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Abstract
We consider a situation where the state of a large number of in-

dependent pure birth processes, with common birth intensities, are
observed at two time points. Estimates are derived, both when no
restriction is placed on the intensities, and when they are assumed
to follow a certain parametric model which assumes that the birth
intensities are increasing. This is an assumptions that is sometimes
made in the study of dynamic networks, where the births are inter-
preted as the occurrence of new edges. In this paper the theoretical
results are applied to data from a survey of how the number of sexual
contacts develops in time. The situation is generalized so that the
birth intensities also depend on individual random factors. Di�erent
goodness-of-�t test of the models are considered.
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∗This is a technical report that contains the theoretical statistical background for an
analysis of data from Swedish and Norwegian surveys or sexual behavior. The �nal re-
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university, and Birgitte Freiesleben de Blasio, university of Oslo.



1

1



Estimating transition intensities in pure birth

processes sampled in time
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Abstract

We consider a situation where the state of a large number of independent pure
birth processes, with common birth intensities, are observed at two time points.
Estimates are derived, both when no restriction is placed on the intensities, and
when they are assumed to follow a certain parametric model which assumes that the
birth intensities are increasing. This is an assumptions that is sometimes made in
the study of dynamic networks, where the births are interpreted as the occurrence
of new edges. In this paper the theoretical results are applied to data from a survey
of how the number of sexual contacts develops in time. The situation is generalized
so that the birth intensities also depend on individual random factors. Different
goodness-of-fit test of the models are considered.

1. Introduction

The purpose of this paper is to discuss how to estimate jump intensities from observations
on several independent counting processes, that are observed at (two) fixed time points.
Each of n process, N1(·), N2(·), . . . , Nn(·), counts the number events of some kind in time.
For convenience we assume that the first observation is taken at time t = 0. Thus, Ni(0)
is the number of events in the i’th processes that has occurred before time t = 0. Each
process is also observed a second (non–random) time Ti > 0, that may be different for the
different processes. The analysis will thus be based on the observations (Ni(0), Ni(Ti)),
i = 1, . . . , n.

Observations of this kind may occur in many situations. In section 5 the results are
applied to data from a survey on the number of sexual partners. A random sample of
persons have answered a question concerning the number of new partners during the last
year and the number of previous partners. The value of the individual processes at time
t = 0 is thus the number of previous partners, and the values after one year the sum of
previous and new partners. In this case all Ti equal one year.

We will regard the processes as pure birth processes, there the time till a new event
depends on the number of previous events. The time a process stays in state j is assumed
to be exponentially distributed and the times in the different stages are assumed to be
independent.

The statistical analysis will be based on two models, one with fixed effects, and one
which involves individual random effects. First we will assume that the intensity of a jump
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from stage j to j + 1, denoted by πj, is common for all n processes. Estimates of of the
jump intensities will be derived both in a non-parametric setting, i.e. no relation between
the values of the intensities is assumed, and in a parametric model where πj = πj(θ),
k = 1, 2, . . ., are assumed to be given as values of a function of a low-dimensional parameter
θ. In particular we will be interested in the case where π0 = β and πj = γjδ when j ≥ 1.
In this case the parameter θ = (β, γ, δ).

In the application studied in section no auxiliary variables, such as age or social-
economic factors, are used in the analysis. One could expect that there is a considerable
variation between individuals that makes the assumption that all person have the same
jump intensities questionable. For this reason a second, generalized, model is considered.
It is assumed that there is an individual (random) multiplicative factor κi, which makes
the jump intensity vector for individual i equal to κiπj, j = 0, . . .. The multiplicative
factors are assumed to be drawn independently from a gamma distribution.

In section 2 we will calculate the likelihood and derive estimates and their asymptotic
properties under the assumptions of fixed jump intensities. In section 3 we will give corre-
sponding results for the model with individual random factors. Different ways to measure
goodness–of–fit are discussed in section 4. Finally the theoretical results are applied in
section 5.

2. Model with fixed jump intensities

The statistical interest is focused on the vector of jump intensities is π = (π0, π1, . . .). The
pure birth process model implies that the time a process stays in state j is exponentially
distributed with mean 1/πj, and that the times in the different stages are independent (cf
Feller (1968)). This property is used to derive the likelihood.

