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INTRODUCTION 

 

Three-point designs are frequently used in phase II clinical studies to 

establish a dose-response relationship before proceeding to larger 

confirmatory studies. In cases with a binary outcome, a logistic regression 

model is often adopted. As these studies most often are of small or moderate 

size with li t t le prior knowledge about the effective dose-interval,  there is a 

substantial risk for an outcome with non-unique or infinite parameter 

estimates. 

 

Morgan’s book [1] discusses both sequential and fixed-point designs for 

estimation of a particular characteristic or the entire distribution of a dose 

tolerance threshold model for quantal response data. In a threshold model,  

each individual in the target population has a dose tolerance (threshold) to 

the exposure of a drug. If a subject (patient,  healthy volunteer or animal) is 

administered a dose above its threshold, i t  will  respond. Otherwise it  will  be 

a non-responder. If subjects are assumed to be randomly sampled from a 

logistic tolerance threshold distribution, the probability of responding when 

administered a dose x,  can be written    

         )(
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where µ  is the median (ED50) and β  represents the steepness of the dose-

response curve. Parameter estimates that are asymptotically unbiased, and 

asymptotic standard errors for these estimates, can be determined by the 

method of maximum likelihood through many available statistical computer 

packages. 

In small sample studies however, problems with infinite parameter estimates 

due to a complete or quasi-complete separation of the data may occur (see 

below or [2]).  These situations also cause problems when working with some 

statistical computer packages. There are certainly textbooks discussing this 

problem, e.g. [3],  but many modern textbooks on logistic regression do not 

mention it  at  all  [4].  A published example where this was not properly 

addressed is discussed in [5].  In simple studies it  is easily seen if there is a 
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complete or quasi-complete separation of the data leading to an infinite 

parameter estimate. However, in more complex models,  with several 

explanatory variables, i t  need not be obvious from inspection of the outcome 

whether some parameter estimate is infinite or not.  This paper will  discuss 

the problem and practical implications of infinite parameter estimates in a 

three-point univariate logistic regression. 

 

 

MAXIMUM LIKELIHOOD ANALYSIS 

 

With the notation, 

ni  = the number of subjects who are administered the dose ,   ix

iy  = the number of subjects responding to dose ,  ix

the log-likelihood derived from (1) is 

{ } constant),;(1log)(),( +−+−= ∑∑
i

ii
i

ii xPnxyL βµµββµ                              (2) 

The maximum likelihood estimator (  is determined by maximising (2).  

The second derivatives form the observed information matrix, here denoted 

)ˆ,ˆ βµ

),( βµJ .  We have 

 

( )βµ ˆ,ˆJ  = 

          ,       (3) 
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where .  )ˆ,ˆ;(ˆ βµii xPP =

The variance-covariance matrix of the maximum likelihood estimator (MLE) 

is estimated by the inverse  of the observed information matrix in 

the maximum likelihood point.  We will  use superscripts to denote the 

elements of J

)ˆ,ˆ(1 βµ−J

- 1 ,  e.g. j1 1  for its upper left  corner.  The expected Fisher 

information, i .e.  the expected value of J  over the possible outcomes of data, 

will  be denoted I(µ ,  β) .  
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CHOICE OF DESIGN POINTS 

 

Usually fixed-point designs divide the total number of subjects equally 

between all  dose levels.  The dose levels are ideally chosen symmetrically 

around the centre µ  of the tolerance distribution and with an equal distance 

between the dose levels.  See for example [6] or [1] for more details on design 

considerations for quantal response data. Consider now a three-point design, 

with 3n subjects equally divided between the three doses, .  The 

middle dose, x

321 xxx <<

2 ,  is assumed located in the centre µ  of the tolerance threshold 

distribution, and the other two doses, x1  and x3 ,  symmetrically around x2 ,  say 

at δ±2x .  This makes P2=1/2, and P3=1-P1 ,  and the expected Fisher 

information, ),( βµI  is diagonal,  thus µ̂  and  are approximately 

uncorrelated. 

