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Abstract

It is generally accepted that rates of evolution often vary between lineages in a
phylogenetic tree, or, equivalently, that the molecular clock assumption is not
valid. The present paper is concerned with estimation methods for relative di-
vergence times without assuming a molecular clock, where inference is based on
DNA-sequences from the terminals of interest. Several methods, parametric and
non-parametric, have been proposed for this estimation problem. In the present
paper we show that consistent estimation of the divergence times is impossible,
for the class of evolutionary models considered, in the sense that no set of estima-
tors can surely converge to the true set of divergence times as the length of the
DNA-sequence increases. The paper also discusses why estimation of divergence
times could still be worthwhile, and what alternative types of data or model that
may allow consistent estimation.
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Introduction

The present paper is concerned with estimation of divergence times in phylogenetic
trees, where estimation is based on aligned DNA (or amino acid or protein) sequences
of species of interest. “Time” could here either be relative time, i.e. all divergence
times are relative to the unknown age of the root of the tree, or else real time. In
the latter case some fossil dating relating the relative times to calendar time must
also be available. Deriving divergence times estimates of a phylogenetic tree from
sequence data involve several consecutive steps. The first step is that of aligning the
sequences — a problem not treated in the present paper: all sequences are assumed
aligned without gaps. A second step often involves estimating a rooted tree topology,
sometimes also specifying the sequences of internal nodes, from the aligned terminal
sequences. This is done using some explicit or implicit (parametric or nonparametric)
assumption regarding the evolution of species and of evolution of sequences along a
species tree. The last step is then to convert this rooted phylogenetic tree into a tree
where the length unit of the edges are proportional to time making the tree ultrametric.
The present paper is mainly concerned with the last step, i.e. to study methods for
estimating the phylogenetic tree having edge-lengths proportional to time, from now
on called the time-tree. When fossil datings are available, the last step also includes
calibrating the divergence time estimates to calendar time.

Zuckerlandl and Pauling (1965) were the first to state the assumption of a molec-
ular clock (MC), i.e. that substitution rates remain constant for different lineages in
the tree, and also over time. A simple model for the evolution of sequences that obeys
the MC-assumption is the model of Jukes and Cantor (1969). This model assumes
that different sites in the genome evolve independently, that the per-site substitution
rate is constant (independent of time and the present nucleotide, and identical be-
tween different sites) and that all nucleotides are equally likely once a substitution
occurs. There are many more sophisticated models still obeying a molecular clock but
allowing for rate differences between sites (both random and systematic), different sub-
stitution rates for different nucleotides, and unequal substitution probabilities once a
mutation occurs. For example, Yang and Rannala (1997) work under a Bayesian setup
where they, beside having a general substitution model, independent and identically
distributed between sites, also model the speciation process. Felsenstein and Churchill
(1996) use a hidden Markov model approach to allow rates to vary between sites in
an unobserved fashion, whereas Rogers (2001) applies the general time reversible sub-
stitution model and allows the relative rate between sites to vary randomly according
to independent identically distributed random variables. All these extensions of the
simpler model of Jukes-Cantor are within the framework of a constant molecular clock
(MC) assumption.

Langley and Fitch (1974) consider a Jukes-Cantor type model but allowing the
clock-rate to differ between proteins. They assume that the tree topology is known
and that data consist of the number of substitutions along each edge of the tree for
the analysed proteins. For this model they derive maximum likelihood estimates for
the relative divergence times. In the same paper they also derive a test of the MC-



assumption which was rejected for data on vertebrate evolution of four proteins. The
MC-assumption has since then been tested on various types of data using many different
methods, and most of the time the MC-assumption has been rejected (e.g. Britten,
1986; Li, 1997; Muse, 2000, Britton et al., 2002).

The present paper is concerned with estimation methods for relative divergence
times without assuming the MC-assumption, meaning that the substitution rate is
allowed to vary over different lineages of the tree and perhaps also over time. To keep
things simple we illustrate our findings on a fairly simple model where the substitution
rate is constant, independent for different sites, and where the different nucleotides
are equally likely after substitution. When this is the case a commonly used branch-
length unit is the “expected number of substitutions" along the branches. A tree
measured in this length unit is from now on denoted the b-tree. Felsenstein (1981), for
example, does not assume a molecular clock but concentrates on estimating the b-tree.
A simplifying consequence of assuming a molecular clock is that the b-tree and the
time-tree coincide up to proportionality, which implies that estimating the time-tree is
equivalent to estimating the b-tree.

