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Abstract

It has been shown that testing association in a region with con-

�rmed linkage may increase the rate of false positives in family-based

studies. If unaccounted for, the expected similarity between family

members may be mistaken for association. Di�erent remedies have

been suggested, everything from using a robust variance estimator for

the general test statistic FBAT (Family Based Association Tests) to a

model-based approach where the linkage is modelled in the covariance

structure, the VCM (Variance Components Model). Most methods

for testing association in the presence of linkage have been developed

for continuous traits. FBAT is one of few methods appropriate for

discrete outcomes. In this article we describe a new test of association

in the presence of linkage for binary traits. We use a gamma random

e�ects model where association and linkage are modelled as �xed ef-

fects and random e�ects, respectively. We have compared the gamma

random e�ects model to an FBAT and and a GEE-based alternative,

in terms of their ability to pick up true signals and their associated

false positive rates.
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1 Background

Testing association in a region with con�rmed linkage may increase the rate
of false positives in family-based studies. In a linked region one expects simi-
larity between related individuals. If unaccounted for, this similarity may be
mistaken for association. Di�erent remedies have been suggested, everything
from using a robust variance estimator [1] for the general test statistic FBAT
(Family Based Association Tests) [2] to a model-based approach where the
linkage is modelled in the covariance structure [3] (VCM - Variance Compo-
nents Model). The VCM was developed for continuous traits, while FBAT
tests for association with both binary and continuous traits, but most meth-
ods for testing association in the presence of linkage have been developed
for continuous traits. It is important to �nd new, more powerful, tests of
association in the presence of linkage for binary traits.

We compare the program FBAT for binary traits to both the method de-
scribed in section 2.1 and also a GEE (Generalised Estimating Equation) [4]
approach. For the purpose of our comparisons we have used the simulated
GAW14 data (Section 2.3). We have compared the three methods ability to
pick up a true signal, as well as their rate of false positives.

2 Methods

We consider a random e�ects model for binary events which is similar in
spirit to the multivariate survival model in [5], which models association and
linkage as �xed e�ects and random e�ects respectively. We use a result for
random e�ects models for binary outcomes which has been described in [6].
It is shown that for gamma distributed random e�ects, the unconditional
distribution of the outcome using a log-log link can be written as a sum of
easily calculated terms. Analytical results are only achievable for a few other
random e�ects distributions, such as the beta distribution [6]. The random
e�ects model in [5] assigns one random e�ect for each of the two parental
allele, using the inheritance vector. The authors in [5] do not suggest a way
to deal with unknown inheritance vectors. For bi-allelic loci, few parents are
informative for transmission, leading to a missing data problem. We solve this
crudely by taking a weighted sum over all possible inheritance vectors. We
choose a simple mean for our weights, but note that more elaborate weights,
such as the reciprocal of the prior probability of the inheritance vector, are
possible. The method presented here works for all sizes of sibships, and may
also be easily adapted to extended pedigrees.
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2.1 A Gamma Random E�ects (GRE) model

Let (Yi1, Yi2, ..., YiJi
) be the binary trait vector for family i and let j denote

o�spring (j = 1, 2, ..., Ji). Let P (Yij|θmj
, θpj

) denote the conditional proba-
bility of trait, given the e�ect of the maternally and paternally transmitted
alleles. We allow for di�erent family sizes. We use a random e�ects model
with a complimentary log(-log) link function.

log(− log(P (Yij = 1|θmj
, θpj

))) = log(θmj
+ θpj

) + Xjβ . (1)

The maternal allele is denoted by mj (= 1, 2) and the paternal allele by pj

(= 3, 4). The θ's are gamma random e�ects with scale α/2 and shape λ. The
probability density function of θk is

fΘ(θk) =
λα/2

Γ(α/2)
θ

α/2−1
k exp(−α/2 · θk) ,

k = 1, 2, 3, 4.

The unconditional probability of a sibship's trait outcome is not directly
tractable. However, the probabilities for all possible ordered set of subsets
Yij = 1 for j ∈ T , where T is a subset of the indexes 1, 2, ..., Ji, can be written
as a product of matrixes and scalars (derivation in appendix A1).

π∗ =
4∏

k=1

(
λ

λ + B diag(X ′
jβ)a

)α/2

. (2)

B is a matrix of indicators, indicating all subsets of subscripts for Y = 0,
i.e. {∅}, {1}, {2}, {1, 2}, {3}, etc. The elements of matrix a, ajk, indicates
if allele k has been transmitted to o�spring j, j = 1, 2, .., Ji and k = 1, 2, 3, 4.
For example, if a sib inherits allele M maternally and allele m paternally
allele , then that sib contributes with the row (1, 0, 0, 1). It has been shown
[6] that the unconditional probability for all possible outcomes of Y can be
written,

π = A−1 π∗ . (3)

The matrix A indicates all subsets of T . In order to get the probability of the
observed Yij one only needs to pick a row in π. See Table 1 for an example
of matrices A and B for three sibs. It is seldom the case that the mode
of transmission is known. There are many possible remedies, but we have
chosen to take a simple mean over all possible inheritance vectors. Other
possibilities would be to weight by the reciprocal of the prior probability of
the inheritance vector.
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The likelihood for the observed data is

log L(β, α, λ) =
n∑

i=1

πi . (4)

2.2 FBAT and GEE

We compare the GRE with FBAT [2] and a GEE-based alternative [4]. For
FBAT we assume a linear allele-dose model, and for the GEE-based alter-
native we assume a linear allele-dose on the logit scale and an exchangeable
covariance structure.

