function, S(ψ), and the Fisher Information ma-
trix, I(ψ), we can construct a Score test or a Likelihood Ratio test. Both
estimation and testing are then possible.

We use the Newton-Raphson algorithm, where updated parameters estimates
at iteration i+ 1 (ψ̂i+1) are given by,

ψ̂i+1 = ψ̂i +
(
I(ψi)

)−1
S(ψi) .

The iteration stops when |ψ̂i+1− ψ̂i+1| is smaller than some predefined small
δ. A Likelihood Ratio test of the null hypotheses is given by,

L(µ̂, âb, aw = 0, σ̂2
A, σ̂

2
N , σ̂

2
S)

L(ψ̂)
,

where µ̂ âb σ̂
2
A, σ̂2

N , σ̂2
S, and ψ̂ are maximum likelihood estimates of µ ab
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σ2
A, σ2

N , σ2
S, and ψ̂, respectively. The LRT is χ2 distributed with 1 degree of

freedom.

4.1.4 Simulation Study of the Variance Components Model

We study the behavior of the estimates of ab and aw (Section 4.1) under
different scenarios. Continuous traits in nuclear families with two sibs were
simulated under different values of recombination fractions and LD-structure;
see Paper I in Appendix C.

4.2 Family-Based Association Tests (FBAT)

Lake, Blacker & Laird (2000) introduced a statistic for testing association in
the presence of linkage. This represents an extension of the FBAT statistic
(Rabinowitz & Laird 1999). The FBAT is a non-parametric test statistic
that uses the statistical concept of sufficiency to deal with missing parental
genotypes.

We first describe the FBAT statistic (Rabinowitz & Laird 1999). Let T (Yij)
be a function of the trait, Yij. We let X(Mij) denote some score (possibly a
vector) of the offspring genotype, Mij. For example, X(Mij) may be equal
the number of A alleles in genotype Mij. For simplicity of notation, we will
write Tij and Xij in place of T (Yij) and X(Mij), respectively. Rabinowitz &
Laird (1999) propose the following score statistic for testing association,

S =
∑
i

Si =
n∑
i=1

Ji∑
j=1

TijXij . (4.8)

The product in the sum, TijXij, can be viewed as an interaction term between
offspring trait and offspring genotype, and the score is a summation of these
terms for all individuals in the n families.

Rabinowitz & Laird (1999) propose calculating the expected value of the
family score, Si, by conditioning on the sufficient statistic of the parental
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genotypes, gi, and trait (Yi). By conditioning on trait and the sufficient
statistic for the parental genotype, they design a valid test for association,
regardless of genetic model and population admixture or stratification. Ra-
binowitz & Laird (1999) present an algorithm for finding the sufficient statis-
tic of the parental genotypes, and calculating the conditional probabilities of
the possible sibship genotype vector, given the sufficient statistic for parental
genotype. The algorithm can be divided into five steps

• Step 1: Find all phased mating types, compatible with the observed
marker data: g1, ..., gk.

• Step 2a: Find the set of offspring genotypes consistent with phased mat-
ing type gl (l = 1, ..., k): γ1, ..., γk. Let γ be the intersection γ1∩ ...∩γk,
i.e. the minimal set of offspring genotypes consistent with all mating
types.

• Step 2b: From the genotypes in γ, construct all possible sets of off-
spring genotypes (of the same size as the observed sibship). Choose
those that give the exact same set of phased mating types as the ob-
served sibship genotypes (as derived in Step 1): m1, ...,mh.

• Step 3: Compute the probability of offspring genotypemf (f = 1, ..., h),
conditional on parental mating type. This will give a h× k matrix.

• Step 4: Consider only offspring genotypes where P (mf |g) (f = 1, .., h)
is proportional to P (m1|g) (where m1 is the observed vector of offspring
genotype), for all mating types g: m∗

1, ...,m
∗
h′ (⊂ m1, ...,mh).

• Step 5: Compute the conditional probabilities for each vectorm∗
1, ...,m

∗
h′ ,

given g: Pcond(m
∗
r) (r = 1, ..., h′).

We let φ = (ξ(gi),Yi), where ξ(gi) is the sufficient statistic for the parental
genotypes gi. From the RL-algorithm, we can calculate
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E(Xij|φ) =
h′∑
r=1

X(mrj)Pcond(m
∗
rj)

The expected value under the null hypotheses of Si follows straightforwardly,
E(Si|φ) =

∑Ji
j=1 TijE(Xij|φ).

Lake et al. (2000) show that the FBAT statistic can be used for testing for
association in the presence of linkage. The expected values under the null
hypotheses of the test statistics are the same, and

SL =
n∑
i=1

(Si − E(Si|φ)) (4.9)

is a valid test statistic for testing association in the presence of linkage (Lake
et al, 2000). However, the covariance of the statistic will not be the same,
so instead Lake et al. (2000) propose using a robust covariance estimator
(White (1980), Liang & Zeger (1986)),

ΣL =
n∑
i=1

(Si − E(Si|φ))(Si − E(Si|φ))′ . (4.10)

The robust variance estimator accounts for the co-variability among siblings,
thereby adjusting for linkage. To test for association in the presence of link-
age, we use the expected value SL and the covariance ΣL to construct a Z
statistic or a χ2 statistic, both assuming approximate normality. Since the
expected value of SL is zero, the Z statistic takes the form

ZL = Σ−1
L ZL (4.11)

The Lake extension of FBAT is valid under any genetic model and population
stratification / admixture (Rabinowitz & Laird 1999). It also deals with
missing marker data, through the conditioning on ξ(gi).
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5 Generalized Linear Mixed Models (GLMM)

Let Yi (i = 1...n) be a vector of random variables taking observed value
yi (i = 1...n). Let Xi be a n × k matrix of predictors. The Generalized
Linear Mixed Model (GLMM) ((Liang & Zeger 1986)) can be seen as an
extension of the Generalized Linear Model ((McCullagh & Nelder 1989)) in
that it allows for clusters of dependencies among the Yi. The GLMM can be
defined, similarly to the GLM, in steps:

1. Let µi (i = 1, ..., n) be the conditional mean of the response Yi (for
individual i), E(Yi|Xi,β,b), and let h(·) be a twice differentiable, con-
tinuous function. The conditional mean can then be expressed as

h(µi) = γi = Xiβ + Zib , (5.1)

where β are fixed effects, common for all individuals i = 1, ..., n, and b
are random effects. X and Z are design matrices for the fixed effects
and random effects respectively.

2. Assume that conditional on the random effects b, Yi is a response
following some random distribution P (Yi = yi|b) with mean µi and
variance σ2I.

3. Assume that the random effects b follow some random distribution
P (b = b) with mean zero and variance D, and with parameter θ.

The likelihood can be formulated, using Bayes formula in terms of the con-
ditional distribution of Yi and the distribution of the random parameter b

p(Yi|β,θ) =
∫
p(Y, b|β,θ)db =

∫
p(Yi|β, b)p(b|θ)db . (5.2)

A problem with [5.2] is that, although conceptually easy, it will typically not
take a closed form when integrating over the random effect. Some special
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cases exist for some specific combination of distributions of Yi|b and b. We
maximize 5.2 with respect to β. The value of β which maximizes 5.2 is called
the Maximum Likelihood (ML) estimate of β, and is denoted β̂.

Assume that the distribution of Yi, conditional on the random effect, comes
from the exponential family. The exponential family is typically expressed
as

p(Yi|γi, b) = c(Yi, ψ) exp

(
S(Yi)γi − a(γi)

ψ

)
, (5.3)

where c(·) and a(·) are some functions, S(Yi) is the sufficient statistic for Yi

and ψ is a dispersion parameter. The the conditional mean can be expressed
in terms of the derivative of the canonical term, a(γi),

E(Yi|γi,b) = µi = a′(γi) (5.4)

and the variance can be expressed in terms of the second derivative of a

V ar(Yi|γi,b) = v(µi) = a”(γi) (5.5)

The link function h is the inverse function of a′ [5.4].

