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Abstract

Generation times measures the time between the infection of a primary case and
one of its secondary cases. The distribution (and mean) of the generation time is
derived for a rather general class of epidemic models. The relation to assumptions
on distributions of latency times and infectious times or more generally on random
time varying infectiousness, is investigated. Serial times, defined as the time between
occurrence of observable events in the progress of an infectious disease (e.g. the onset
of clinical symptoms), are also considered.
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1. Introduction

The reason for writing this short note is to try to provide some understanding of statistical
and stochastic properties related to generation (and serial) times as used in models for
spread of communicable diseases.

Traditionally a main input to epidemic models is assumptions on the distributions of
individual latency times, infectious times and infectiousness (e.g. represented as the virus
shedding process). These concepts are all related to the the progress of an infection within
an infected individual. They describe the natural history of an infection and should, in
principle, be observable from studies of single infected persons. We will call these aspects
of the infection inter-individual. Medical handbooks, that are focused on clinical aspects
of infections and infectious diseases provide some information about these.

Further to inter-individual aspects of infections an epidemic model also has to describe
how, why and when infections are transmitted between individuals. Assumptions about
transmission explain why epidemic processes may behave differently in populations with
different contact patterns. Typically structures as households and working places have to
be taken into account.

Lately the notion of generation times has been popular and now is an important con-
cept in models of the SARS epidemic and pandemic influenza (Wallinga and Teunis (2004)
and Ferguson et al. (2005)). Generations times are assumes to reflect the time between
the infections of a primary its secondary cases. A general discussion of the concept which
includes a survey of several infections is given by Fine (2003). Fine uses the term trans-
mission interval.
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Generation times are related to the duration of incubation and infectious periods as well
as time-variation in infectivity that an infected person emits. By definition a generation
time involves a primary case and a secondary case infected by a primary case. Thus, it
can only be understood in relation to a model for transmission between individuals.

One way to give generation time a well-defined, and general, meaning is to consider its
meaning in the most simple conceivable model. This would be the model where infectious
contacts are taken according to a homogeneously mixing assumption, i.e., an infected
persons is equally likely to contact any other member of the population. An alternative
way is to study generation times in more complex models. In that case the mean and
variability of generation times will have to be considered together with the laws that
governs the transmission in the particular complex model.

The discussion in this paper will cover both these alternatives. The derivation will be
based on a random measure K, that describes how infectiousness of an infected person
changes over time (see section 3). Infected persons may have different potentiality of
spreading the infections. In the simple model, with homogeneous mixing, the variability
of K will only involve differences between the inter-individual progress of an infection
within infected individuals. In more complex models it will also involve differences in how
individuals spread the infection to other persons.

The possibility to transmit an infection will change during a epidemic, due to the
possibility that already infected persons may have obtained immunity. This may influence
generation times, in particular in the intense period of epidemic spread. For this reason we
will restrain the analysis to the beginning of an epidemic (or to situations where an infected
individuals infectivity is not influenced by changes in immunity in the total population).

The following discussion is based on a general model for infectious spread (section
3). In section 4 result on distributions and moments for generation times are derived.
These results are applied to some special models in section 2. Some remarks regarding the
possibility to observe generations times in studies of real epidemic outbreaks are made in
section 5. Finally some comments of the more general concept of serial times are given in
section 7.

Much of the discussion that follows is based on well-known results from the theories of
demography (Keyfitz and Caswell (2005)) and branching processes (Jagers (1975), Kimmel
and Axelrod (2002) and Haccou et al. (2005)). For formal proofs of technical results we
will refer to these texts. We will leave out standard derivations of distribution functions
and means.

2. Generation time

Definitions of generation time formulated in literature, are in most cases essentially verbal.
They may look common-sense and straight-forward, but it is not obvious how to translate
them to mathematical well-defined concepts.

We quote some definitions:

• ”the sum of the average latent and the average infectious period is referred to as the
average generation time of the infection”. Anderson and May (1992).
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• ”the time between the appearance of similar symptoms (e.g. rash, coughs) in succes-
sive generations” Giesecke (2002).

• ”the generation interval is the time from symptoms onset in a primary case to symp-
tom onset in a secondary case” Wallinga and Teunis (2004).

• ”The average time taken for the secondary cases to be infected by a primary case”
Anderson et al. (2004).

