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Abstract

In non-life insurance, credibility estimates are appropriate for rating
factors with many levels, where some have insufficient data. Tradi-
tional credibility theory models such multi-level factors as random ef-
fects, but does not treat the situation where there are also ordinary
rating factors (fixed effects). Nelder and Verrall (1997) suggested using
generalized linear models (GLMs) with both fixed and random effects
and showed that in the absence of fixed effects, their result reduces to
the classical credibility estimate. In this paper we further explore the
relation between credibility and GLMs and derive MSE-based predic-
tors of the random effects, by giving an extension of Jewell’s theorem
to the setting with both types of rating factors (fixed and random). We
also derive sums-of-squares variance estimators in the spirit of tradi-
tional credibility theory and present an application to car model rating.
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E-mail: esbjorn.ohlsson@math.su.se
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1 Introduction

The most common rating technique in non-life insurance is to estimate

the price relativities of a number of rating factors in a multiplicative

model. Usually, these rating factors are either categorical with a few

levels (e.g. sex) or continuous (e.g. age). In the latter case it is cus-

tomary to discretize by forming groups of adjacent values. However,

a problem arises when you have categorical rating factors with many

levels without an inherent ordering, such as car model or geographical

region. The problem is that there is no natural way of forming groups

with sufficient data, as you do with ordered variables like age or annual

mileage. In this paper we use the term multi-level factors for rating

factors with many levels where there is little data for some levels, while

there might be much data for others — for instance there is a num-

ber of very common car models but also some very uncommon ones.

Another example of a multi-level factor is company — the common

situation in experience rating in the commercial lines where the rating

of different companies is based to a certain extent on the individual

claims experience.

Rating of a multi-level factor is a standard context for employing cred-

ibility theory, where the premium for a certain level takes into consid-

eration the amount of data for that level. However, in most cases you

have ordinary rating factors, like age and sex, alongside with the multi-

level factors, but traditional credibility theory only treats the analysis

of multi-level factors by themselves.

In recent years, it has become standard practice in non-life insurance to

use generalized linear models (GLMs) for the analysis of rating factors.

Nelder and Verrall (1997) show that credibility-like properties can be

achieved by introducing multi-level factors as random effects in GLMs

(although they do not use the term multi-level factor). For estimation

in these random effects models, they use the theory of Lee and Nelder
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(1996), where hierarchical likelihood is applied to develop hierarchical

generalized linear models, HGLM. Nelder and Verrall show that for

a single multi-level factor in the absence of other rating factors, the

traditional credibility estimator of Bühlmann is recovered.

In this paper we explore further the connection between credibility

theory and random effects in GLMs. In traditional credibility theory

random effects are estimated by means of minimum mean square error

(MSE) predictors rather than the likelihood-based approach used in

HGLMs. We study the possibility of finding MSE-based predictors for

the GLMs most used in actuarial practice: multiplicative models with

variance function of the power type. We suggest that understanding

the random effects models from the actuarial point of view of credibility

may enhance the use of these important models by actuaries.

Our main result is an extension of the famous theorem by Jewell (1974)

— in it’s generalized, weighted form given by Kaas et al. (1997) — to

the situation where one has other rating factors alongside with the

multi-level factor. The resulting predictor of the random “risk param-

eter” associated with the multi-level factor specializes to the classical

Bühlmann-Straub estimator in the case with no other rating factors

than just a single multi-level factor. We will further see that for the

cases studied here, the unbiased predictors are close to the HGLM

predictors, and in the Poisson case they actually coincide.

Besides the dispersion parameter φ of standard GLMs, the random

effects model introduces an additional variance-related parameter α

that has to be estimated. Lee and Nelder suggests a likelihood-based

approach, whereas in credibility theory, unbiased estimators of variance

parameters based on sums of squares are standard, see e.g. Goovaerts

and Hoogstad (1987). We show that for the random effects GLMs we

consider, one can find unbiased estimators of variance parameters that

generalizes the standard sums of squares estimators. This leads to an

alternative estimator of α, closely related to the estimators of variance
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parameters in classical credibility.