There are several general approaches for estimating time-trees without assuming
a molecular clock (see also Sanderson, 2002). One approach involves pruning taxa
that depart from a tree-wide mutation rate (e.g. Takezaki, Rhetsky and Nei, 1995).
Another one, the local molecular clock method, is to divide the tree into distinct parts
assuming a constant rate in each part (e.g. Rambaut and Bromham, 1998). Sanderson
(1997) adopts a non-parametric approach which aims at minimizing a certain quadratic
function of the rate changes between adjacent edges. Another parametric approach is to
use the Bayesian framework. By specifying models for species evolution, substitutions
and rate changes, as well as parameter priors, it is possible to obtain the (approximate)
posterior distribution of the time-tree and other parameters of interest by using Markov
chain Monte Carlo methods (e.g. Thorne, Kishino and Painter, 1998; Kishino, Thorne
and Bruno, 2001). A semi-parametric approach has been suggested by Sanderson
(2002) in which he penalizes a model likelihood according to how much the rates change
over the tree. Most methods adopt several simplifying assumptions, for example that
the rooted tree topology is known, that rates do not change over sites and sometimes
that the occurred number of substitutions along internal edges are observed.

Methods

Model and notation

Let X be the k£ x n matrix of aligned sequences of length n from %k terminals. Let 7
denote a rooted binary tree topology of the k terminals which hence has 2k — 2 edges.

Further, let t™ = (¢{7, 47, ... #{7 ) denote the vector of relative time durations of
the edges of the tree, let (™ denote the corresponding vector of relative substitution
rates, and define b™ by b™ = r™ . @ = (7 0 45y the vector of

expected number of substitutions. The vector t(™ of relative time durations is normed
by defining the aggregated time from the root to the terminals (leaves) to equal 1.



The labeling of the edges depend on the specific topology 7 which is shown explicitly.
From now on we will let the time-tree be specified by (7,t(™), the topology and the
time durations of the edges, and the b-tree by (7,b(")), the topology and the expected
number of substitutions along the branches. Neither of these trees are ever observed.
Even if we were observing the evolution continuously over a set of sites, the number of
substitutions on the observed set of sites that occurred along the different edges would
make up a randomly perturbed version of the b-tree. The different trees are illustrated
in Figure 1 where the last tree is denoted ‘Observed tree’.

Time—tree Observed tree

2

Figure 1: The three types of trees. The time-tree, which is ultrametric, is a result of
the speciation process. The b-tree has time multiplied by the substitution rates in each
lineage and is no longer ultrametric. The observed tree is a random perturbation of
the b-tree where the number of substitutions y; is a random outcome having b; as its
mean.

We illustrate our analysis with the model of Thorne, Kishino and Painter (1998)
for species evolution (the time-tree) and variation of substitution rates over the edges.
For sequence evolution on the time-tree, also given the substitution rates, we use the
Jukes-Cantor model in our illustration. More specifically, the evolution of species, i.e.
the time-tree, is modelled by a binary-splitting branching process with constant split-
ting rate, which is evolved up until the time just before the first splitting-time resulting
in one more terminal than in the data set of interest. In Figure 1 for example, each
branch splits into two at constant rate and independently between branches as time
evolves, i.e. as one moves downward in the time-tree. In this particular tree only one
split occurred. Given the time-tree the substitution rates vary between edges according
to a Markov model as follows. The logarithm of the rate r, of a daughter edge of length
tq with mother edge having rate r,, and time duration ¢,, is assumed to be normally
distributed with mean equal to the logarithm of r,, and variance v(t,, + t4)/2. For
example, the logarithm of the rate r3 in Figure 1 is drawn from a normal distribu-
tion with mean log(ry) and variance v(ts + t3)/2. Daughter edges have independent



rates conditional on the mother rate. Additional to this, the two rates for the edges
stemming from the root have to be defined. Assume that one of them is exponentially
distributed, with mean equal to some plausible number (e.g. 0.01 substitutions per site
per unit time) and the other lognormal as for the remaining edges, but now relating
to the sister edge. Finally, given the time-tree and the substitution rates of all edges,
substitutions are modelled using the Jukes-Cantor model which means that substitu-
tions occur randomly, independent and identically distributed between sites, with a
constant mean rate which is independent of the present nucleotide, and all remaining
nucleotides are equally likely once a substitution has occurred. Since sites as well as
nucleotides are interchangeable under this model it is sufficient to keep track of the
total number of substitutions along each edge. Further, given the time duration ¢ of an
edge and its per-site substitution rate r, the total number of substitutions along the
edge will be an outcome of a Poisson random variable with mean nrt (n is the sequence
length).