Some of these definitions are made in the context of particular assumption of duration
of latency and infectious times and may not be immediately translatable to other models.
With the exception of the definition of Anderson and May (1992) none of these definitions
are stated in mathematical terms. Since any reasonable epidemic model involves random
elements due to both variation between individuals and to randomness in transmission
of the infectious agent, it is necessary to consider the stochastic properties of generation
times. We may want to find the distribution of a ”typical” generation time or at least the
mean of a ”typical” generation time.

It should also be observed that two of the quoted definitions (Anderson and May (1992)
and Anderson et al. (2004)) relate to times between successive infections and the other
(Giesecke (2002) and Wallinga and Teunis (2004)) refer to any identifiable event in the
progress of an infection. This is a more general definition and we will here refer to such in-
tervals as serial times. From a statistical viewpoint there are important differences between
generation and serial times. Loosely speaking, generation time refers to what happens to
a single infected individual, whereas serial time is a mixture what happens in two infected
individuals. Some consequences of this are discussed in section 7.

One of the difficulties is that in most models (and most real applications) there are
infected person that causes no secondary cases. It seems natural to define the the generation
time to be infinite. This will make it impossible to attach any interesting interpretation of
the mean generation time.

A more reasonable definition is that generation time is defined conditional on that there
are at least one secondary case. The question then arises how and if the generation time
depends on the number of secondary cases. Is, e.g., the average time till the secondary cases
the same regardless of the number of cases secondary to a primary case. Since generation
times due to the same primary cases possibly are dependent there also remains the problem
to derive the simultaneous distributions of the generation times of secondary cases related
to the same primary case.

It turns out that it is a better alternative to define ”backward” generation times and
relate the term to the secondary cases rather than to the primary cases. In that case the
generation time for any infected person is the time that has evolved since his infector was
infected. This may seem like a simple rewording, but it is not and it turns out that it has
essential implications.
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3. A general formulation of an epidemic model

The first part of an epidemic model is to consider how many persons an infected person
may infect and when the infections may occur. In order to do this we will consider two,
possible random, entities, λ and K. Here λ is a non-negative (random) number that decides
the ”total amount of infectivity” spread by an infected person, K is a (random) positive
measure, with total mass 1, defined on [0,∞[ which measures how the infectiousness is
distributed in time. The assumption that K is a random measure implies that it is not the
same for each infected individual. It is chosen (independently for all persons) according to
a distribution on all possible measures.

Observe that both λ and K are considered to be random and that they may be depen-
dent.

A basic assumption is that for a given individual the number of possibly infectious
contacts in the interval I = [a, b[ is Poisson distributed with mean λK(I) (conditional on
λ and K). Let K(t) = K([0, t[). For simplicity we assume that there exist a density so
that

K(I) =

∫

I

κ(s)ds. (3.1)

The full process of infectious contacts can be described by the following construction.
Let χ be a homogeneous Poisson process with intensity 1. Then χ(I) is a random measure
that counts the number of points in the interval I. We can define the new process that
counts the number of infectious contacts in I = [a, b[ by

ξ(I) = χ(]λK(a), λK(b)]). (3.2)

An infectious contact results in a secondary case if the contact is taken with a susceptible
person. In a simple homogeneous model the contacted persons are chosen randomly in the
population. As explained above this part of the modelling will not be the concern of the
present discussion, that focus on the inter-individual properties of the infection.

In this homogeneous model it is straight-forward that the basic reproduction number

R0 = E(λ). (3.3)

This follows since K is assumed to have total mass 1.

4. Simultaneous distributions of generation times

Assume that a primary case has m secondary cases which occurs at times (τ1, . . . , τm). It
is well-known that conditional on χ([0, λ]) = m, the time of the m events are distributed as
(λU1, . . . , λUm) where U1, . . . , Um are independent uniformly distributed random variables.

This result can be translated to the times till secondary cases. The times τ1,. . . ,τm are
distributed as

(K−1(U1), . . . , K
−1(Um)). (4.1)
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Here K−1 is the inverse of the function K. From this we can derive the simultaneous
distribution of τ1,. . . ,τm (conditional on the number of secondary cases)

Pr(τ1 ≤ s1, . . . , τm ≤ sm | m,K) =
m∏

j=1

K(sj). (4.2)

Given the actual random measure K the generation times are independent. If we loosen
this restriction the generation times are no longer independent and

Pr(τ1,≤ s1, . . . , τm ≤ sm | m) =

∫ m∏
j=1

K(sj)dP (K). (4.3)

Thus generation times generated by the same infector are exchangeable but not indepen-
dent. However, they will all have the same mean (regardless of m).