2.1 Likelihoods

Assume that we have a birth process with birth intensities, µ0, µ1, . . . starting in state
N(0) = 0. Let τi be the time the process spends in state i, i = 1, 2, . . .. Then

Pr(Ni(T ) = v) = Pr(τ0 ≤ T, . . . ,

v−1∑
j=0

τj ≤ T,

v∑
j=0

τj > T ). (2.1)

Since τj, j = 1, . . . , v are independent and exponentially distributed random variables we
find that this probability can be written as:

Pr(Ni(T ) = v) =
v−1∏
j=0

µj

∫ ∫
vP

j=0
ti=T

exp(−
v∑

j=0

µjtj)dt0 . . . dtv. (2.2)

A more explicit expression for these probabilities can be obtained either by successive
partial integrations or by applying Kolmogorovs forward equations (cf. Vadeby (2004)).

Cv(µ0, . . . , µv, T ) =

∫ ∫
vP

j=0
tj=T

exp(−
v∑

j=0

µjtj)dt0 . . . dtv =
v∑

k=0

exp(−Tµk)∏
j 6=k

(µj − µk)
. (2.3)
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If some of the intensities are equal, i.e. µk = µk′ then the expression should be in-
terpreted as a limit when µk → µk′ . Assume that µ0, . . . , µv takes the m distinct values
µ̃1, . . . , µ̃m with the frequencies r1, . . . , rm, where

∑
ri = v, then

Cv(µ0, . . . , µv, T ) =
m∏

i=1

T ri−1
i

(ri − 1)!

∂ri−1

∂µ̃ri−1
i

m∑

k=1

exp(−T µ̃k)∏
j 6=k

(µ̃j − µ̃k)
. (2.4)

It is well-known that if all intensities are equal, i.e., µ̃ = µ0 = µ1, . . . = µv the probabilities
are given by Poisson probabilities and Cv(µ̃, . . . , µ̃, T ) = T v exp(−T µ̃)/v!.

We can use the expressions (2.2) and (2.3 or 2.4) to calculate the probability that a
birth processes with initial value Ni(0) = si is in state si+vi at time t = Ti. The probability
is obtained by inserting T = Ti, v = vi, and µj = πsi+j, j = 0, . . . , v in (2.3 or 2.4).

After some simplifications, the following expression for the logarithm of the likelihood,
for a set of observed independent processes, is obtained:

∑
j

aj ln(πj) +
∑

i

ln(Cvi
(πsi

, . . . , πsi+vi
, Ti)), (2.5)

where aj is the number of observed jumps from stage j, j = 0, 1, . . ..
The time Rij that the i’th process spends in state j is important when deriving es-

timates. It turns out that this time is closely related to the functions C. In fact if
si ≤ j ≤ si + vi then (cf. (2.2))

−∂ ln(Cvi
(πsi

, . . . , πsi+vi
, Ti))

∂πj

= Eπ(Rij | Ni(0) = si, Ni(Ti) = si + vi). (2.6)

2.2 Non-parametric estimation of intensities

Without any parametric assumptions on the structure of the birth intensities a formal
derivation of the ML-estimates yields the ML-equations:

aj

πj

=
n∑

i=1

Eπ(Rij | Ni(0), Ni(ti)), (2.7)

j = 0, 1, . . ..
It should be noted that these equations do not always have a unique solution. From

(2.3) it is clear that Eπ(Rij) are symmetric in the parameters πsi
, . . . , πsi+vi

. If every
process that spends time in state j also spends time in state j + 1 the right-hand term of
the equation (2.7) takes the same value if we switch πj and πj+1. In the following we will
resolve this indeterminacy by (arbitrarily) assuming that all intensities in such states have
the same value.

A convenient algorithm to solve (2.7) is suggested by the EM-algorithm. This algorithm
calculates the expectations in the right-hand term of the equation for given values of the
parameters πj and updates these values iteratively by solving (2.7).
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We can not immediately apply standard asymptotic theory for ML-estimates since we
have a infinite number of unknown parameters. However, under suitable regularity assump-
tions it is possible to prove that the estimate of πj is asymptotically normal distributed
provided the corresponding aj is large. We can not expect all aj to be large. In fact there
will be no jump from the the state max(si + Ni(Ti)), even if some time is spent in that
state.