This model for speciation, substitution-rate evolution and sequence evolution only
has one parameter v > 0, a measure of how correlated the substitution rates are: the
smaller v the more correlated are the substitution rates. The case v = 0 is special.
Then all variances are 0 implying that all rates will be identical. The case v = 0 is
hence equivalent to saying that the MC-assumption is fulfilled. That there is only one
parameter is true because k, the number of terminals, is given and the time from the
root to the terminals is defined to equal unity.

Our results in the next section apply to more general models of species evolution,
evolution of substitution rates over edges and evolution of nucleotide sequences. In
general 6 could be a vector of parameters for the model of species evolution and the
model for sequence evolution (6 could for example contain parameters specifying the
substitution rate matrix, variation between sites and so forth). Further, n can denote
the parameters of the model of the evolution of substitution rates over the time-tree.
The crucial assumption for the class of models considered in the paper is that the same
evolution of (relative) substitution rates apply to the whole sequence meaning that
a high substitution rate at a given lineage is reflected in high substitution rate over
the whole genome in that lineage. The absolute substitution rates may however vary
randomly and/or systematically over the genome but this variation should be the same
over the whole phylogenetic tree.

For the model specified above there is no parameter for the species evolution nor for
the evolution of sequences given the substitution rates, but the model of substitution
rate evolution has one parameter v. We hence have § = () (no parameter) and n = v
in our specific example, but for other models both 6 and 7 can be multi-dimensional.

Probability distribution and likelihood

We want to make inference about the time-tree implying that we should study the
the probability distribution of the terminal sequences X as a function of the rooted
tree topology, time-durations and model parameters. This distribution can, at least
in principle, be obtained by integrating over all possible substitution rates r(” and



summing over all possible sequences XI(T) of the internal nodes including the root. If
f(+) denotes a generic probability distribution we have:

FX Gt 0m) = [ X0 5 n6®), 0,
= /f(r(T) ; T’ t(T)7 97 n)f(X ; I'(T)’T’ t(T)7 97 n)dr(T)
_ /f(r(T) @ ) A ™t g)dr™). (1)

In the last row of (1) we have removed @ in the distribution of r™ and 7 in the
distribution of X because they don’t affect the distributions. More importantly, the
distribution of X, given the topology 7 and parameter #, depends only on r(” and
t(") through their product r™ - t(”) = b("), the expected number of substitutions along
the different branches. This distribution is in turn obtained by summing over possible
values of the extended data set also containing internal node sequences:

f(X T r(T) : t(T)79) = Z f(X7 XI(T) T r(T) ' t(T)79> (2)

()
Xy

In Figure 1 for example, XI(T) would be the (unknown) sequences of the root and the
branching point that splits into terminal 2 and 3. The observed sequences X are for
the terminals 1, 2 and 3.

For the specific model defined in the previous section in which n = v, the distribu-
tion of the rates, f(r(™) ; 7,t("), v), splits up into a product, one factor for each rate TZ(T),
as specified by the Markov model. With the exception of the edges stemming from the
root, the logarithms of observed edge-rates are normally distributed with mean equal
to the logarithm of the mother rate and variance equal to v times the average of the
mother and daughter edge-times.

For our simple model (with § = (), the summands on the right hand side of (2) can
also be written explicitly. Let b\ = r”#” denote the expected number of substitu-
tions per site along branch ¢. Then the probability of having the same nucleotide in

both ends of this edge at a given site equals p(bzm) =(1+ 36_31757)/4)/4 (this is shown
by conditioning on the number of substitutions). Because of independence between
sites, and between edges given the branch lengths b(™ (= r(") - t(")) it follows that

2% —2 .

f(X7 XI(T) T r(T) ’ t(T)) X f(m17 ceey Mok—25 T, b(T)) = H p(bET))mz (1 _p(bET))) ’
=1

where m; is the observed number of sites at which edge 7 have the same nucleotide in
both ends of the edge, and n —m; is the number of sites where the nucleotides differ. In
the middle expression we have left out some combinatorial terms specifying how many
nucleotide combinations that allow a given site to have the same/different nucleotide at
the end of the edges why we use “o”; denoting “proportional to”, rather than equality.