Here is an outline of the paper. In Section 2 we first review the im-

portant Tweedie models which include the most common models used

in actuarial practice. We then prove our extension of Jewell’s theorem.

In Section 3 we derive estimators of variance parameters. In Section 4,

finally, we present an application of our method to car insurance.
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2 Extension of Jewell’s theorem

In non-life insurance pricing, one studies the effect of rating factors

on some key ratio Yi, typically the risk premium, claims frequency

or average claim amount. Nowadays many companies use generalized

linear models (GLMs) in this process. By far, the most commonly used

models are GLMs with a variance function of the form v(µ) = µp for

some p. We start out by repeating some basic facts about these so called

Tweedie models, before deriving our extension of Jewell’s theorem.

2.1 Tweedie models

The rating factors divide the portfolio into tariff cells, and the key ratio

Yi is computed over the policies in cell i. In GLMs, Yi is assumed to

have a frequency function of the form

fYi
(yi; θi, φ) = exp

{
yiθi − b(θi)

φ/wi

+ c(yi, φ, wi)

}
(2.1)

where φ is the dispersion parameter and wi is the known exposure

weight (the denominator of the key ratio). The function b(θ) is twice

differentiable with a unique inverse for the first derivative b′(θ). With

φ = 1 and all wi = 1, (2.1) would be the exponential family with

canonical parameter considered by Jewell (1974). Jørgensen (1997)

uses the name reproductive exponential dispersion models for (2.1).

From standard GLM theory we know that µi
.
= E(Yi) = b′(θi). If we

further denote the inverse of b′ by h(µ), we can express the variance as

Var(Yi) = φ b′′(θi)/wi = φ v(µi)/wi (2.2)

where v(µ) = b′′(h(µ)) is called the variance function. We will only

consider a subclass of the reproductive exponential dispersion models

here, viz. the ones that have

v(µ) = µp (2.3)



2.1 Tweedie models 7

In the terminology of Jørgensen, these are called Tweedie models. In the

rest of this section we recapitulate some of their theory – for proofs, see

Jørgensen (1997). The Tweedie models are defined only for p outside

the interval 0 < p < 1. Renshaw (1994) concludes that models with

p ≤ 0 “are of no practical concequence” in non-life insurance rating —

one reason being that they have support on the whole real line, while

our key ratios are non-negative. We thus restrict ourselves to the class

with p ≥ 1. Our calculations below carry through for p = 0 (Gaussian

distribution), but that model is not appropriate for the non-negative

key ratios with multiplicative rating factors that we consider here and

is hence excluded.

Some special cases of Tweedie models with p ≥ 1 are:

• p = 1: (Weighted) Poisson distribution.

• 1 < p < 2: Compound Poisson distribution with gamma dis-

tributed summands.

• p = 2: Gamma distribution.

• p = 3: Inverse Gaussian distribution.

The case 1 < p < 2 is applicable to risk premiums Yi with a Poisson

distributed number of claims and gamma distributed claim sizes. Here

p = (2 + γ)/(1 + γ), where γ is the shape parameter of the gamma

distribution, see Jørgensen & Souza (1994), and hence γ−1/2 is the

coefficient of variation of that distribution.

As shown by Jørgensen (1997, Theorem 4.1), the Tweedie models are

the only reproductive exponential distribution models that are closed

under scale transformations. Since this is a desirable property of any

economic model (a change of currency should not alter the distribu-

tional family), and since the distributions that are standard in actuar-

ial applications of GLMs are included in the class — see the list above

— the restriction to the Tweedie class with p ≥ 1 is not serious.
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The Tweedie models are continuous, except for p = 1 (Poisson) and

1 < p < 2 (compound Poisson), the latter being continuous except for

a positive probability at zero (Jørgensen p. 129).

From the relation between v(µ) and b′′(θ), Jørgensen derives the func-

tional form of the b(θ) corresponding to a variance function as in (2.3).

The result is (for p ≥ 1)

b(θ) =





eθ for p = 1;
− log(−θ) for p = 2;

− 1
p−2

[−(p− 1)θ](p−2)/(p−1) for 1 < p < 2 and p > 2.