2.3 Estimates in the parametric model

We will consider the parametric model in which

πj(β, γ, δ) =

{
β if j = 0,

γjδ if j ≥ 1.
(2.8)

Using (2.6) we see that the ML-estimates of the three parameters δ, β and γ solve the
system of equations:

a0 = β
∑

j

dπj

dβ

∑
i

Eπ(Rij | Ni(0), Ni(Ti))

= β
∑

i

Eπ(β,γ,δ)(Ri0 | Ni(0), Ni(Ti))

∑
j≥1

aj = γ
∑

j

dπj

dγ

∑
i

Eπ(Rij | Ni(0), Ni(Ti))

= γ
∑
j≥1

∑
i

Eπ(β,γ,δ)(Rij | Ni(0), Ni(Ti))j
δ

∑
j≥1

aj ln(j) =
∑

j

dπj

dδ

∑
i

Eπ(Rij | Ni(0), Ni(ti)))

=
∑
j≥1

∑
i

Eπ(β,γ,δ)(Rij | Ni(0), Ni(Ti))j
δ ln(j).

(2.9)

Also in this case a convenient algorithm is suggested by the EM-algorithm. The ex-
pected values for the times in the states are calculated for given values of (β, γ, δ), using
equation (2.6). The parameters are updated by solving the equations (2.9).

Standard ML-theory implies that these estimates are asymptotically normal distributed
with a variance-covariance matrix which is the inverse of the Fisher information matrix.
Applying the expressions (2.3) and (2.5) some calculations yield that the elements in the
Fisher information matrix for the parameters (β, γ, δ) can be derived as:
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I(1, 1) = −E(a0)/β
2 +

∑
i

Varπ(Ri0),

I(1, 2) = I(2, 1) =
∑

i

∑
j≥1

jδCovπ(Rij, Ri0),

I(1, 3) = I(3, 1) =
∑

i

∑
j≥1

γjδ ln(j)Covπ(Rij, Ri0),

I(2, 2) = −
∑
j≥1

E(aj)/γ
2 +

∑
i

∑
j≥1

∑

k≥1

jδkδCovπ(Rij, Rik),

I(2, 3) = I(3, 2) = −
∑

i

∑
j≥1

jδ ln(j)Eπ(Rij) + γ
∑

i

∑
j≥1

∑

k≥1

jδkδ ln(k)Covπ(Rij, Rik),

I(3, 3) = −γ
∑

i

∑
j≥1

jδ(ln(j))2Eπ(Rij) + γ2
∑

i

∑
j≥1

∑

k≥1

jδ ln(j)kδ ln(k)Covπ(Rij, Rik).

(2.10)

The information matrix may be approximated by inserting the estimate of the parame-
ters and of the vector of intensities. The asymptotic variance-covariance matrix of the
parameter estimates are then derived as the inverse of the resulting approximate matrix.

2.4 Numerical approximations of the expected times in states and their covariances

The formula (2.6) gives an exact expression of the expected time in a state given the
initail and final state. A straightforward use of the expression may cause serious numerical
problems since the expression is evaluated as a sum of positive and negative numbers that
may be quite large. An alternative method is to approximate the expected time using
Monte Carlo simulations. This can be done choosing v + 1-dimensional random vectors

(t0, t1, . . . , tv) uniformly distributed on the simplex
v∑

i=1

ti = Ti, then

exp(−
v∑

i=0

µiti) (2.11)

has the expectation Cv(µ0, . . . , µv, T ). The random variable

tj exp(−
v∑

i=0

µiti) (2.12)

has the expectation −∂Cv(µ0, . . . , µv, T )/∂µj.
By repeating this procedure a large number of times and taking means of the resulting

random vectors given by (2.11) and (2.12), we can approximate Cvi
(πsi

, . . . , πsi+vi
, Ti) and

∂Cvi
(πsi

, . . . , πsi+vi
, Ti)/∂πj with arbitrary precision. Taking the ratio of these means we

get an approximation of Eπ(Rij | Ni(0) = si, Ni(Ti) = si + vi).
A simple way to generate random vectors for the simulation is to choose v + 1 in-

dependent random variables, that are exponentially distributed with mean 1 and let
ti = Tizi/

∑
j zj.
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This Monte Carlo method can also be used also to derive numerical approximations of
the Fisher information, which involves second moments of the times Rij.

2.5 Confidence intervals of estimates in the parametric model

There are several ways to study the precision of estimates of parameters. We will here
suggest three possible ways to derive confidence intervals

• asymptotic theory for ML-estimates,

• partial likelihood for the parameter δ, and

• parametric bootstrap simulations.