The likelihood function for the data is simply the probability distribution but viewed
as a function of the parameters rather than of the data:

L(m,t7,0,m) = f(X ; 7,£7,0,7). (3)

6



Table 1
Substitution rates used in simulation study

Rate Distribution Numerical value
r 11~ Exp(100) 0.0100
ro  log(ra) ~ N(log(ry), v(ty +t2)/2) 0.0098
ry  log(rs) ~ N(log(rs), v(ts +t3)/2) 0.0120
ry  log(ry) ~ N(log(re), v(te +t4)/2) 0.0108

Note — The t;’s are taken from the time-tree of Figure 2, and v = 0.01.

For example, the maximum likelihood estimates (7,t(7), 0, n) is the set of parameter
values that maximize the likelihood function. In our specific model we would hence
estimate the topology, time-tree and v by numerically maximizing L(7,t(”,v) with
respect to 7, t(7 and v.

In the simpler case, treated in the simulation study, where the actual number of
substitutions in each site along each edge is observed, the probability distribution
becomes simpler. With this more detailed data we also observe multiple substitutions.
A given site will have the same nucleotide in both ends of an edge if there were no
substitutions, but also if there were at least two substitutions and if the last substitution
was to the original nucleotide. With this more detailed data and our specific model,
the number of substitutions from different sites can be aggregated without loss of
information, so if we let vy, ..., yox_o denote the total number of substitutions along
the different edges the probability distribution is given by

2k—2 i p— Tt 2k—2 \yi ,—nb;
fyr, - yar—2 ; T,r(T)-t(T)): H M: M’
=1 Yi i=1 Yi

a product of Poisson probabilities. The likelihood for this more detailed data is
L(r, D v) = [ £ 7,8, 0) f(y1, ... yor—a 5 7,0 - t)dr(™),

Simulation study

Maximum likelihood estimates for the model described above were derived numerically
for a given rooted 3-taxon tree. A rooted 3-taxon tree was chosen in order to keep
numerical problems to a minimum. The internal node was chosen to have equal time-
length (=0.5) to the root as to the terminals (see Figure 2). Substitution edge-rates
were generated once according to the model of Thorne, Kishino and Painter (1998)
with v = 0.01 (however, since time is only given in relative terms the substitution rate
r1 was set to equal 0.01 rather being generated from the exponential distribution). All
rates and their distributions are given in Table 1.

The resulting b-tree is shown in Figure 2. ‘Data’ was generated for three different
sequence lengths: n = 1000, n = 10000, and n = 100000. For each n the data
(Y1, ---, y4), the total number of substitutions along each edge, was simply set to equal
the corresponding expected values, rounded to the nearest integer. So for example edge



2, with time length ¢, = 0.5 and substitution rate r, = 0.0098, will for n = 10000 have
Y2 = nby = nraty = 49 observed substitutions (within the 10000 sites) as input data.

Time—tree b—tree

b, =001 b, =0.0049

b, =0.0054

1

b,=0.0056 3
2

Figure 2: The time-tree and b-tree used in the simulation study. The substitution rates
are taken from Table 1. For example, by = roty = 0.0098 x 0.5 = 0.0049. The changes
between the time-tree and the b-tree are exagerated in the figure.