5.1 Maximum-Likelihood Estimation

The likelihood in Equation [5.2] is generally difficult to optimize, the main dif-
ficulty being the integration over b. Closed form solutions for the conditional
likelihood may exist. Except in some special cases, maximum-likelihood esti-
mates of the fixed parameters are therefore often most easily found using an
iterative algorithm. Two of the most commonly used algorithms are the
Expectation-Maximization (EM) algorithm and the Iterative re-Weighted
Least Squares (IWLS) algorithm. In Section 6 we describe a special case
where a closed form solution for the conditional likelihood can be found for
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a binary trait. Another example of the GLMM, for continuous traits, is the
Variance Components Model described in Section 4.1.

5.2 A Variance Components Model as a GLMM

Zhong & Li (2004) propose a variance components model for survival data,
based on log-gamma random effects for modelling association in the presence
of linkage. They formulate IBD sharing in terms of random inheritance
vectors on the linear predictor and they propose a GLMM where the log(-log)
of the probability of trait, given the marker data and the inheritance vector,
is linearly dependent on log-gamma random effects and a fixed genotype
effect. On the basis of this model they derive the corresponding joint survival
function of age of onset for the sibs within a sibship. In Section 6 we develop
a related approach, also based on inheritance vectors, but for binary traits.
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6 Gamma Random Effects Model for Binary

Traits

6.1 Notation

Assume the following notation:

• Yij = phenotype of offspring j in family i.

• Xij = genotype score for offspring j in family i.

• Mij = marker genotypes for offspring j in family i.

• gi = marker genotypes for parents in family i.

• vij = inheritance vector for offspring j in family i.

• β = association parameter.

When denoting a vector for a family, the index j will be omitted. For exam-
ple, the vector of Yij’s for family i will be denoted Yi.

6.2 The Model

Our aim is to evaluate the probability of trait, conditional on the observed
marker data on parents and offspring. However, to capture both association
and linkage, we need to write our model in terms of the offspring marker
data and the inheritance vector. We can then write

P (Yi = yi|Mi, gi) =
∑
v

P (Yi = yi|Mi, v)P (v|Mi, gi) , (6.1)
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were the summation is over all possible inheritance vectors, v, given the
observed marker data. We continue by describing a model for P (Yi =
yi|Mi,vi), that is for the probability of an offspring’s trait, conditional on
the alleles which it carries and from whom the alleles were transmitted. We
use εpij

and εmij
to denote the effect of the alleles transmitted to offspring

j in family i, where pij denotes the paternal allele and mij denotes the ma-
ternal allele. The paternal alleles, pij, can take possible values 1 and 2 and
the maternal alleles, mij, can take possible values 3 and 4. Thus, offspring
can carry paternal and maternal alleles 1 and 3, 1 and 4, 2 and 3 or 2 and
4. We let ajk be an indicator variable representing whether offspring j has
inherited allele k or not. Note that both the transmitted alleles, pij and mij,
and the indicator variables ajk are functions of the inheritance vector vij

To illustrate the use of the notation we have introduced, we consider an ex-
ample, based on a family with two offspring, depicted in Figure 6.1. At a
marker of interest, the father carries alleles 1 = A and 2 = a, and the
mother carries alleles 3 = a and 4 = a. Assume that the mode of transmis-
sion is known, and that alleles 1 and 3 were transmitted to offspring j = 1,
whilst alleles 1 and 4 were transmitted to offspring j = 2. Thus, the inheri-
tance vector vi takes value (1, 1, 1, 0), whilst the vectors of indicator variables
a1 = (a11, a12, a13, a14) and a2 = (a21, a22, a23, a24) take values (1, 0, 1, 0) and
(1, 0, 0, 1), respectively. The transmission effects are ε1 and ε3 for offspring 1,
and ε1 and ε4 for offspring 2. The marker data is gi = (Aa, aa) for the par-
ents and Mi = (Aa,Aa) for the offspring. We further assume that offspring
1 is affected, Y1 = 1, and that offspring 2 is unaffected, Y2 = 0. �

We let X(Mij) denote the score of genotype Mij. For example, X(Mij) may
be defined as the number of A alleles in genotype Mij. To simplify notation,
we will write Xij in place of X(Mij). Let β denote the association parameter
vector, describing the effect of the genotype score Xij. We recall that εpij

and εmij
are functions of the inheritance vector and write

pij = Pβ(Yij = 1|εmij
, εpij

,Mij) =

= exp
(
−εmij

exp (Xijβ)
)

exp
(
−εpij

exp (Xijβ)
)
, (6.2)
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Figure 6.1: Example of a nuclear pedigree, with two sibs (of which one is
affected). The mode of inheritance is assumed known.

or equivalently,

log(− log pij) = log(εmij
+ εpij

) +Xijβ . (6.3)

The transmission effects εmij
εpij

act multiplicatively on the offspring trait
probability, and the effect of each transmitted allele is multiplied by a term
involving the association parameter vector β. Following Zhong & Li (2004),
we assume that the transmission effects εmij

and εpij
are independent and

gamma distributed with scale α/2 and shape λ. The density function of
εmij

and εpij
is denoted f(ε). The association parameter β is assumed to

be fixed for all individuals in the population. Let ψ denote the vector of
parameters (β, α, λ). Thus, the model in Equation (6.3) is a Generalized
Linear Mixed Model, with a log(-log) link, and a linear predictor composed
of a log-gamma (= log(εmij

+εpij
)) distributed random effect and fixed effects
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Xijβ. The model (6.3) can easily incorporate and additional random effect
for shared familial effects (which will also account for contributions from
unlinked genetic loci) as is done by Sham et al. (2002).

If we assume that the offspring in family i are independent, conditional on
the random effects and Mi, then,

Pβ(Yi1 = yi1, Yi2 = yi2, ..., YiJi
= yiJi

|Mi, εmi
, εpi

) =

=
Ji∏
j=1

P (Yij = yij|Mij, εmij
, εpij

) . (6.4)

For the example depicted in Figure 6.1, if we assume that Xij is the count of
the number of A alleles, then Xi1 = Xi2 = 1. In this case,

P (Yi1 = 1, Yi2 = 0|ε1, ε3, ε4,Mi) =

= exp (−(ε1 + ε3) exp (β))− exp (−(2ε1 + ε3 + ε4) exp (β)) �

Let πyi
denote the probability Pψ(Yi = yi|Mi,vi), which appears on the

right hand side of (6.1). To obtain πyi
we integrate (6.4) over the random

effects ε1, ε2, ε3 and ε4,

πyi
=
∫
ε

Ji∏
j=1

P (Yij = yij|εmij
, εpij

)f(ε)dε . (6.5)

In general, evaluation of (6.5) is cumbersome. Conaway (1990) shows that
under particular assumptions for P (Yi = yi|Mi, εpij

, εmij
) and f(ε) (6.5) is

tractable. With our choice of model for P (Yi = yi|Mi, εpij
, εmij

) and f(ε) πyi

may be evaluated in terms of marginal probabilities and the joint probability
P (Yi1 = 1, ..., YiJi

= 1|Mi,vi). Following Conaway (1990), we let T be a
subset of the offspring (1, 2, ..., Ji) in family i. We use π∗T to denote the
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probability of {Yij = 1}j∈T . To obtain π∗T we integrate Pβ(Yij = 1,∀j ∈
T |Mi, εmi