Provided that the number of observed processes are large it should be possible to use
asymptotic results for ML-estimates. This requires that certain regularity conditions have
to be satisfied. We will not investigate this further in this paper. The asymptotic theory,
implies that the variances of the parameter estimates can be approximated using the inverse
of the Fisher information matrix (2.10).

The partial likelihood for the parameter δ is given by the maximum attainable like-
lihood, by varying the parameters β and γ, for different values of the parameter δ (cf.
Barndorff-Nielsen and Cox (1989)). Confidence intervals for the parameter δ are derived
from this partial likelihood as the set of δ-values that has a log likelihood that does not differ
to much from the maximal log likelihood. Partial likelihoods for the other two parameters
is obtained in a similar way.

The parametric bootstrap simulations are obtained by simulating birth and death pro-
cesses with the given starting values Ni(0) and the estimated parameter values (cf Efron
and Tibshirani (1993)). For each simulation the parameters are re-estimated. The empir-
ical distribution of thee bootstrapped estimates are used to evaluate the properties of the
estimators.

3. Parametric model with random factors

In this model we assume that an individual has the jump intensities κπi, i = 0, 1, . . .,
where κ is a gamma distributed random variable with parameters (α, α). We will here
only consider the parametric model where πi are given by (2.8). The density function of κ
is

gα(κ) =
αα

Γ(α)
κα−1 exp(−ακ), (3.1)

E(κ) = 1 and Var(κ) = 1/α.
The probability that a pure birth process, with jump intensities κµ0, κµ1, . . ., that starts

in Ni(0) = 0 end in state Ni(T ) = v, is

Pr(Ni(T ) = v) =
v−1∏
j=0

µj

∞∫

0




∫ ∫
vP

j=0
ti=T

κv exp(−κ

v∑
j=0

µjtj)dt0 . . . dtv


 gα(κ)dκ. (3.2)
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Simple calculations, using (2.2) and (2.3) yields that

Pr(Ni(T ) = v) =
v−1∏
j=0

µj

v∑

k=0

(1 + Tµk/α)−α

∏
j 6=k

(µj − µk)
. (3.3)

In this model the functions

Dv(µ0, . . . , µv, T, α) =

∞∫

0




∫ ∫
vP

j=0
tj=T

κv exp(−κ

v∑
j=0

µjtj)dt0 . . . dtv


 gα(κ)dκ

=
v∑

k=0

(1 + Tµk/α)−α

∏
j 6=k

(µj − µk)

(3.4)

plays a role corresponding to the functions Cv in the model with fixed jump intensities.
Here

−∂ ln(Dvi
(πsi

, . . . , πsi+vi
, Ti, α))

∂πj

= Eπ(κiRij | Ni(0) = si, Ni(Ti) = si + vi). (3.5)

The logarithm of the likelihood for a set of observed independent processes equals

∑
j

aj ln(πj) +
∑

i

ln(Dvi
(πsi

, . . . , πsi+vi
, Ti, α)). (3.6)

3.1 Estimates in the parametric model with random effects

Compared with the model with fixed effect the model with random gamma-distributed
individual multiplicative effects has one further parameter, namely α. An ML-estimate of
this parameter can be obtained by considering the profile-log-likelihood, i.e., the maximum
of the log-likelihood (3.6), for given values of α. The profile likelihood is obtained by
solving likelihood equations similar to the equations (2.9), where Eπ(Rij | Ni(0), Ni(Ti)))
is replaced by the expectations Eπ,α(κiRij | Ni(0), Ni(Ti))).

In the same way the Fisher information matrix, for a fixed value of α, is obtained from
a formula similar to (2.10) where the first and second moments are calculated for κiRij

instead of Rij.

3.2 Numerical approximations of expected times in state and their covariances

The last expression in (3.4) can be used to simulate an estimate of the expected value of
κiRij. Random vectors (t1, . . . , tv+1) that are uniformly distributed on the simplex

∑
ti = 1

are generated in the way suggested in section (2.4).
The random variable
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Γ(α + v)αα

Γ(α)(α +
∑

µiti)α+v
(3.7)

has the expectation Dv(µo, . . . , µv, T, α) and

tj
Γ(α + v + 1)αα

Γ(α)(α +
∑

µiti)α+v+1
(3.8)

has the expectation −∂Dv(µo, . . . , µv, T, α). Producing a large number of such estimates
we can approximate Epi,α(κiRij | Ni(0) = si, Ni(Ti) = si + vi) as the ratio between the
means of the estimates obtained from (3.7) and (3.8). In a similar way approximations of
the elements of the Fisher information matrix can be obtained.