To simplify inference the rooted tree topology 7 and the variance parameter v = 0.01
in the rate variation model, are assumed known (7 and v are hence omitted in the
notation). Further, as mentioned in the previous section we assume that data consists
of observing the actual number of substitutions that have occurred along each edge,
also counting multiple substitutions. Because 7 and v are assumed known and the
time from the root to the leaves is defined to equal 1, there is only one remaining
parameter: the time ¢, from the root to the internal node. This is true since t; = 1
and t3 = 1 — t5 = t4 (see Figure 2). The likelihood in (3) hence only depends on
the parameter ¢t why we drop the index and write L(t). For the different sequence
lengths n, L(t) was computed for t = 0.01, 0.02,..., 0.99. In each such grid point ¢
the likelihood was computed numerically by Monte Carlo simulation. This was done by
generating 10 000 independent rate vectors r = (rq,...,ry) according to the model and
given the time-tree, and for each such vector the probability function f(yy,...,y4; r-t)
was computed for the observed data (we associate t = to with t = (1,¢,1 —¢,1 — t)).
Taking the mean of these probability functions gives a good approximation of

L(t) = frwit) = [ Fneas - 0)f( 5 t)dr.

The (approximate) ML-estimate is then defined as the grid-point having highest like-
lihood. Simulations and figures were obtained using Matlab version 6.



Results

The main result of the present paper is that relative divergence times cannot be esti-
mated consistently with increasing sequence lengths when the MC-assumption is not
valid. This means that, even if the adopted model describes reality perfectly, one cannot
find the relative divergence times with arbitrary high precision by collecting sufficiently
long DNA sequences from the terminals of interest. This negative conclusion is true
whatever estimator is used, non-parametric, likelihood based or other.

The conclusion follows from the observation already mentioned in the Methods
section; the fact that data only affect the time and rate vectors t(” and r(” through
their product vector b(™ = r(" . t("). As a consequence, only b{”) can be estimated
consistently, and not t(™ and r(”) separately. This is most easily seen from Equation
(1) where it was shown that

L(T,t(T),Q,ﬁ) = f(X; T,t(T),Q,ﬁ) = /f(r(T) : T,t(T),n)f(X; T, r(™ -t(T),Q)dr(T).

As more and more data (i.e. longer sequences) is collected f(X; 7,r(™ -t #) becomes
more and more peaked around f(X; 7, b, 0), where b is the maximum likelihood esti-
mator for b which also approaches the true parameter value. From this it follows that,
as n gets large,

L, 67, 0,9) = fun (0D /60 760 ) (X ;5 7,b7),6), (4)

where the first function on the right hand side, as indicated by the sub-index, is the
probability density for r(™ evaluated in b™ /t™ = ¢\ b /1) ). As a
function of t(”) the second factor on the right hand side is constant and is therefore
irrelevant for inference on t(”). The first factor does not get more and more peaked as
longer sequences are collected which implies that the information about the substitution
rates r(”) does not tend to infinity. It will have a maximal value, but the density value of
other points r are comparable in size and their relation is independent of the sequence
length n (see Figure 3 for an illustration from the simulation study).

A more intuitive explanation to why the divergence times cannot be estimated
consistently is that the 2k — 2 substitution rates are generated only once since the
substitution rate of a specific edge is the substitution rate for every site. Consistency, on
the other hand, relies on the fact that more and more random quantities are observed,
and that the average of these many random quantities becomes less and less random due
to the law of large numbers. For instance, the average number of substitutions among
the different sites, along an edge having substitution rate » and time duration ¢ will
tend to b = rt eventhough each such, per-site, number of substitutions is an outcome
of a Poisson random variable with mean b. Consequently the parameter b(") = r(7).t(")
is possible to estimate consistently (see Figure 4 for an illustration). This means that
the b-tree can be estimated consistently by collecting longer and longer sequences.
However, given the b-tree, data has no additional information about the time-tree, and
the b-tree does not allow the time-tree to be estimated without uncertainty.



The conclusion that divergence times cannot be estimated consistently holds true
also if a Bayesian viewpoint is adopted. In the Bayesian framework this would be
formulated by saying that the posterior distribution of the divergence times does not
converge to a point mass at the true divergence times, as longer and longer sequences
are collected. In the Bayesian framework a prior distribution W(T,t(T),e,T]) for the
parameters has to be specified additional to the evolutionary model. The knowledge
about the parameters, after the data X has been collected, is then expressed in the
posterior distribution 7(7,t(™, 6, | X). The relation between the posterior distribution
and prior distribution and likelihood satisfies

71-(7—7 t(T)7 97 ?7| X) X ﬂ-(T7 t(T)7 97 n)L(T7 t(T)7 97 7])' (5)

Because the likelihood will not get more and more peaked around the true divergence
times it hence follows that nor will the posterior distribution. A consequence from this
is that the choice of prior distribution will have a big impact irrespective of how long
sequences are collected. This is in contrast to the usual situation where the choice of
prior becomes less important as more data is collected.