E(τ | K) =

∞∫

0

adK(a) =

∞∫

0

ak(a)da. (4.4)

The overall mean, integrating over the distribution of K is

E(τ) =

∫ 


∞∫

0

ak(a)da


 dP (K). (4.5)

The covariance between two generation times related to the same primary case is

Cov(τ1, τ2) = Var(E(τ) | K) =

∫ 


∞∫

0

ak(a)da




2

dP (K)− (E(τ))2 . (4.6)

Now we have to consider how to interpret the distribution derived above. It is the
distribution (and mean) of the time till a secondary case (given that there exists at least
one) if we choose a primary cases, which has at least one secondary case, with equal
probability, ignoring how many secondary cases it has. We will denote the corresponding
random variable by Tp and its distribution function by Kp. The density function of Tp is
kp = K ′

p. It follows from the derivation above that

Kp(a) = E(K(a)) =

∫
K(a)dP (K). (4.7)

and

kp(a) = E(k(a)) =

∫
k(a)dP (K). (4.8)

It is also possible, and perhaps more natural, to consider another generation time de-
fined by choosing primary cases proportionally to the number of secondary cases, and then
consider the distribution of the time till a secondary case. We denote the corresponding
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random variable by Ts and its distribution function by Ks. The density function of Ts is
ks = K ′

s.
The expected number of secondary cases will be proportional to λ. Thus

Ks(s) =
EλK(λK(s))

Eλ(λ)
, (4.9)

and the mean

E(Ts) =

EλK(λ
∞∫
0

ak(a)da)

Eλ(λ)
. (4.10)

The random variable Ts can be also be obtained by choosing a case at random and
consider how long its infector has been infected.

Observe that the means of Tp and Ts are based on the same distributions, K. How-
ever, Ts is the result of a size-biased sampling procedure, where primary cases with many
secondary cases are given a greater weight.

5. Some special models

5.1 Constant infectiousness

A common assumption in epidemic models is that each individual has a random latent
time, X, a random infectious time Y , and a random infectivity γ. For simplicity we assume,
as often is done, that these random variables are independent. Let g denote the density of
the random variable X and h the density of Y . We will also use the distribution function
of Y that is denoted by H.

We can rewrite these assumptions using the notation in the previous section:

λ = γY, (5.1)

and

k(t) =

{
1/Y if X < t ≤ X + Y ,

0 otherwise.
(5.2)

or with an alternative expression

k(t) =
I(X < t ≤ X + Y )

Y
(5.3)

It follows directly that
R0 = E(γ)E(Y ). (5.4)

Simple calculation yields that the mean of Tp is

E(Tp) = E(X) + E(Y )/2. (5.5)

The density of Tp equals g ∗ hp (here ∗ stands for convolution) where

6



hp(s) =

∞∫

s

h(a)

a
da, (5.6)

The density of Ts is g ∗ hs where

hs(s) =
1−H(s)

E(Y )
. (5.7)

Thus

E(Ts) = E(X) +
E(Y 2)

2E(Y )
. (5.8)

As an example we can consider the possibility that if Y is gamma-distributed with
parameters (α, α/E(Y )). Then

E(Ts) = E(X) + E(Y )
α + 1

2α
. (5.9)

It can be observed that if Y has an exponential distribution, i.e. α = 1, then hs is the
density of an exponentially distributed random variable and

E(Ts) = E(X) + E(Y ). (5.10)

5.2 Time-varying infectiousness

It many cases it is known that the infectiousness varies during the infectious period.
However, it is often difficult to get a realistic model for this variation. To illustrate the
possible effect of such variations we will here consider some simple cases. We will assume
that the both the total infectiousness, i.e. λ and the random measure K depends on a
real-valued random variable, γ. That is each individual has its own value of γ, and spreads
the total infectivity λγ according to the measure Kγ.