, εpi
) over ε1, ε2, ε3 and ε4,

=
∫
ε4

∫
ε3

∫
ε2

∫
ε1

∏
j∈T

P (Yij = 1|Mij, εmij
, εpij

)·

·f(ε1)f(ε2)f(ε3)f(ε4)dε1dε2dε3dε4 =

= E

exp

−∑
j∈T

exp(Xjβ) · (εmj
+ εpj

)


 . (6.6)

For simplicity of exposition, let − exp(Xjβ) = cj. We can then write (6.6)
as,

E

exp


4∑

k=1

εk
∑
j∈T

cj · ajk


 =

4∏
k=1

E

exp

εk∑
j∈T

cj · ajk


 . (6.7)

Equation (6.7) is the product of four gamma distributed mgf’s. Hence,

π∗T =
4∏

k=1

(
λ

λ+ hkT (β)

)α/2
, (6.8)

where hkT (β) =
∑
j∈T exp(Xijβ)ajk. Let Ψ denote all possible offspring sub-

sets T , including the empty set {∅}, ordered as {{∅}, {1}, {2}, {1, 2}, {3},...,,
{1, 2, ..., Ji}}. Let π∗ denote the vector of values {π∗T}T∈Ψ. The vector π∗

contains the marginal probabilities and the probability of all offspring being
affected. Let π denote a vector containing all possible outcomes of π(y1y2...yJi

),
ordered so that π(11...1) comes first and the consecutive items are such that
the left subscript changes fastest.

We return to the example depicted in Figure 6.1. In this case,
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π =


PΨ(Y1 = 1, Y2 = 1|Mi,vi)
PΨ(Y1 = 0, Y2 = 1|Mi,vi)
PΨ(Y1 = 1, Y2 = 0|Mi,vi)
PΨ(Y1 = 0, Y2 = 0|Mi,vi)

 ,

and

π∗ =


1

Pψ(Y1 = 1|Mi,vi)
Pψ(Y2 = 1|Mi,vi)

Pψ(Y1 = 1, Y2 = 1|Mi,vi)

 =


1(
λ

λ+β

)α(
λ

λ+β

)α(
λ

λ+β

)α (
λ

λ+2β

)α/2

 .

It is easily shown that all joint probabilities, π, may be written in terms of
the elements in π∗. For example, the probability of the observed outcome
(Y1 = 1, Y2 = 0) can be obtained as Pψ(Y1 = 1|Mi,vi) − Pψ(Y1 = 1, Y2 =
1|Mi,vi), which equals

(
λ

λ+ exp(β)

)α1−
(

λ

λ+ exp(2β)

)α/2 �

Conaway (1990) notes that,

π∗ = A · π ⇔ π = A−1 · π∗ . (6.9)

The matrix A is the Ji-factorial design matrix. See Appendix B for a de-
scription of the general k-factorial design matrix. Any A may therefore be
derived from knowing only the size of the sibship.
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For our example, with two sibs,

A =


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 , (6.10)

is the design matrix in a 2-factorial trial. �

Now, if we let {cYT }T∈Ψ be the row in A−1 corresponding to the observed
outcome of Yi, we can write,

πyi
= P (Yi = yi|Mi,vi) =

∑
T∈Ψ

cYT π
∗
T . (6.11)

Note that, stating that the probability of the trait depends on offspring
marker data and the inheritance vector implies that (if the inheritance vector
is unknown) the probability depends on the parental genotypes. Also note
that the GRE, as described above, models the probability in (6.2) one marker
at the time (single-point).

6.3 Testing Association in the Presence of Linkage

Our aim is to test association in the presence of linkage. Therefore we assume
that there is linkage both in the null and the alternative hypotheses and
association in the alternative but not the null. The null and alternative
hypotheses in (1.1) can be formulated in the following way,

H0 : Linkage but no association, θ 6= 1/2 and β = 0

H1 : Linkage and association, θ 6= 1/2 and β 6= 0.
(6.12)

In Family-based studies, families are typically ascertained if at least one sib
in the family is affected. Since families are ascertained on trait, likelihood
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analysis based on (6.1) will not be valid. To deal with this problem, we con-
tinue by working with a conditional retrospective likelihood (Section 6.3.1),
based on the conditional retrospective probability of (Mi|Yi, gi). Likelihood
analysis based on the conditional retrospective likelihood deals with both
the ascertainment on trait (by conditioning on trait vector; retrospective)
and population stratification (by conditioning on parental genotypes; ”con-
ditional”). We derive a score test for testing our null hypotheses of associa-
tion in the presence of linkage (Sections 6.3.2-6.3.4), based on the conditional
retrospective likelihood.

6.3.1 The Conditional Retrospective Likelihood

The conditional retrospective likelihood is written in terms of the probability
of (Mi|Yi, gi). The likelihood contribution for family i is written as

Li = Li(β, α, λ) = P (Mi|Yi, gi) , (6.13)

and the likelihood for the data set i = 1, 2, ..., n is simply the product of
all such family contributions, L =

∏
i Li. We can write the likelihood con-

tribution from family i in terms of P (Yi|Mi, gi) by applying Bayes rule on
P (Mi|Yi, gi),

Li =
P (Yi|Mi, gi)P (Mi|gi)∑
M P (Yi|M, gi)P (Mi|gi)

. (6.14)

Since our interest lies in the vector of parameters ϕ = (β, α, λ), and especially
in β, we can write the log of likelihood (6.14) as proportional to

log(P (Yi|Mi, gi))− log

(∑
M

P (Yi|M, gi)P (M |gi)
)
. (6.15)

We can continue in two ways:
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1. Let P (Yi|gi,Mi) =
∑
v P (vi|Mi, gi)P (Yi|Mi, gi,vi) =

=
∑
v P (vi|Mi, gi)P (Yi|Mi,vi).

2. Assume that the inheritance vector is known and substitute P (Yi|Mi,vi)
for P (Yi|Mi, gi).

Zhong & Li (2004) propose the second option in a slightly different setting
(survival outcomes), assuming known inheritance vectors to derive a score
for the retrospective likelihood. To deal with the fact that inheritance vec-
tors are in practice generally unknown they propose averaging a score over
the distribution of the inheritance vectors. The first option is correct from
a probabilistic perspective, whilst the second option obtains an ad-hoc, ap-
proximate, score.

6.3.2 General Form for the Score Test

Let ν = (λ, β). A natural efficient score for the ith family is defined as

Si(ν) =
∂li(0, ν)

∂β
− Iβν(0, ν)I

−1
νν

∂li(0, ν)

∂ν
, (6.16)

where ∂li(0,ν)
∂β

= ∂li
∂β
|β=0,

∂li(0,ν)
∂ν

= ∂li
∂ν
|β=0, Iβν(0, ν) = ∂2li

∂ϕ
|β=0 and Iνν(0, ν) =

∂2li
∂ν
|β=0.

It is easily shown that ∂li(0,ν)
∂ν

= 0 by noting that ∂
∂ν
P (Yi|Mi, gi) is indepen-

dent of Mi when β = 0 (see Appendix A). Hence, we can write the score
as,

Si(ν) =
∂li(0, ν)

∂β
=

=
∂
∂β
P (Yi|Mi, gi)

P (Yi|Mi, gi)
−

∂
∂β

∑
M P (Yi|M, gi)P (M |gi)∑

M P (Yi|M, gi)P (M |gi)
.
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P (Yi|M , gi) does not depend on M when β = 0 and
∑
M P (M |gi) = 1,

which leads to

Si(ν) =
∂
∂β
P (Yi|Mi, gi)

P (Yi|Mi, gi)
|β=0 −

∑
M

P (M |gi)
∂
∂β
P (Yi|Mi, gi)

P (Yi|Mi, gi)
|β=0 . (6.17)

6.3.3 An Approximate Score

Following Zhong & Li (2004) we substitute P (Yi|Mi,vi) for P (Yi|Mi, gi) in
the score (6.17).