Simulation results

In Figure 3 we show likelihood plots for ¢ = ¢, for the 3-taxon example presented
earlier, for sequence lengths equal to n = 1000, n = 10000 and n = 100000. We
have also plotted the likelihood for n = oo where we used equation (4) which is an
equality in the limit. Because the first three figures are obtained using Monte Carlo
simulations they are plotted using dashed lines as opposed to the exact likelihood of
the last plot. In the figure it is seen that, as the sequence length n increases, the
likelihood gets more peaked to start off but that this concentration then stops. Even
for n = oo the likelihood is not negligeble for values of ¢ in the range (0.42, 0.52) say —
recall that the true ¢ equals 0.5. This illustrates that the divergence time ¢, = ¢ cannot
be estimated consistently. The maximum likelihood estimate is ¢ ~ 0.47 for all data
sets (i.e. sequence lengths). Note that this value differs from the true value t, = 0.5.
The reason for this difference is that, by chance, the corresponding substitution rate
ro = 0.0098 was relatively small compared to the other substitution rates. This makes
the corresponding branch length by = roty = 0.0049 relatively smaller (compare the
edges in the time-tree and the b-tree in Figure 2). And, having a small branch length
b implies that the estimated ¢-value will tend to be smaller than its true value.

As a comparison we also show likelihood plots for the corresponding branch length
b = by for the same set of sequence lengths (see Figure 4). If these plots are compared
with the plots of L(¢) in Figure 3 it is seen that L(b) concentrates at a higher rate as
n increases, and also that, in the limit as n tends to infinity, all mass concentrates at
the true value by = 0.0049. This illustrates that the branch lenghts b; can be estimated
consistently whereas the relative times ¢; cannot.

We stress that the substitution rates (rq,...,74) are only generated once from the
model. If a new set of substitution rates were generated we would get a different b-tree.
The likelihood for ¢t = ¢, would then look somewhat different, but it would still have
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a) L(t), n=1000 b) L(t), n=10 000
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Figure 3: Likelihood plots of ¢ for the simulation example, for different values of the
sequence lenght n. The first three plots are obtained using Monte Carlo simulations
and the last plot is plotted with the limiting likelihood. It is seen that information
about the relative time ¢ increases with n but the amount of information is limited
making consistent estimation possible.

nonnegligible likelihood values for a range of t-values as the sequence lenght n grew.
The likelihood for b = by, on the other hand, would just like before tend to a point
mass, but now around the new true value of by = roty = 0.5r5.

The simulation example contains several unrealistic simplifications. First, the evo-
lutionary model is very simple with the same substitution rate for each site and Jukes
Cantor type substitution model. However, the same qualitative result would still hold
if a more general substitution rate model would be used, and also if the magnitude of
the substitution rates varied over the sequence in a systematic and/or random way. A
crucial assumption for our result to remain true in the latter case is that the (relative)
evolution of the substitution rates over the tree is the same for different sites. When
this assumption fails we are in a different class of models which are discussed briefly in
the next section. Another simplification in the example is that we assume that the tree
topology is known, that » = 0.01 is known, and that we observe the actual occurred
number of substitutions (counting also multiple substitutions) along each edge of the
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a) L(b), n=1000 b) L(b), n=10 000

0 0.005 0.01 0 0.005 0.01
b b
¢) L(b), n=100 000 d) L(b), n=infinity
0 0.005 0.01 0 0.005 0.01
b b

Figure 4: Likelihood plots of b for the simulation example, for different values of the
sequence lenght n. The amount of information increases to infinity with n making
consistent estimation possible.

tree. Even with the simple model treated in the example this is not very realistic, but
by assuming this data rather than sequence data makes inference more precise, so the
likelihood for ¢ based on sequence data should be even less peaked. Finally, in the
example we only consider a rooted tree for three terminals. The reason for this very
small example is to keep numerical problems to a minimum. For more realistically sized
examples it is a difficult numerical problem to obtain the likelihood function or even
an approximation of it, but this problem is outside the scope of the present article.