In simple cases it is possible to find relations between Tp and Ts. Such a case occurs
when both λγ and Kγ(s), for all s, are increasing in γ. Then by applying Chebyshev’s
inequality (Hardy et al. (1934), pg 43) to the expressions (4.7) and (4.9), it follows for all
s that

Eγ(λγKγ(s))

Eγ(λγ)
≥ Eγ(Kγ(s)). (5.11)

This implies that the random variable Ts, in this case, is stochastically smaller than Tp.
As a consequence of this E(Ts) ≤ E(Tp)

To illustrate the connection between the total infectivity and how the spread is dis-
tributed over time we have chosen the following simple example. (Observe that in this
example Kγ(s) is not monotone in γ). Assume that

kγ(a) = γ exp(−γa), (5.12)
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where γ has a Γ(α, α/d)-distribution, i.e., it has density function

γα−1cα exp(−cγ)

Γ(α)
, (5.13)

where c = α/d.
In order that the situation shall be interesting the total amount of infectivity has to

correlate with the form of the infectious curve. Thus we assume that

λγ = exp(−bγ). (5.14)

Simple calculation now yields that

hp(a) = d(1 + ad/α)−(α+1), (5.15)

and
hs(a) = d(1 + (a + b)d/α)−(α+1). (5.16)

The corresponding means are

E(Tp) = d
α

α− 1
, (5.17)

and

E(Ts) = d
α

α− 1
+ b

1

α− 1
. (5.18)

If b < 0 low total infectivity is associated with late secondary cases, i.e., E(Ts) < E(Tp).
If b > 0 the inequality is reversed.

6. Generation times observed from epidemics outbreaks

Statistical analysis of generation times that are derived from observations from an epidemic
outbreak requires some care.

The first problem is that possible secondary cases may be lost due to immunity caused
by previous infections. A consequence is that observed generation times will tend to be
shorter in the intense stage of an epidemic. Let S(t) be the number of susceptible indi-
viduals in the population at time t. A person that is infected at time z will then spread
infectivity according to the function λS(z + a)K(a) at time a after z. If S decreases fast
enough it may substantially reduce the possibilities for late infections and thus favor short
generation times. If this is an effect that has to be considered or not depends on the time
scale at which the epidemic spreads and the duration of the infectivity of an infected. In
the start of an epidemic this effect may be disregarded.

A more serious problem is that the number of primary cases will grow at an exponential
rate at the beginning. This means that at any time a large proportion of the infectors has
not been able to spread all their infectivity. This implies that there is an over representation
of early infected secondary cases. It is still possible to calculate a mean of the observed
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ages of the cases that has occurred. We will here quote, without proof, a results from
demography which there relates to mean maternal ages. It can be calculated as

∫
ae−raks(a)da, (6.1)

where r is the malthusian parameter that solves the equation

∫
e−raks(a)da = 1, (6.2)

(Jagers (1975) ch 8.4).

7. Serial times

As an alternative to generation times it has been suggested to consider times between
observable events in primary cases and secondary cases. Figure 7.1 illustrates this. In the
figure the time of infections as well as for some observable event, e.g., onset of symptoms
of some kind are indicated. Let U denote the time between infection and the observable
event, and let V denote the difference between the generation time and the observable
event. Following the notation of the figure

Tg = U0 + V 0. (7.1)

However, the serial time is

S = V 0 + U1. (7.2)

It is clear that E(Tg) = E(S) if U0 and U1 have the same distribution. However, in
general, it is possible that Tg and S do not have the same distribution. It is natural to
assume that U0 and V 0 are dependent random variables since they are attached to the
same individual and that U0 and U1 are independent since they come from two different
individuals. If this is the case the distribution of Tg and S will not be the same. This is
illustrated already by considering the variances:

Var(Tg) = var(S) + 2Cov(U0, V 0). (7.3)

As a simple example we consider a three stage model for the inter-individual infectivity
process. The duration of the latent period, X, is assumed to be exponential distributed
with intensity λi. Then the infectiousness is constant during an exponentially distributed,
with intensity λinf , infectious time. Symptoms are shown only after the end of the latent
time with a delay, Y , that is exponentially distributed with intensity λd. The generation
time for a secondary case is then the distribution of X + Z, where Z is exponentially
distributed with intensity λinf . Simple calculations show that the distribution of the serial
time is the distribution of X + Z + Y1 − Y , where Y1 is the delay for the secondary case.
Thus S = Tg + (Y1 − Y ). The added term, Y1 − Y , has mean 0 and does not change the
mean, but it has a real influence on the distribution of S.
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Figure 7.1. Generation time and serial time (observe that V 0 might be negative)
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