(2.4)

The canonical (maximal) parameter space M is

M =




−∞ < θ < ∞ for p = 1;
−∞ < θ < 0 for 1 < p ≤ 2;
−∞ < θ ≤ 0 for p > 2.

(2.5)

We will also need expressions for the derivative b′(θ),

b′(θ) =

{
eθ for p = 1;

[−(p− 1)θ]−1/(p−1) for p > 1.
(2.6)

and its inverse h(µ),

h(µ) =

{
log(µ) p = 1;
− 1

p−1
µ−(p−1) p > 1.

(2.7)

In GLM theory, h(µ) is called the canonical link function. Note, how-

ever, that we do not assume the use of canonical link, but instead use a

log-link (multiplicative model) throughout. Multiplicative models are

standard in insurance practice and usually a very reasonable choice.

2.2 Random effects in Tweedie models

Suppose we have a number of ordinary rating factors, dividing the

portfolio into I tariff cells — by an ordinary rating factor we mean one

that is not a multi-level factor. Suppose furthermore that we have a

multi-level factor with K levels. Let wik denote the exposure weight
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(number of policy years for claim frequencies, number of claims for

average claim amounts, etc.) in the ith tariff cell with respect to the

ordinary rating factors and for the kth level of the multi-level factor.

Let Yik denote the corresponding observed key ratio, considered as a

random variable.

We shall assume the effect of the multi-level factor to be multiplicative.

For level k of the multi-level factor, this effect is considered to be the

outcome of a random variable Uk. We then have

E(Yik|Uk = uk) = µiuk (2.8)

Typically, the effects of the ordinary rating factors are also multiplica-

tive, but this does not matter for what follows. Since the systematic

effects are captured by µi, we can let the Uk:s be purely random, so

that we have E(Uk) = 1, and hence E(Yik) = µi.

Conditionally on Uk = uk we assume that Yik follows a Tweedie model

with expectation µiuk. Now, the frequency function in (2.1) is defined

in terms of the canonic parameter θ, rather than the expectation µ,

and in our case this parameter becomes θ′ik = h(µiuk). We make the

corresponding transformation of the random effect and introduce the

random variable Θk = h(Uk), which corresponds to the risk parameter

in Jewell (1974) and other sources on standard credibility theory, taking

values θk = h(uk).

Note that by (2.7)

θ′ik = h(µiuk) =

{
log(µi) + h(uk) p = 1;

µ
−(p−1)
i h(uk) p > 1.

(2.9)

and then by (2.4),

b(θ′ik) = b(h(µiuk)) (2.10)

=

{
log(µi) + b(θk) p = 2;

µ2−p
i b(θk) 1 ≤ p < 2 and p > 2.
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Now for all the p we consider, we can write

fYik|Θk
(yik|θk) = exp

{
yikθ

′
ik − b(θ′ik)
φ/wik

+ c1

}

= exp

{
wik

φ

[
yik

µp−1
i

θk − 1

µp−2
i

b(θk)

]
+ c2

}
(2.11)

where c1 and c2 are constants that does not depend on θk, and into c2

we have incorporated the terms log(µi) appearing in (2.9) and (2.10).

Conditional on Θk = θk, or equivalently on Uk = uk, the Yik:s are

assumed independent. We can then perform a standard GLM analysis

of the ordinary rating factors, using log(uk) as an offset variable. Now,

the Uk:s are of course non-observable and must be predicted. We will

follow Jewell (1974) and assume that the density function of Θ = h(U)

is the natural conjugate prior to the family in (2.1), which is given by

fΘ(θ) =
1

c(δ, α)
exp

{
θδ − b(θ)

1/α

}
(2.12)

for θεM (the canonical parameter space of (2.1)), where c(δ, α) is just

a normalizing constant. For all p ≥ 1, this is a proper distribution if

α > 0 and δ > 0. The same is true for p = 2 if −1 < α < 0 and δ < 0;

and for p > 2 if α < 0 and δ < 0.

Lemma 2.1 Let U = b′(Θ), where Θ follows the distribution in (2.12)

and let inf M and sup M denote the lower and upper bound of the in-

terval M in (2.5).