Discussion

In the previous section it was shown that it is impossible to estimate the relative diver-
gence times of a phylogenetic tree consistently, by taking longer and longer sequences,
without assuming the molecular clock assumption. Although difficulties in estimating
divergence times when substitution rates vary over the phylogenetic tree have been re-
ported previously (e.g. Sanderson, personal communication, and Thorne and Kishino,
2002) this result has not been discovered previously. Since consistency is one of the

12



most important properties when making parameter inference, a relevant question is
if estimation is completely useless in the situation treated. The answer to this ques-
tion is no — there is information about the divegence times in the data, although the
amount of information is limited even as the sequence length increases (see Figure 3).
This implies that the divergence times are not unidentifiable; some sets of divergence
times are more likely than others, and maximum likelihood estimates exists and are
unique (see for example Rannala, 2002, for a discussion on unidentifiable parameters
in overparametrised models). How the maximum likelihood (ML) estimate of a specific
edge time-length in a phylogenetic tree relates to the true time-length depends on the
substitution rates of the edge and the surrounding edges; typically a small substitution
rate of an edge implies that the ML-estimate of the time-length of this edge is smaller
than its true time-length (cf. the simulation study). However, because a substitution
rate can either be large or small, there is no systematic bias in the estimators for the di-
vergence times. This means that the divergence times can be estimated in an unbiased
way albeit not consistently.

Divergence times can of course be estimated in several parametric or non-parametric
(e.g. parsominy) ways. If one knows that the model is correct then ML-estimation is
often the preferred method. Except for the case with very small trees and simple evolu-
tionary models ML-estimates can be practically impossible to derive due to numerical
problems; an issue not treated in the present paper. In such situations other estimators
may be preferred. Another reason why other estimators can be preferred is if they are
more robust in the sense that they are less sensitive to model assumptions. Unfortu-
nately it follows from the paper that no other estimator for relative divergence times can
be consistent either. When choosing estimator robustness and numerical tractability
as well as statistical properties such as approximate unbiasedness and small standard
deviation should be considered.

In the Bayesian framework the posterior distribution reflects the uncertainty of
the divergence times. Given that the prior distribution is correct — and its impact
is not negligible even when long sequences are collected! — the posterior distribution
summarizes the information about the divergence times correctly. However, as pointed
out before, the distribution does not get more and more peaked, as one would hope,
when longer sequences are collected.

That data contains information about the divergence times also implies that the
molecular clock (MC) assumption can be tested, and the power of this test can be made
arbitrary powerful by collecting sufficiently long sequences (see Langley and Fitch, 1974
and other references mentioned in the introduction for tests on the MC-assumption).
For most sets of data the MC assumption is rejected meaning that the time-tree is not
proportional to the b-tree.

Having concluded that relative divergence times cannot be estimated consistently,
under the type of models and data treated in the present paper, makes it relevant
to ask under what alternative data sets and/or model assumptions divergence times
indeed can be estimated consistently. If we first look at other, more informative, types
of data, it is clear that precision increases the more fossil datings that are available.
However, it seems as if precise fossil datings are necessary for all nodes where substitu-
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tion rates change in the tree in order to estimate divergence times consistently, and if
the substitution rate is believed to change in more or less all nodes this does not seem
like realistic data. Further, fossil datings are usually not very precise in its location in
a tree nor the actual dating. For the type of model considered here we hence have no
obvious suggestion of complementary data to make consistent estimation possible, but
more work is needed in this area.

If we instead look at alternative models for which consistent estimation is feasible
we first recall that the reason for not obtaining consistency was that the (random)
substitution rates were only generated once for each edge in the tree. If the variation
of substitution rates over lineages is allowed to differ for different groups of sites, for
example between genes, then this should make consistent estimation of the divergence
times feasible. For example, if the variation of substitution rates for a specific gene
is modelled as in the present model, but assuming that substitution rate between
different genes are completely independent, then it is possible to estimate divergence
times consistently by collecting DNA sequences from more and more genes. The result
should hold true even if some small correlation between substitution rates of different
genes is allowed, with the effect that a high substitution rate for one gene of a specific
lineage make high substitution rates for other genes on the same lineage somewhat
more likely. To model such correlation can be done in different ways, see for example
Thorne and Kishino (2002), and how correlated substitution rates can be, still allowing
consistent estimation, remains an open problem.
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