∂
∂β
P (Yi|Mi,vi)

P (Yi|Mi,vi)
|β=0 −

∑
M

P (M |gi)
∂
∂β
P (Yi|Mi,vi)

P (Yi|Mi,vi)
|β=0 .

We denote this score as Si(ν|vi) to emphasize that it depends on knowing the
inheritance vector vi. Inserting the derivatives of P (Yi|Mi,vi), in Equation
(6.17) obtains,

Si(ν|vi) =

(∑
T∈Ψ

c∗Tπ
∗
T

)−1 {
Υ(α, λ|Mi)−

∑
M

[P (M |gi)Υ(α, λ|M)]

}
,

where

Υ(α, λ|Mi) =
α

2

∑
T∈ψ

cYT

4∑
k=1

( λ

λ+ hkT (0)

)−1

h′kT (0)π∗T

 . (6.18)

h′kT (0) denotes the first derivative of hkT (β) with respect to β, inserting
β = 0. Note that h′kT (0) depends on offspring marker data, whilst hkT (0)
does not. Thus, Υ(α, λ|Mi) depends on the offspring marker data. To deal
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with the reality of unknown inheritance vectors Zhong & Li (2004) suggests
summing the score for family i, Si(ν), over the inheritance vectors,

Si(ν) =
∑
v

Si(ν|v)P (v|Mi, gi) , (6.19)

where P (v|gi,Mi) can be calculated by enumerating all possible inheri-
tance vectors, given marker data on parents and offspring. The probability
P (v|gi,Mi) is simply the reciprocal of the number of possible inheritance
vectors.

6.3.4 The Correct Score

We derive the correct score by noting that the probability P (Yi|Mi, gi) can be
written as

∑
v P (Yi|Mi, v)P (v|Mi, gi). The score (6.17) can then be rewrit-

ten as,

Si(ν) =
∂
∂ϕ

∑
v P (Yi|Mi, v)P (v|Mi, gi)∑

v P (Yi|Mi, v)P (v|Mi, gi)
|β=0−

∑
M

P (M |gi)
∂
∂ϕ

∑
v P (Yi|M, v)P (v|M, gi)∑

v P (Yi|M, v)P (v|M, gi)
|β=0 . (6.20)

We find that after taking the derivative of P (Yi|Mi,vi) (derived in Appendix
A1),

Si(ν) =

∑
v P (v|gi,Mi)Υ(α, λ|Mi)∑

v P (v|gi,Mi)
∑
T∈Ψ c

Y
T π

∗
T (0)

−

−
∑
M

P (M |gi)
∑
v P (v|gi,M)Υ(α, λ|Mi)∑

v P (v|gi,M)
∑
T∈Ψ c

Y
T π

∗
T (0)

, (6.21)

where Υ(α, λ|Mi) is described in (6.18).
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6.3.5 Similarities and Differences

The difference between the scores seems to be in the denominator of the
score. In the score by (Zhong & Li 2004) there is no summation over the
inheritance vectors in the denominator. The weights of the score are therefore
different. In the score we propose, the denominator is a weighted sum over
all possible inheritance vectors, given parental and offspring genotypes. It
should be possible to quantify the difference between the two scores ((6.19)
and (6.21)).

Both scores (6.19) and (6.21) can be written as a sum of differences between
observed and expected quantities,

Ωi(ν|Mi, gi)− Ev(Ωi(ν|Mi, gi)) .

6.4 Application to the GAW14 Simulated Data

We have applied the GRE to the GAW14 simulated data (Greenberg 2004).
However, we did not use the retrospective likelihood. We calculated the
mean of the likelihood, over all possible patterns of inheritance vectors. We
compared this to two existing methods, the FBAT (first using -o, and then
on the converted trait data, using -e), and to a GEE (using an exchangeable
covariance structure).
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7 Discussion

In this thesis we have presented statistical methods for testing and estimating
association in the presence of linkage. We have described and evaluated meth-
ods for continuous traits and developed a novel approach for binary traits.
Our approach is based on a Generalized Linear Mixed Model, which assumes
log-gamma distributed random effects in a linear predictor. As noted, there
is a lack of methods for dealing with binary traits. We have developed a
score test, based on the retrospective likelihood, for testing association in
the presence of linkage. The method controls for population stratification by
conditioning on parental genotypes and, since it is based on the retrospective
likelihood, it is valid under non random ascertainment.

One disadvantage of the GRE is that it is parametric, and its validity depends
on how well the observed data follow the probability function in (6.11). An
advantage with the underlying random effects distribution is that it allows
for many distributional forms. We have not proposed how to extend our
GRE method to deal with missing data, however, the standard Expectation-
Maximization (EM) algorithm should be straightforward to apply.

In the immediate future work will be aimed at investigating the properties of
the score described in Section 6.3.4. We are currently in the process of imple-
menting this. The score described in Section 6 is based upon single marker
data. A next logical step is to extend the GRE model approach beyond single
marker data. We note that the score test described in Section 6 deals with
population stratification by conditioning on parental genotypes. This is a
somewhat different approach, to account for population stratification, than
the mean model approach proposed by Fulker et al. (1999). Future work will
be put into comparing different approaches to incorporate population strati-
fication. Another direction for future research is to develop methodology for
other types of outcomes, such as repeated binary events.
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A The First Derivatives of P (Yi|Mi, gi)

The probability P (Yi|Mi, gi) comprise of a linear summation over π∗T . We
therefore write the derivative of P (Yi|Mi, gi) in terms of the derivatives of
π∗T . Note that the first derivative of hkT (β) with respect to β is,

h′kT (β) =
∑
j∈T

Xj exp(Xjβ)ajk

First derivative of π∗T , with respect to β:

∂π∗T
∂β

=
∂

∂β

 4∏
k=1

(
λ

λ+ hk, T (β)

)α
2

 =

=
4∑

k=1

α
2

(
λ

λ+ hkT (β)

)α
2
−1

hx(β) ·
∏
k∗ 6=k

(
λ

λ+ hkT (β)

)α
2

 =

=
4∑

k=1

α
2

(
λ

λ+ hkT (β)

)−1

hx(β)

 · 4∏
k=1

(
λ

λ+ hkT (β)

)α
2

=

=
4∑

k=1

α
2

(
λ

λ+ hkT (β)

)−1

hx(β)

 · π∗T (A.1)

First derivative of π∗T , with respect to α:

∂π∗T
∂α

=
∂

∂α

 4∏
k=1

(
λ

λ+ hkT (β)

)α
2

 =

=
4∑

k=1

( λ

λ+ hkT (β)

)α
2

+
1

2
log

(
λ

λ+ hkT (β)

) ∏
k∗ 6=k

(
λ

λ+ hkT (β)

)α
2


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=
4∑

k=1

[
1

2
log

(
λ

λ+ hkT (β)

)]
4∏

k=1

(
λ

λ+ hkT (β)

)α
2

=
4∑

k=1

[
1

2
log

(
λ

λ+ hkT (β)

)]
π∗T (A.2)

First derivative of π∗T , with respect to λ:

∂π∗T
∂λ
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∂

∂λ
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λ+ hkT (β)

) =

=
α

2

4∑
k=1

[
hkT (β)

λ(λ+ hkT (β))
α
2
−1

]
·

4∏
k=1

(
λ

λ+ hkT (β)

)

=
α

2

4∑
k=1

[
hkT (β)

λ(λ+ hkT (β))
α
2
−1)

]
· π∗T (A.3)

Note that only the derivative with respect to β depends on Mi (through
h′(β) =

∑
j∈T Xj expXjβ), when β = 0.