(a) Suppose that fΘ(inf M) = fΘ(sup M) = 0. Then

δ = E(U)

(b) Suppose that f ′Θ(inf M) = f ′Θ(sup M) = 0. Then

α =
E [Up]

Var(U)
(2.13)
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Proof. We have

f ′Θ(θ) = α(δ − b′(θ))fΘ(θ)

f ′′Θ(θ) = α2(δ − b′(θ))2fΘ(θ)− αb′′(θ)fΘ(θ)

Upon integrating these equations we get, under the assumptions of the

limiting behavior of fΘ(θ) and f ′Θ(θ), respectively,

0 = α

∫

M

(δ − b′(θ))fΘ(θ) dθ = α(δ − E[b′(Θ)])

0 = α2

∫

M

(b′(θ)− δ)2fΘ(θ) dθ − α

∫

M

b′′(θ)fΘ(θ) dθ

= α2Var(b′(Θ))− αE[b′′(Θ)]

Now the fact that u = b′(θ) and that b′′(θ) = b′′(h(u)) = v(u) = up

completes the proof.

We next investigate to what extent the assumptions of the lemma are

satisfied for our Tweedie models with p ≥ 1.

Lemma 2.2 (a) The assumptions of Lemma 2.1(a) are satisfied for

1 ≤ p < 2 and for p = 2 provided that α > 0. They are not valid for

p > 2.

(b)The assumptions of Lemma 2.1(b) are satisfied for 1 ≤ p < 2. For

p = 2 they are satisfied if α > 1, but not for α ≤ 1. For p > 2 they are

invalid.

The proof of this lemma is straightforward. For p = 2 one may add

that when α ≤ 1 the variance Var(U) does not exist and when α ≤ 0

not even the expectation E(U) exists.

Lemma 2.1 is fundamental to the proof of our main result. Therefore,

from now on, we restrict ourselves to the case 1 ≤ p ≤ 2, for which we

conclude that δ = E(U) = 1 so that in effect, we have just one param-

eter in the conjugate distribution, α > 0, which can be interpreted in
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terms of moments of U if for p = 2 we restrict the conjugate distribu-

tion to α > 1. For p > 2, the fundamental reduction of parameters by

setting δ = 1 does not work and neither does the interpretation of α in

terms of moments of U — it is notable that Lee and Nelder (1996, p.

626) also comment on difficulties in using the conjugate distribution in

the inverse Gaussian case p = 3. Fortunately, 1 ≤ p ≤ 2 contains the

most commonly used distributions in insurance applications of GLMs,

namely the Poisson, gamma and compound Poisson-gamma distribu-

tions. (Note that the assumptions of Lemma 2.1(a) also appear in the

original theorem by Jewell (1974) and so his results are not valid for

Tweedie models with p > 2.)

2.3 Main result

In his classical result, Jewell (1974) assumed an exponential family of

distributions for Y , conditionally on the so called risk parameter (our

Θk). Kaas et al (1997) generalized Jewell’s theorem to the exponential

dispersion models used in GLMs, including weights w. Before present-

ing our extension of these results, we make some basic assumptions

that are more or less standard in credibility theory.

Assumption 1 (a) Θk; k = 1, 2, . . . , K are independent and identi-

cally distributed random variables.

(b) For k = 1, 2, . . . , K, the pairs (Yik, Θk) are independent.

(c) Conditioned on Θk the random variables Y1k, Y2k, . . . , YIk,k are in-

dependent.

By (2.8) we have E(Yik|Uk) = µiUk, where µi is the mean given by

the ordinary rating factors, which can be estimated by standard GLM

methods once we have the uk. Hence, in our case the search for cred-

ibility “estimators” amounts to finding a predictor of Uk, for every k.
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In analogy with classical credibility theory, we look for functions g of

our data vector Y that minimize

E
[
(Uk − g(Y ))2] (2.14)

It is well known that the solution to this minimization problem is

g(Y ) = E[Uk|Y ]. By assumption 1(b) we can restrict the condi-

tioning to Y k = {Yik; i = 1, 2, . . . , Ik} and our optimal predictor is

g(Y ) = E[Uk|Y k] = E[b′(Θk)|Y k]. An expression for this posterior

mean is given in the following extension of Jewell’s theorem, which is

our main result.