β̂

          ),( βµI  =   (4) 
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Many different optimality criteria are found in the literature. Most criteria 

are based on the information matrix and aim at minimising elements or 

functions of the elements in the inverse information. To achieve a µ-optimal 

design, I1 1  should be minimised, or equivalent P1(1-P1)  maximised, thus the 

design points should be chosen close to µ .  An optimal design for estimating β  

should instead minimise I2 2 ,  that is maximise P1(1-P1)δ2 .  Using this 

optimality criteria,  the spacing δ  should be chosen so that δ =2.4β  or 

equivalent so that P1=1-P3=0.083. A widely used optimality criterion is D-

optimality, where the determinant of I  is maximised [7].  This is a design with 

a good balance between a low risk of a separation in data and providing an 

informative dose-response relation. Using the D-optimality criteria,  the 

design points are chosen so that P1=1-P3=0.136 or equivalently so that 

δ =1.85β.  
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DATA CONFIGURATIONS 

 

In a binary dose-response model (with a single dose or a dose vector),  some 

degenerate types of data configurations yield infinite and/or non-unique 

parameter estimates. Essentially following Albert and Anderson [2],  we 

characterise the sample outcomes as follows: 

 

1) Only one response type represented in data. 

2) A complete separation of responders from non-responders.   

2) A quasi-complete separation  of responders from non-responders.  

3) An overlap of the two response types .  

 

These authors [2] discuss the problem of existence, finiteness and uniqueness 

of maximum likelihood estimates in the case of several explanatory variables. 

A further discussion of how to interpret and handle infinite parameter 

estimates in a general logistic regression model is found in [8].  Next we 

describe what Albert and Anderson’s results imply in our case with only one 

explanatory variable, i .e.  the dose.  

 

 

Only One Response Type Represented in Data 

 

The first situation is when the outcome consists of only responders or only 

non-responders. The only information provided by data in this trivial case is 

that the design points were chosen outside the effective dose range for the 

specific drug under investigation. The experiment must be supplemented with 

more design points in the direction of the effective dose range.  
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A Complete Separation of Responders from Non-responders 

 

A complete separation means that there is a specific (but non-unique) dose 

level so that all  responders are found at higher doses than the non-responders 

(or vice versa).   

Thus,     

          )(max)0( iiiiiii
nyxyx <>>min .  

The probability is particularly high for obtaining such data when the dose-

response curve rises steeply from ≈0 to ≈1 somewhere between ( )iii nyx <max  

and ( 0min >ii yx ) .  I t  is easily verified that the maximum likelihood estimates 

are degenerated, being 

 

∞+=β̂ ,  and  

)0(minˆ)(max ><<< iiiiiii
yxnyx µ                           

 

 

 A Quasi-complete Separation of Responders from Non-responders  

 

A quasi-complete separation of responders from non-responders means that 

there is a unique dose level  in the design such that all  responders occur at 

,  and all  non-responders occur at dose levels  (or vice versa),  with 

both responders and non-responders at .  

*x
*xxi ≥

*xxi ≤

*x

In this situation, the highest probability for the observed data is obtained if 

the dose-response curve rises steeply at the particular dose .  Hence, the 

MLE in this case is 

*x

),()ˆ,ˆ( *x+∞=µβ .  
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An Overlap of the Two Response Types 

 

There is an overlap of the two response types if the smallest dose level with 

responders is smaller than the largest dose level with non-responders. 

Under the parameterisation with µ  and  β ,  a degenerate MLE will  occur in the 

extreme case when data suggest that there is no dose-response relation, i .e.  

.  In a three-point design, this means that the proportion of responders is 

the same for dose x

0ˆ =β

1  as for dose x3 .  In this case,  

0ˆ =β ,  and 

µ̂  is non-unique or infinite.  

Excluding this rare outcome, an overlap implies that the MLE  is 

unique and finite,  and can be determined from the likelihood equations.  