56



B The Design Matrix of a k-factorial Trial

k = 2

A =


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 (B.1)

The columns in the design matrix (B.1) corresponds to intercept, Y1, Y2 and
Y1 · Y2, respectively.

k = 3

A =



1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


(B.2)

The columns in the design matrix (B.2) corresponds to intercept, Y1, Y2,
Y1 · Y2, Y3, Y1 · Y3, Y2 · Y3 and Y1 · Y2 · Y3 respectively.

For a general k

The columns in the design matrix A corresponds to intercept, Y1, Y2, Y1 ·
Y2, ..., Y1 · Y2 · ... · Yk, where the indexes are ordered as in Ψ.
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Analysis of binary traits. Testing
association in the presence of linkage.

G. Jonasdottir, J. Palmgren, K. Humphreys
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Abstract

Most methods for testing association in the presence of linkage, using family-
based studies, have been developed for continuous traits. FBAT (Family Based
Association Tests) is one of few methods appropriate for discrete outcomes. In this
article we describe a new test of association in the presence of linkage for binary
traits. We use a gamma random effects model where association and linkage are
modelled as fixed effects and random effects, respectively. We have compared the
gamma random effects model to an FBAT and a GEE-based alternative, using two
regions in the GAW14 Simulated Data. One of these regions contained haplotypes
associated with disease, and the other did not.

1
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1 Background

Testing association in a region with confirmed linkage may increase the rate of
false positives in family-based studies. In a linked region one expects similarity
between related individuals. If unaccounted for, this similarity may be mistaken
for association. Different remedies have been suggested, everything from using a
robust variance estimator [1] for the general test statistic FBAT (Family Based
Association Tests) [2] to a model-based approach where the linkage is modelled
in the covariance structure [3] (VCM - Variance Components Model). The VCM
has been developed for continuous traits, whilst FBAT can be used with both
binary and continuous traits. In this article we concentrate on methods for testing
association in the presence of linkage, using binary traits. We compare the program
FBAT for binary traits to both the method described in section 2.1 and also a
GEE (Generalised Estimating Equation) [4] approach. For the purpose of our
comparisons we have used the simulated GAW14 data (Section 2.3). We have
compared the three methods ability to pick up a signal in a region with association,
as well as their ability to avoid signalling in a region with no association.

2 Methods

We consider a random effects model for binary events which is similar in spirit
to the multivariate survival model in [5], which models association and linkage as
fixed effects and random effects respectively. We use a result for random effects
models for binary outcomes which has been described in [6]. It is shown that for
gamma distributed random effects, the unconditional distribution of the outcome
using a log-log link can be written as a sum of easily calculated terms. Analyti-
cal tractability is only achievable for a few other combinations of random effects
distributions and link functions, such as the beta distribution with a log(-log) link
[6]. The random effects model in [5] assigns one random effect for each of the
two alleles of the father and one random effect for each of the two alleles of the
mother. The notion of inheritance vector is used to describe the alleles for all
family members jointly. The method presented here works for all sizes of sibships,
and may also be easily adapted to extended pedigrees.

2.1 A Gamma Random Effects (GRE) model

Let (Yi1, Yi2, ..., YiJi) be the binary trait vector for family i and let j denote off-
spring (j = 1, 2, ..., Ji). We allow for different family sizes Ji. We use θmj and θpj

to denote the effect of the transmitted alleles to offspring j, with mj = 1, 2 the
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maternal alleles and pj = 3, 4 the paternal alleles, respectively. Conditional on the
transmitted alleles, we write the probability of the trait for offspring j in family i
as P (Yij = 1|θmj , θpj ). We consider a model with a log(-log) link of the form

log(− log(P (Yij = 1|θmj , θpj ))) = log(θmj + θpj ) + Xjβ , (1)

or equivalently

P (Yij = 1|θmj , θpj ) = e−(θmjeXjβ)e−(θpjeXjβ). (2)

The effects θ of the transmitted alleles act multiplicatively on the offspring trait
probability, and the effect of each transmitted allele is multiplied by a term involv-
ing the parameter vector β describing the fixed genetic effects. Following [7] and
[8] we assume that the maternal and paternal alleles are independent and that each
allele contributes an effect to the trait which is random and follows a Gamma dis-
tribution with scale α/2 and shape λ. The model has a tractable closed form for the
joint unconditional trait probabilities for the offsprings in a sibship. Let Ψ denote
all ordered subsets of 1, 2, ..., Ji, Ψ = {{∅}, {1}, {2}, {1, 2}, {3}, ..., {1, 2, ..., Ji}}.
Let π∗T denote the joint unconditional probability of Yij = 1 for all j ∈ T , where
T ∈ Ψ. Calculating the probability π∗T requires integrating over θ1, θ2, θ3, and θ4.
There is a tractable solution [6]. It turns out that

π∗T =
4∏

k=1

(
λ

λ +
∑

j∈T X′
jβak

)α/2

. (3)

The elements of vector ak, ajk, indicate whether allele k has been transmitted to
offspring j, j = 1, 2, ..., Ji. The probabilities for all T ∈ Ψ can be placed in a
vector π∗. It has been shown [6] that the unconditional probability for all possible
outcomes of Y can be written as,

π = Z−1 π∗ . (4)

The matrix Z indicates all subsets of T . In order to get the probability of the
observed Yij one needs only to pick the corresponding row in π. In Table 1 an
example of T , matrix Z and vector π for three sibs is given. The likelihood for
the observed data, for families i (i = 1, 2, ..., n), is
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log L(β, α, λ) =
n∑

i=1

πi . (5)

We used the statistical software R (version 1.9.1) [9] to implement the likelihood
and maximize it with respect to the association parameter β.

We have so far not described how to deal with incompletely observed inheritance
vectors. In the context of testing association in the presence of linkage, Zhong et al
[5] suggest using GENEHUNTER to obtain the distribution fo r inheritance vectors
at any arbitrary point along the chromosome. In our single point analysis we treat
all inheritance vectors compatible with the data as equally likely and construct a
weighted mean of πi. We return to the choice of weights in the discussion.

2.2 FBAT and GEE

We compare the GRE with FBAT (version 1.5.1) [2] and a GEE-based alternative
[4]. For FBAT we assume a linear allele-dose model, and for the GEE-based
alternative we assume a linear allele-dose on the logit scale and an exchangeable
covariance structure.

We used FBAT option -o to find the optimal weight. We then applied the optimal
weight to the phenotype score and used FBAT option -e to test our data. The
function gee (in package gee) in R (version 1.9.1) was used for the GEE analysis.
The gee package can be found at the R web page [9].

2.3 The GAW14 simulated data

For details concerning how the simulation was performed see [10].

All analyzes were performed with knowledge of the data simulation process. We
chose to analyze the data with respect to trait A. Trait A is known to be associated
with haplotypes in the Region D3, while markers in the D2 region are known to
not be associated with trait A. For the purpose of our comparison we therefore
chose to ”purchase” markers in the D3 region (B05T4135-B05T4142) as well as
markers from the D2 region (B03T3048-B03T3067). Our aim was to use regions
D2 and D3 to gain some insight into the performance of the different methods.
More specifically, we were not expecting a signal in Region D2, but were hoping
for one in region D3.
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The Aipotu population (one of four simulated populations) only consists of nuclear
families, although these are of different sizes. For simplicity, we chose to concen-
trate on the Aipotu population and to only include families of maximum size six
(i.e. two parents and at most four offspring).

We merged 10 (out of 100) replicates, in order to get a sample with reasonable
power. This provided us with a total of 481 independent nuclear families. There
was no missing data and we did not simulate any.