2.3 The GAW14 simulated data

For details of the how the simulation was performed see http://www.gaworkshop.
org/data.htm.

All analyses were performed with knowledge of the data simulation process.
We chose to analyse the data with respect to trait A. Trait A is known to be
associated with haplotypes in the region D3. For the purpose of our compar-
ison we therefore chose to "purchase" markers in the D3 region (B05T4135-
B05T4142) as well as markers from the D2 region (B03T3048-B03T3067).
Markers in the D2 region are known to not be associated with trait A. Our
aim was to use regions D2 and D3 to gain some insight into the performance
of the di�erent methods, in terms of both power and validity.

The Aipotu population (one of four simulated populations) only consists
of nuclear families, although these are of di�erent sizes. For simplicity, we
chose to concentrate on the Aipotu population and to only include families
of maximum size six (ie two parents and four o�spring).

Power and validity were analysed using two two approaches. First, we merged
10 (out of 100) replicates, in order to get a realistic scenario. This provided
us with a total number of 481 independent nuclear families. Secondly, we
used a subset of the hundred replicates, each with approximately 48 families.
In either scenarios, there was no missing data and we did not simulate any.

We then selected the markers described above and analysed them separately.
The method we have described can, however, be easily extended to test
multiple markers jointly.
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3 Results

We analysed ten merged replicates in regions D2 and D3 and we were able to
identify interesting markers in both regions (Figure 1 and Figure 2). In region
D2, all three methods (FBAT, GEE and GRE) indicated marker B03T3056
as borderline signi�cant with a p-value of around 0.01 (Figure 1). The peak
was slightly less using FBAT. The result should, however, be adjusted for
multiple testing. In region D3, where a haplotype based association was
simulated, we were able to detect association with marker B05T4136. The
detected association was more signi�cant using GEE and GRE (p-value ≈
0.0001), and slightly less signi�cant using FBAT, see Figure 2.

4 Conclusions

In region D2, no association with trait A was simulated. Nevertheless all
three methods (FBAT,GEE and GEE) indicated marker B03T3056. Al-
though not signi�cant when correcting for multiple testing, a p-value of 0.01
might raise attention. This illustrates the importance of adjusting for multi-
ple testing when testing for association over an extended region. No overall
conclusion of which method is most valid can be drawn from Figure 1, out
of two reasons; (i) the results vary from marker to marker and (ii) we only
investigate a very limited example from which no general conclusions can be
made. The GRE seems at least comparable to both the FBAT and the GEE
approach.

In region D3, association with trait A was simulated on a haplotype level. We
still chose to test association on a marker level. Again, conclusions drawn
should be cautious, given the limited example. However, it seems in this
scenario that the GEE and the GRE are slightly better in detecting signi�cant
markers. There is of course a problem with power in testing association
on markers in a region where the association is generated by haplotypes.
However, this might be a real problem in most studies of complex traits
where single nucleotide markers are analysed.

We continued analysing the regions of interest using subsets of the replicates.
We analysed markers B03T3055, B03T3056 and B03T3057 in region D2,
and markers B05T4135, B05T4136, C05R0380 and B05T4138 in region D3.
However, due to the small number of families in each replicate, and due to the
relatively few number of replicates, results were weak and inconsistent. Each
replicate had around 48 families with a maximum of four children, giving a
very small power to detect association. Therefore, no conclusions could be
made out of the results.

The Gamma Random E�ects model presented here seems to work well, com-
pared to both GEE and FBAT. However, more rigid analysis of power and
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validity needs to be performed in order to con�rm these results. One prob-
lem with the GRE is computational time. It is time consuming to evaluate
and to maximize the likelihood as many terms need to be calculated for each
family. A major advantage is that the likelihood is tractable analytically.
Approximate methods are therefore not necessary.
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Appendix A1: Computation of π∗ in the GRE model.

P (Yij = 1,∀j ∈ T )

=
∫

θ4

∫
θ3

∫
θ2

∫
θ1

∏
j∈T

P (Yij = 1|θmj
, θpj

, Xj, β)·

·f(θ1)f(θ2)f(θ3)f(θ4)dθ1dθ2dθ3dθ4

= E

exp

−∑
j∈T

exp(Xjβ) · (θmj
+ θpj

)


 (5)

For simplicity of exposition, let θk = uk and let − exp(Xjβ) = cj. Then
equation (5) equals

E

exp


4∑

k=1

uk

∑
j∈T

cj · ajk


 =

4∏
k=1

E

exp

uk

∑
j∈T

cj · ajk


 (6)

Equation (6) is the product of four gamma distributed mgf's, and therefore
(6)

=
4∏

k=1

(
λ

λ +
∑

j∈T exp(X ′
jβ) · ajk

)α/2

(7)

The probability for all possible ordered set of subsets T can be written as a
product of matrixes and scalars.

π∗ =
4∏

k=1

(
λ

λ + B diag(X ′
jβ)a

)α/2

(8)
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