4. Goodness-of-fit tests based on likelihood ratios

The suggested models are very simple and uses a low-dimensional parameter. It is thus
necessary to investigate the fit of the model. In the following discussion of the goodness-
of-fit tests we will assume that all values of Ti are the same, i.e. that all processes are
observed after an identical time lap, T .

We will derive a measure of deviance between the parametric model and the observed
data by comparing the parametric model with a crude model where we assume that the
final state of the process only depends on the initial state, i.e.

Pr(Ni(T ) = f | Ni(0) = s) = psf .

Let ns denote the number of processes that starts in state s, and nsf the number that
starts in state ends in state f . The log of the likelihood ratio for the parametric model
versus this crude model is

−2 ln(LR) =
∑

ln(Pr(Ni(T ) = fi | Ni(0) = si)−
∑

nsifi
ln(nsifi

/nsi
). (4.1)

Here the probabilities Pr(Ni(T ) = fi | Ni(0) = si) are calculated using (2.2) or (3.2),
depending on if a model with fixed or random effects are considered, with the estimated
parameter values. The deviance is often used to evaluate the fit of a simple model. In
regular cases it is asymptotically χ2-distributed if the null hypothesis holds . In this case
it is not clear that this is a good approximation and it is not clear how to calculate the
relevant degree of freedom. As a standard the degree of freedom used is the difference of
the dimension of the statistics that are used to calculate the likelihoods in the two models.
Here the crude model has, in principle, an infinite number of parameters.

An alternative way to find the distribution of the deviance, under the null hypothesis, is
to apply a (bootstrap) simulation technique. A number of values of n-dimensional vectors
(N1(T ), . . . , Nn(T )) are simulated using the observed values of Ni(0) and the estimated
values of the probabilities in the model. For each such simulation a value of a deviance is
calculated. This result in an empirical distribution of simulated deviances. The observed
deviance is then compared with this distribution.
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Figure 5.1. Relation between the mean number of new partners year 0-4, initial state
(si), and the number of new partners year 5, (fi − si)

5. An example analyzed

We will consider the following example. The observations come from a study of the sexual
behavior. In this study 801 males, have been asked for their number of new sexual partners
during the last 5 years. The starting values si are the number of new sexual partners year
0-4, and the final value fi is the number of new partners year 0-5. The births corresponds
to new partners and the model describes how the number of new sexual partners within
one year relates to the history of partners during the preceding 4 years. In this situation
all individuals are observed during one year, i.e, all values of Ti are equal, Ti = 1.

The data is illustrated in figure 5.1, which shows the relation between the the starting
value and the number of new partners the last year by plotting the means of the number
of new partners for all persons with the same initial number of partners.

This figure seems to indicate that fi − si = Ni(1)−Ni(0) grows with si = Ni(0).
In the following analysis we have not included the extreme observations with si = 60

and fi = 80. Thus 800 observations remain.

5.1 Estimates in the non-parametric model and the parametric model with fixed effects

The non-parametric estimates of the jump intensities are shown in figure 5.2. We only
show the estimates for j ≤ 12, since the non-parametric estimates behaves very unstable
for larger values of j. The oscillating behavior of the non-parametric estimates is due to
the fact that estimates of subsequent intensities are highly negatively correlated.

The estimates and the confidence intervals are summarized in table (5.1). A histogram
of 1000 bootstrapped estimated of the parameter δ is given in figure 5.1.

The estimates and confidence intervals are summarized in the table 5.1.
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Figure 5.2. Estimates of birth intensities for the parametric model (with fixed effects)
and the non-parametric model
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Figure 5.3. Histogram of 1000 bootstrapped estimates of δ
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Table 5.1
Estimates for parametric model with fixed effects and 95 % confidence intervals, based on

800 observations.

parameter estimate normation asymptotic profile likelihood Bootstrap
95 % ci 95 % ci 95 % ci

β 0.052 per year (0.032,0.072) (0.035, 0.073) (0.034, 0.070)
γ 0.27 per year (0.20,0.34) (0.23,0.31) (0.20,0.34)
δ 0.59 - (0.46,0.73) (0.46, 0.72) (0.46, 0.73)

Table 5.2
Estimates for parametric model with random factors and 95 % confidence intervals.

parameter estimate normation Bootstrap
95 % ci

β 0.053 per year (0.034, 0.077)
γ 0.26 per year (0.18,0.35)
δ 0.59 (0.39, 0.74)

5.2 Estimates in the parametric model with random factors

Compared to the model with fixed effects the model with gamma-distributed random
factors involves one extra parameter. In figure the profile likelihood for this parameter is
illustrated. The ML-estimate of α = 1.09. The profile likelihood gives the 95 % confidence
interval [0.62, 2.01].