We selected the markers described above and analyzed each marker separately in
a set of single-point analyzes. The method we have described can, however, be
extended to multiple markers and a multi-point analysis.

3 Results

We analyzed the ten merged replicates in regions D2 and D3 and we were able
to identify interesting markers in both regions. In region D2, all three methods
(FBAT, GEE and GRE) indicated marker B03T3056 as borderline significant
with a p-value of around 0.01 (Figure 1). The peak was slightly less using FBAT.
In Region D3, which harbored a haplotype based association in the simulated
data, we were able to detect association with marker B05T4136. The detected
association had a slightly smaller p-value when GEE and GRE (p-value ≈ 0.0001)
were used, compared with the FBAT procedure (Figure 2).

4 Conclusions

In the simulated data Region D2 harbored no locus associated with trait A. All
three methods (FBAT, GEE and GEE) gave a signal for association with marker
B03T3056 with a p-value around 0.01. However, taking the multiple testing into
account this p-value does not reach statistical significance. The results from all
markers in the region are showed in Figure 1. Across the markers, no one method
produced consistently higher/lower p-values than any other method.

In Region D3, association with trait A was simulated at the haplotype level. We
still chose to perform single-point analyzes with each marker in turn. The GEE
and the GRE turn out to be slightly better in detecting significant markers than
FBAT.

The Gamma Random Effects model presented here seems to work well, compared
to both GEE and FBAT. It would be useful to perform simulation studies to assess
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validity and power of the three procedures under different genetic models. The
GRE model is heavy on computational time, stemming from the fact that in spite
of the closed form in (3) it is time consuming to evaluate and to maximize the
likelihood.

A problem with the GRE model is how to handle the missing information on
transmission. In our single-point algorithm we propose using a weighted sum (with
equal weights) over all compatible inheritance vectors, given parental and offspring
genotypes. Following Zhong et al [5] we compute the distribution over inheritance
vectors without attention to phenotype. However, given that linkage is assumed,
the probabilities of transmission are not invariant to offspring phenotypes. It would
be useful to investigate the impact of using our suboptimal weights on the GAW
data, and more generally in comparing the validity and power of the different
approaches using simulations under different genetic models.
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Fig. 1: Trait A region D2, -log10 of the p-values.
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Fig. 2: Trait A region D3, -log10 of the p-values.
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A Simulation Study of the Parameter
Estimates in the Variance Components
Model

G. Jonasdottir, J. Palmgren, K. Humphreys

Abstract

The variance components models described by Fulker et al (1999) constitute a
flexible class of parametric models for testing and estimation of association and
linkage between a quantitative trait and a marker locus. The trait vector for a
family is modelled using a linear predictor with a fixed effect and three random
effects, accounting for individual specific and family specific effects, as well as
an effect accounting for the marker locus. The fixed effect is a function of the
offspring genotypes and the random effects are assumed to be normally distributed.
Examples of applications include tests for association while controlling for linkage,
but it is also possible to test for population stratification and to assess if a marker
is functionally related to the trait or merely in linkage disequilibrium with the trait
locus. The main advantage with the Fulker et al (1999) approach is the flexibility
by which it handles a wide variety of model specifications. This comes at the price
of being dependent on the parameters in the fixed effects and on the parameters
in the random effects distribution.

We study the properties of the VCM in a series of simulations. In these simulations
we vary the degree of linkage disequilibrium between a marker locus and a Quanti-
tative Trait Locus (QTL) in the founder generation, and we subsequently vary the
recombination fraction between the marker locus and the QTL in the transmission
of marker-QTL haplotypes from parents to offspring. We also simulate scenarios
with varying degree of population stratification. We use these simulations to assess
how well the estimates of the VCM perform under different types of scenarios.

1
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1 Introduction

This article is concerned with finding association between a locus and a quanti-
tative trait. A locus associated with a quantitative trait is called a Quantitative
Trait Locus (QTL). We focus on the scenario where linkage has been found in
a region and the researchers wish to continue by fine mapping using association
methods.

We present a Variance Components Model (VCM) proposed by Fulker et al (1999)
that allows for testing association, while modelling the trait co-variability within a
family which is due to linkage. The model is aimed at data collected from studies
of many small families and is therefore most appropriate if the underlying genetic
effect is polygenic or oligogenic. In fact, since we are studying a continuously dis-
tributed trait we are inheritably assuming that many environmental and/or genetic
factors affect the trait. We also assume that the probability of ascertainment does
not depend on trait value, as is the case in Twin-registry studies (Neal & Cardon
1992). Such studies are not appropriate for identifying low penetrant genes.

We focus on the VCM since it is highly flexible. As well as being able to test
for association in the presence of linkage, it is possible to test whether the QTL
is functional or merely in Linkage Disequilibrium (LD) with a trait locus, and
whether there is population stratification. With this model we may also quantify
the proportion of the variance that is due to the Quantitative Trait Locus (QTL)
(Fulker et al, 1999).

Consider a particular marker. Let θ denote the recombination fraction between
the marker locus and the underlying QTL, and let β be a measure of association
between the trait and the marker locus. The null and alternative hypothesis can
be formulated as

H0: Linkage but no association, θ 6= 1/2 and β = 0.

H1: Linkage and association, θ 6= 1/2 and β 6= 0.

We study the properties of the VCM in a series of simulations. Specifically, we
study what happens with the estimation and testing of the association parameter
when varying the degree of linkage and linkage disequilibrium between a marker
and a QTL in the study population.
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2 The Model

For simplicity of exposition, we restrict ourselves to families with parents and two
offspring. However, the proposed methodology can be extended for any type of
pedigree. We let i denote family (i = 1, 2, ..., n) and j offspring within a family
i (j = 1, 2, ..., Ji). For all families in the study, both parents and offspring have
known genotypes at one marker locus, denoted Mi and gi, respectively, and all
offspring have measured trait values, Yi. The marker as well as the underlying
trait locus are bi-allelic, with alleles A/a and D/d, respectively.

Fulker et al (1999) propose model for the trait, Yi, which is linear in terms of
a fixed effect and random effects. The random effects are partitioned into parts
accounting for individual specific and family specific effects, as well as an effect
accounting for the QTL; all assumed to be normally distributed. The fixed effect
is a function of the offspring genotypes. This model allows for tests of association
in the presence of linkage.

2.1 Variance Components Model (VCM)

The random effects are partitioned into three components, assumed independent
of each other:

• A non-shared random effect, eij ∼ N(0, σ2
N ), unique for all offspring j in

family i.

• A random effect shared by all offspring in a family i, sij ∼ N(0, σ2
S).

• A random effect for the QTL, aij ∼ N(0, σ2
A). For offspring j and j′ in

family i, cov(aij , aij′) = πjj′σ2
A, where π̂jj′ is the estimated proportion of

alleles shared IBD, given parental genotypes.

We follow Sham et al (2000) and omit the random polygenic effect. It is assumed
to be partitioned into the shared, and environmental, random effects (see Sham
et al (2000), page 1617, for an example with a sib pair). As long as we are not
interested in quantifying the polygenic random effect per se, it makes no difference
if it is assumed to be partitioned into σ2

N and σ2
S . The VCM can be written in

terms of a fixed effect, µij , and the three random effects,
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Yij = µij + aij + sij + eij . (1)

We write the expected covariance between offspring j and j′ in terms of π̂jj′ and
the parameters σ2

N , σ2
S and σ2

A,


cov(Yij , Yij′) = π̂jj′σ2

A + σ2
S

var(Yij , Yij′) = π̂jj′σ2
A + σ2

N + σ2
S

Thus, linkage enters the model by letting the within family correlation depend on
IBD allele sharing. For a family with two offspring the expected covariance matrix
is written as,

Σ =
(
σ2

N + σ2
S + σ2

A σ2
S + π̂jj′σ2

A

σ2
S + π̂jj′σ2

A σ2
N + σ2

S + σ2
A

)
,

2.2 The Mean

Consider a biallelic QTL with alleles A and a. Assume a co-dominant allele ef-
fect, implying that the mean effect of genotype AA, Aa and aa are −a, 0 and a,
respectively. We write the mean of Yij , µij , as a sum of an overall mean µ and an
allele effect,

µij = µ+ aXij , (2)

where Xij equal 1,0 or -1 for genotypes AA, Aa and aa, respectively.