)ˆ,ˆ( βµ

  

 

Properties of the Maximum Likelihood Estimator Illustrated  

 

From a practical point of view, after having collected data from all  patients 

in the experiment, we would like to base our inference on standard methods 

no matter what the underlying risk was for a separation of responders from 

non-responders.  

If  data suggest that there is a separation of responders from non-responders, 

there is not much information to gain from the experiment so you would need 

to supplement your experiment in some way. However, in the case all  

parameter estimates exist and are finite,  you would like to determine the 

parameter estimates and make conclusions about the dose-response relation 

without taking into account the underlying risk of a separation of responders 

from non-responders.  
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Here we demonstrate that the asymptotic inference is valid as soon as  is 

finite.  We illustrate this in a three-point design with a somewhat larger 

spacing than in a D-optimal design, design points at quantiles 10%, 50% and 

90%, i .e.  we chose x

β̂

i  such that 

P1  = 1-P3  = 0.10 

P2  = ½  

This naturally represents an idealised situation, since in reality we do not 

know the position of the centre, nor the steepness. Placing the middle dose 

away from the centre would increase the risk of a complete or quasi-complete 

separation further stressing the importance of a good choice of design points.   

 

The exact distribution for the MLE ( ,  together with its observed 

information matrix 

)ˆ,ˆ µβ

( )βµ ˆ,ˆJ ,  was found by going through the  possible 

distinct outcomes in a three-point design for a binary response variable with 

n observations per dose level.   

( 31+n )

 

 

Results 

 

In a three-point design,  if  there are no responders at the lowest dose 

and no non-responders at the highest dose. The probability for this event is 

+∞=β̂

         ( ) nn PPP 31 )1(ˆ −≈∞+=β .         (5) 

The corresponding probability for  is negligible. −∞=β̂

In the present investigation this formula yields the probabilit ies 0.122, 0.015 

and 0.00003 for n=10, n=20 and n=50 observations per dose group 

respectively. 

In Figure 1 the exact distribution of  standardised by jββ −ˆ 2 2  is presented for 

n=10 and n=20. 
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Figure 1: Empirical distribution of the j22 -standardised error in  with 

n=10 (dot-dashed line) and 20 (short broken) observations per dose level.  A 

β̂

N ( , )0 1  is included for reference (solid line) 
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Table 1. Coverage probabilit ies for 22ˆ, jzαβ +∞−  intervals.  

 

n 97.5% CI 95% CI 90% CI 

10 0.9674 0.9592 0.8953 

20 0.9663 0.9596 0.9061 

50 0.9698 0.9530 0.8953 

 

 

The j2 2-standardised distribution curve of  follow a standard normal 

distribution quite well,  indicating that the asymptotic inference about  is 

adequate, as soon as  is finite.  In particular,  the median of  is close to 

the true β-value. Hence, if centrality is measured by the median, there is no 

substantial systematic error in the MLE. Furthermore, as seen in Table 1, the 

coverage probabilit ies for one-sided confidence intervals 

ββ −ˆ

β̂

β̂ β̂

)22jˆ, β( zα+−∞  
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based on a normal approximation are close to the nominal confidence levels 

for n=10, 20 and 50 even when  is substantial.  Similar results where 

found for a D-optimal design and for designs deviating in location and 

spacing from the D-optimal,  except that the probability for a degenerated 

MLE differed considerably. It  should however be noted that the distribution 

of  has no or li t t le probability mass in some intervals but takes 

large jumps in other points/intervals (see Figure 1).  As the location of these 

intervals is different for different n-values, this causes an irregular pattern in 

the coverage probabilit ies seen in Table 2.  