In table 5.2 the estimates of the other parameters are given with confidence intervals
derived from parametric bootstrapping. As can be expected the confidence intervals are
somewhat broader than the confidence interval derived from the fixed model. However the
estimates does not differ much. This is illustrated by figure 5.2, which gives the estimated
jumps intensities from different states for different values of κ. The dotted line illustrates
the jump intensities estimated from the model with fixed effects. This is very close to the
estimates with κ = 1.

In figure 5.2 the bootstrapped estimates of δ are illustrated.

5.3 Deviances of the parametric models

We will compare the two parametric models with a crude model using simulations as
described above. The results are summarized in table 5.3.

From the table 5.3 it is clear that the observed deviance, when all observations are used,
is considerable larger than can be expected for the model with fixed effects. It obviously
indicates that the parameter estimates and their confidence intervals have to interpreted
with great care. However, the model with random effects seems to have a reasonable fit as
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Figure 5.4. Profile likelihood for the parameter, α, in the gamma-distribution of the
random factors
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Figure 5.6. Estimated jump intensities for individuals with different factor (solid lines)
and estimated jump intensities for the model with fixed effects (dotted line).

Table 5.3
Deviances for the two parametric models

observations deviance p-value mean of std of
(relative the basic model) estimated bootstrapped bootstrapped

from simulations deviances deviances
fixed effects 162.9 <0.01 114.5 10.7

random factor 128.7 ≈ 0.15 114.5 13.1
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measured by the deviance.
An analysis, based on residuals, which is not presented here indicates that the lack of

fit of the fixed effect model is not caused by a single or a few outlying observations.

5.4 Comparisons of statistics and their estimated expected values

A alternative way to evaluate the fit of a model is to study differences between observed
values of particularly interesting statistics and the value that could be expected if the model
was true. We will here use estimates from the analysis with all observations, i.e no potential
outliers are removed. Of course, the result depends on the test statistics used.

First we consider the number of jumps from different states. Table 5.4 gives both the
observed value and the expected value that can be calculated from the parametric model
(under the assumption that the estimated parameter values are the true values). It can be
observed that the two models yields very similar expected counts and seem to be in very
good agreement with the observed numbers.

A second statistic is the number of new partners (regardless of the number of previous
partners). Table 5.5 gives the observed counts and their estimated expected values. There
seems to be a rather large deviation between the observations and the estimates from the
model with fixed effects. However, the estimated number of new partners derived from
the random effect model seems to be closed to what is observed. The χ2–value for the
deviation is 1.82. This value correspond to the 0.40-percentile in a χ2-distribution with 2
degrees of freedom.

The difference between the fit of the models to these two statistics can possibly be
explained by the fact that the number of jumps from specific states depends on the mean
intensities over different individuals, which is the same in the two models, whereas the
number of jumps of different individuals also reflects the variation in the birth intensities
between individuals.
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Table 5.4
Number of jumps from states 0 till 20

state Observed No. of jumps from state Expected No. Expected No.
fixed effects random effects

0 26 26.2 26.2
1 25 28.8 27.6
2 22 25.8 25.0
3 23 17.3 17.7
4 21 12.9 13.4
5 8 11.0 11.3
6 6 5.5 6.4
7 5 5.6 6.0
8 4 3.7 4.2
9 6 4.4 4.5
10 2 5.0 4.7
11 2 2.7 2.9
12 0 2.4 2.6
13 2 2.4 2.5
14 2 1.0 1.3
15 2 1.1 1.3
16 2 0.5 0.7
17 5 3.2 2.8
18 3 2.5 2.2
19 1 1.2 1.3
20 3 4.5 3.8

Table 5.5
Observed and expected number of new partners

No of new partners Observed estimated estimated
fixed effects random effects

0 683 664.7 684.0
1 80 95.4 75.1
2 18 27.5 23.2
3 9 8.4 9.1
4 4 2.6 4.1

>4 6 1.4 4.7
total 800 800 800
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