Xi = [Xij ]j=1,2,...,Ji

Xi =
∑Ji

j=1Xij

Xbi = [Xi]j=1,2,...,Ji

Xwi = Xi − Xbi

Note that Xbi +Xwi equals Xi. With this reparameterisation, a ·Xbi is a vector of
the mean allele effect for the offspring in family i, and a ·Xwi is a vector with the
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difference from a ·Xbi for each offspring j. Fulker et al (1999) note that population
stratification will only affect the mean allele effect within a family and therefore
propose a mean model where aXi is split into abXbi and awXwi. The parameter
aw is robust against population stratification.

To illustrate, the elements of Xi, Xbi and Xwi for a sib pair are given in Table
1. As an example, consider a sib pair with genotypes AA and Aa, for sib 1 and 2
respectively,

µi1 = µ+ 1
2ab + 1

2aw

µi2 = µ+ 1
2ab − 1

2aw

.

If there is no population stratification, then ab = aw = a and we have that the
mean allele effects is a for sib 1 and 0 for sib 2. This is consistent with our additive
allele mean model (2).

For a general family i, we write,

µi = µ+ abXbi + awXwi =
(

1 Xbi Xwi

)  µ
ab

aw

 = X′
iβ . (3)

2.3 Likelihood Inference

We assume that there is no ascertainment on trait and use a prospective likelihood,
which is based on the probability of trait, given the observed data. We write the
likelihood of the model as,

L(µ,Σ) =
n∏

i=1

(2π)−1|Σi|−1/2 exp
(
−1

2
(Yi − µi)′|Σi|−1(Yi − µi)

)
,

where µi is the mean of Yi and Σi is a covariances matrix for the offspring in
family i. The null and alternative hypothesis may be formulated as,

H0: linkage and no association, σ2
A > 0 and aw = 0.

HA: linkage and association, σ2
A > 0 and aw 6= 0.
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Genotype
Sib 1 Sib 2 XT XT

b XT
w

AA AA (1,1) (1,1) (0,0)
AA Aa (1,0) (1

2
,1
2
) (1

2
,-1

2
)

AA aa (1,-1) (0,0) (1,-1)
Aa AA (0,1) (1

2
,1
2
) (-1

2
,-1

2
)

Aa Aa (0,0) (0,0) (0,0)
Aa aa (0,-1) (-1

2
,-1

2
) (1

2
,-1

2
)

aa AA (-1,1) (0,0) (-1,1)
aa Aa (-1,0) (-1

2
,-1

2
) (-1

2
,1
2
)

aa aa (-1,-1) (-1,-1) (0,0)

Tab. 1: The elements of X, Xb and Xw for all possible sib pairs. Here X is
the vector of Xj’s for the two sibs. The elements of Xb are the mean
of the elements in X and Xw = X − Xb. Note that all indexes i
have been omitted and that T denotes transposition of the vectors.

Let ψ denote the vector of parameters, (µ, ab, aw, σ
2
N , σ

2
S , σ

2
A). Using the likelihood

in (2.3), the Score function, S(ψ) and the Fisher Information matrix, I(ψ), we can
construct a test of association in the presence of linkage.

Maximum Likelihood estimates of the parameters in ψ can be obtained using the
Newton-Raphson algorithm. We get an updated estimate ψ̂i+1 by,

ψ̂i +
(
I(ψi)

)−1
S(ψi) .

The iteration stops when |ψ̂i+1 − ψ̂i+1| is smaller than some predefined small δ. A
Likelihood Ratio test of the null hypothesis is given by,

LRT =
L(µ̂, âb, aw = 0, σ̂2

A, σ̂
2
N , σ̂

2
S)

L(ψ̂)
,

where µ̂ âb σ̂
2
A, σ̂2

N , σ̂2
S , and ψ̂ are maximum likelihood estimates of µ ab σ

2
A, σ2

N ,
σ2

S , and ψ̂, respectively. The test statistic LRT is χ2 distributed with 1 degree of
freedom.
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3 The Simulations

The aim of the simulations is to evaluate the VCM under different scenarios of
population stratification, and different degrees of linkage disequilibrium (LD) and
linkage (as measured by the recombination fraction θ) between the marker locus
and the QTL. Specifically, we want to study the properties of the mean parameters
ab and aw, and test whether the parameter aw is robust against population strat-
ification. Another question we wish to address is how efficient the mean model is
when there is no population stratification. In that case ab = aw, which means that
the mean model is over-parameterised.

We simulate nuclear families with two sibs. The marker alleles are denoted A/a
and the QTL alleles are denoted D/d. The simulation can be divided into three
steps;

1. Simulate parents: The parental haplotypes are simulated according to the
LD structure between the marker and the QTL.

2. Simulate the offspring: Firstly, the parental haplotypes undergo recombina-
tion according to the recombination fraction θ. Secondly, the recombined
haplotypes are transmitted, assuming random mating.

3. Simulate the traits: the trait for the offspring in a family is simulated accord-
ing to model (1), given parameters ab, aw, σ2

N , σ2
S and σ2

A, and conditional
on the offspring IBD sharing at the QTL.

For all simulations, we fix the model parameters:

• The overall mean, µ = 0.

• The between-family effect, ab = 0.5.

• The within-family effect, aw = 0.5.

• The QTL variance, σ2
A = 0.2.
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• The non-shared variance, σ2
N = 0.6.

• The shared variance, σ2
S = 0.2.

As explained in Section 2.1 we assume that the polygenic effect gets absorbed into
the random environmental and shared random effects and ignore simulating it.

We can describe the LD structure in our simulations using Table (2). This general
form of LD structure allows for specifying different degrees of population stratifi-
cation (population 1 and 2) and LD. Let q1 and q2 be the probability of allele A in
population 1 and 2, respectively. Further, let r1 and r2 be the probability of allele
D in population 1 and 2, respectively. We simulate population stratification by
varying the marginals q1 and r1 for population 1, and q2 and r2 for population 2.
No population stratification corresponds to setting q1 = q2 and r1 = r2. Popula-
tion k (= 1, 2) is in LD if pk 6= qk · rk. Given that we have fixed the marginals, we
can vary the degree of LD in the populations by varying p1 and p2. We calculate
r2 as,

(pk − qk · rk)2√
qk · rk · (1 − qk) · (1 − rk)

,

for k = 1 or 2. We will use r2 to quantify the degree of LD between the marker
and the QTL. A r2 of zero corresponds to linkage equilibrium (ie, no LD), and a
r2 of 1 corresponds to complete LD between the marker and the QTL. If r2 > 0
and r2 < 1, we will say that the marker and the QTL are in LD.

Population 1 Population 2
D d D d

A p1 q1 − p1 q1 A p2 p2 − q2 q2

a r1 − p1 1 − q1 − p1 − r1 1 − q1 a r2 − p2 1 − p2 − q2 − r2 1 − q2

r1 1 − r1 1 r2 1 − p2 − q2 − r2 1

Tab. 2: A general form of LD-structure. We can allow for population strati-
fication by setting q1 6= q2 and r1 6= r2. The populations k = 1, 2 are
in LD when pk 6= qk · rk.