)ˆ( +∞=βP

22/)ˆ( jββ −

ˆ zαµ ±

∞<

 

 

Table 2. Coverage probabilit ies for 11
2/ j  intervals,  conditional on 

.  β̂

 

n 95% CI 90% CI 80% CI 

10 0.9364 0.8782 0.7847 

20 0.9474 0.8921 0.7920 

50 0.9496 0.8982 0.7972 
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Figure 2. Empirical distribution of the 11j -standardised error in µ̂  for the 

outcomes where  with n=10 (dotted line).  A +∞<β̂ N ( , )0 1  is included for 

reference (solid line).  
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 Figure 2 shows the 11j -standardised error in µ̂  for n=10, given that  is 

finite.  The figure il lustrates that the 

β̂

11j -standardised error in µ̂  follows a 

standard normal distribution fairly well even with only n=10 observations per 

design point.  For the case where n=20 observations per design point,  the 

distribution of the error is even closer to the standard normal distribution. 

This case has been omitted in Figure 2 to increase readability. When ,  

use of the observed information from Eq. 3 would indicate a confidence 

interval for µ  of length zero. However, in this case the likelihood is non-

regular,  having its maximum on the boundary of the parameter space, so the 

observed information in Eq. 3 is not justified and should not be used. The 

results from the exact calculations presented in Table 2 demonstrate that the 

conditional coverage probabilit ies are fairly close to the nominal level.  It  

must be stressed that these coverage probabilit ies are conditional on a finite 

,  indicating that as soon as we have an overlap of the two response types, 

asymptotic normality of 

+∞=β̂

β̂

µ̂  seems to be appropriate.  Qualitatively the same 

results have been established not only for a D-optimal design, but also for 
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designs deviating in location and spacing from the D-optimal, e.g. a design in 

[5] with an extremely large spacing yielding a finite  with only probability 

0.3. A partial explanation of this remarkable fact is that 

β̂

µ̂

ˆ

 and  are 

approximately uncorrelated (note that the expected fisher information in this 

case is diagonal,  see Eq. 4).   

β̂

 

 

DISCUSSION 

 

The overall  conclusion of this work is that three-point designs do not produce 

systematic errors in the distribution of the maximum likelihood estimator of 

the steepness parameter β ,  but if  the design-points are too widely spaced the 

probability of an infinite  is unreasonably high. If one succeeds in 

choosing the spacing according to a D-optimal design,  seems to be an 

effective estimator with a reasonably low probability of being infinite,  even 

with only 10 subjects per dose level.  However, from a practical point out 

view it  is difficult  to determine the doses D-optimally, since it  must be based 

on prior beliefs about the dose-response relationship.  

β̂

β

 

Prior beliefs are required also for a Bayesian analysis of data. Using a data 

augmentation prior (DAP) (see Ch. 13 in [4]) would be equivalent with 

adding some extra observations to the experiment. This would 

reduce/eliminate the risk for infinite or non-unique parameter estimates, but 

it  might then hide the lack of information in the data themselves.  

 

An important practical conclusion of the examples investigated is that once 

we have an outcome yielding a finite ,  asymptotic normality-based 

confidence intervals are justified for inference about µ given the finite  and 

with some extra care also for inference about β.   

β̂

β̂
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Therefore, the main problem is outcomes with infinite .  Most commonly 

used statistical computer packages provide warnings that we might have the 

case of a complete or quasi-complete separation, but some of them 

nevertheless return finite estimates for all  parameters in these situations. It  is 

also important when teaching logistic regression to users of these statistical 

tools,  to discuss the interpretation of a complete or quasi-complete separation 

of the data.   

β̂

In practice, what should be done with an experiment that gives an infinite ? 

First of all ,  i ts data indicate that the steepness is greater than expected in 

advance. The next step would either be to stop the trial here, or more likely, 

to continue the experiment by including more subjects and more design points 

in the trial.  Different sequential types of procedures have been suggested (see 

[1]).  

β̂

 

 

CONCLUSIONS 

 

It  is concluded that the main problem in three-point designs with a binary 

outcome is the risk of observing an infinite .  We need to take this risk into 

account when designing the experiment. A D-optimal design provides an 

informative dose-response relation and stil l  has a low risk of observing an 

infinite .  However, irrespectively of the design, once we have an outcome 

where all  parameter estimates exist and are finite,  asymptotic inference is 

remarkably adequate even in small-sample studies. 

β̂

β̂
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