We set the number of simulations to 20, but in future studies we plan to increase the
number to obtain better precision. In each simulation, we estimate all parameters
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and test the null using the LRT statistic. We take the mean over all 20 simulation
for the mean estimates, ab and aw. In future simulations, we will calculate the
Fisher Information matrix for each step of the simulation, and from that get the
estimated model variance for ab and aw, σb and σw respectively.

3.1 Simulation 1

The aim in this simulation is to assess how well the VCM estimates the fixed
parameters, varying θ and r2. In a future study, this simulation setup can be used
to address the efficiency of the model when there is no population stratification.

Redefining Table (2), we set q1 = q2 = r1 = r2 = 0.5 and set p1 = p2 = p. Hence,
no population stratification is created in this simulation. We let θ take values 0
and 0.2. We vary the degree of LD by letting p take values 0.25, 0.30 0.35, 0.40
and 0.45, corresponding to a r2 of 0, 0.04, 0.16, 0.36 and 0.64, respectively.

D d
A p 0.5 − p 0.5
a 0.5 − p p 0.5

0.5 0.5 1

Tab. 3: LD-structure for Simulation 1. The population is in LD when p 6=
0.25.

3.2 Simulation 2

The aim of this simulation is to assess whether or not aw is robust against strati-
fication. It will also address how well the VCM estimates the parameters, varying
θ and r2.

Redefining Table 2, we set q1 = r1 = q and q2 = r2 = 1 − q. We let q be either
0.1 or 0.3. Hence, we create population stratification in this simulation. We can
quantify the degree of stratification with the fraction q/(1− q), i.e. 1/9 or 3/7. To
vary the degree of LD in population 1 and 2, we set p1 = p and p2 = 1 − 2q + p,
and we let p take values q2 (no LD, r2 = 0) or q (full LD, r2 = 1). With this
relation between population 1 and 2, both populations have the same r2, but are
as different as they can be, given the restriction that qk = rk (k = 1, 2). We let
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r2T denote the LD for population 1 and 2 combined. A false association due to
population stratification will be indicated by r2T > r2

Population 1 Population 2
D d D d

A p q − p q A 1 − 2q + p q − p 1 − q
a q − p 1 − 2q + p 1 − q a q − p p q

q 1 − q 1 1 − q q 1

Tab. 4: LD-structure for Simulation 2. There is some degree of population
stratification as long as q 6= 0.5. The two populations are in LD when
p 6= q2.

4 Results

All programming have been made in the statistical program R (version 1.9.0). We
have not been able to obtain all results as of yet. Missing results will be denoted
by ”-”.

From simulation 1 (no population stratification), we see that under H0 (r2 = 0),
both additive parameters, the between family parameter ab and the within family
parameter aw, are estimated close to zero, regardless of θ (see Table (5)). This is
consistent with what we should expect. It is, however, curious that ab is estimated
higher than aw, for all values of θ and r2. We also see that, under H1 (r2 > 0), the
parameter estimates depend both on the degree of linkage and LD (see Figure (1)
and Table (5)). When there is complete linkage (θ = 0), both parameter estimates
are approximately equal, regardless of the degree of LD, which is consistent with
what we expect to see (Figure (1)). However, as θ becomes larger, the difference
between ab and aw increase (Figure (1)).

From simulation 2 (population stratification), we see that, under H0, ab and aw

differ (see Table (6) and Table (7)). The estimates of aw are, regardless of θ, close
to zero, while ab is not (Table (6) and Table (7)). This is consistent with what
we expect to see. We also see that with a smaller degree of stratification, the
difference between ab and aw gets smaller, which is also what we would expect to
see (Table (6) and Table (7)).
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Mean (True)
θ r2 (p) ab σb aw σw

0 0 (0.25) -0.0055 (0.5) - (-) -0.0184 (0.5) - (-)
0 0.04 (0.30) 0.0961 (0.5) - (-) 0.0800 (0.5) - (-)
0 0.16 (0.35) 0.1955 (0.5) - (-) 0.1823 (0.5) - (-)
0 0.36 (0.40) 0.2960 (0.5) - (-) 0.2843 (0.5) - (-)
0 0.64 (0.45) 0.3956 (0.5) - (-) 0.3830 (0.5) - (-)

0.2 0 (0.25) -0.0052 (0.5) - (-) -0.0191 (0.5) - (-)
0.2 0.04 (0.30) 0.0822 (0.5) - (-) 0.0410 (0.5) - (-)
0.2 0.16 (0.35) 0.1684 (0.5) - (-) 0.1030 (0.5) - (-)
0.2 0.36 (0.40) 0.2551 (0.5) - (-) 0.1635 (0.5) - (-)
0.2 0.64 (0.45) 0.3420 (0.5) - (-) 0.2224 (0.5) - (-)

Tab. 5: Simulation 1: No population stratification. Varying degree of linkage
and LD.
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Fig. 1: Simulation 1: Plot of the mean estimates from VCM, under H1: link-
age and association.

5 Discussion

We have simulated scenarios with varying values of r2 and θ. Some of the values of
θ are unrealistically high, corresponding to low linkage. We assume linkage in both
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Mean True
θ r2 (p, r2

T ) ab σb aw σw ab σb aw σw

0 0 (0.01, 0.41) 0.4684 - 0.0968 - 0.5 - 0.5 -
0.2 0 (0.01, 0,41) 0.4344 - 0.0138 - 0.5 - 0.5 -
0 1 (0.1, 1) 0.5276 - 0.6094 - 0.5 - 0.5 -

0.2 1 (0,1, 1) 0.4861 - 0.3742 - 0.5 - 0.5 -

Tab. 6: Simulation 2: Population stratification. Varying degree of linkage
and LD. q/(1 − q) = 1/9

Mean True
θ r2 (p, r2

T ) ab σb aw σw ab σb aw σw

0 0 (0.09, 0,03) 0.1879 - 0.0133 - 0.5 - 0.5 -
0.2 0 (0,09, 0,03) 0.1524 - -0.0824 - 0.5 - 0.5 -
0 1 (0.3, 1) 0.4856 - 0.5166 - 0.5 - 0.5 -

0.2 1 (0.3, 1) 0.4778 - 0.3149 - 0.5 - 0.5 -

Tab. 7: Simulation 2: Population stratification. Varying degree of linkage
and LD. q/(1 − q) = 3/7

the null and the alternative hypothesis, and a large θ is a violation to that assump-
tion. For example, a θ of 0.2 corresponds to a genetic distance of 25.5 cM (with
Haldanes mapping function). However, they still serve as an illustration how the
estimates of the association parameters are affected as θ increases. Further simu-
lations should be carried out, using more realistic linkage and LD scenarios, and
using more simulations. These simulations should be illustrated with confidence
intervals for the estimated parameters, giving more interpretable results.

In Figure 1 we see an increasing difference between ab and aw. The reason for this
is that recombination breaks the LD-structure. Remember that the LD-structure
is simulated in the parental generation, and as recombination occur in the second
step of the simulation (transmission of haplotypes to offspring), the LD-structure
change. So, if there is strong LD in the parental generation and if there is high
recombination in the transmission from parents to offspring, we will see a com-
pletely different LD-pattern in the offspring generation. This may not be a realistic
scenario, but again, it serves as an illustration to what happens on a smaller scale
when we change the recombination fraction less dramatically.

As may be noted, some parts of the study is left unfinished to be continued in
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a near future. One may also note that the expected values of σb and σw have
not been derived. That is also a task for the near future. This paper is still an
unfinished manuscript. A topic for future studies is the error induced by non-
random ascertainment. Another interesting question to address is to study how
the VCM performs when only a small number of QTL are associated with the
trait.
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