Theorem 2.1 Suppose that conditionally on Uk we have a Tweedie

model for Yik with 1 ≤ p ≤ 2 and that Θk = h(Uk) follows the nat-

ural conjugate distribution given by (2.12), where α > 0 and δ > 0.

Let Assumption 1(b) and (c) be satisfied. Then the optimal predictor

E(Uk|Y k) of the random effect Uk can be written as

ûk =

∑
i wikyik/µ

p−1
i + φα∑

i wikµ
2−p
i + φα

(2.15)

Proof. To compute the posterior expectation we need the posterior

distribution of Θk, which we get from Bayes theorem, plus (2.11) and

(2.12).

fΘk|Y k
(θ|yk) ∝ fΘk

(θ)fY k|Θk
(yk|θ) = fΘk

(θ)
∏

i

fYik|Θk
(yik|θ)

∝ exp {α(θ − b(θ))}
∏

i

exp

{
wik

φ

[
yik

µp−1
i

θ − µ2−p
i b(θ)

]}
(2.16)

= exp

{
θ

(
α +

1

φ

∑
i

wik
yik

µp−1
i

)
− b(θ)

(
α +

1

φ

∑
i

wik µ2−p
i

)}

Since we are using a conjugate prior, it is no surprise that the poste-

rior distribution is a member of the same family, with new “updated”

parameters

α′ = α +
1

φ

∑
i

wik µ2−p
i δ′ = ûk (2.17)
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where ûk is given by (2.15). Finally, from Lemma 2.1(a) and 2.2(a) the

expectation of Uk in the posterior distribution is just δ′ and the proof

is complete.

We can rewrite (2.15) in the form of a classical credibility estimator.

First, introduce the weighted average

uk =

∑
i(wikµ

2−p
i ) yik/µi∑

i wikµ
2−p
i

(2.18)

We can regard uk as an experience factor, indicating how one might

adjust the expected values µi to take into account the experiences yik.

Note that uk is the limiting value of (2.15) as α → 0. We can now

rewrite the optimal predictor as

ûk = zk uk + (1− zk) · 1 (2.19)

where the credibility factor zk is defined by

zk
.
=

∑
i wikµ

2−p
i∑

i wikµ
2−p
i + φα

(2.20)

Thus the optimal predictor ûk is a credibility weighted adjustment

factor to the rating by the ordinary factors, which for each tariff cell is

given by it’s corresponding µi. High credibility, which occurs with large

exposures wik and/or small φα, gives large weight to the experience

factor uk, while low credibility gives more weight to the factor 1, i.e.

‘no adjustment’.

We proceed to rewrite zk on a more familiar form. The variance pa-

rameters a and s2 in Bühlmann-Straub theory (see e.g. Goovaerts &

Hoogstad, 1987, p 47) here become, by (2.8), (2.2) and (2.3),

ai
.
= Var(E[Yik|Θk]) = µ2

i Var(Uk)

s2
i

.
= E[wikVar(Yik|Θk)] = φµp

i E[Up
k ] (2.21)

Hence, by (2.13),

zk =

∑
i wikai/s

2
i∑

i wikai/s2
i + 1

(2.22)
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We find that we have high credibility when the random effect variances

ai are large compared to the variances s2
i between the observations

and/or when the exposures wik are large. This is in direct analogy

with classical credibility.

2.3.1 Comparison with classical credibility theory

We next specialize to the classical case without any ordinary rating

factors, i.e., we assume for the moment that all µi are equal, µ = µi.

Hereby, a and s2 in (2.21) do not depend on i and we have zk =

aw·k/(aw·k + s2) as in Goovaerts & Hoogstad (1987, p 47). Classical

credibility seeks predictors of E(Yik|Θk), which in our notation equals

µUk and so we multiply our predictor ûk by µ and arrive at ûk = zk yk+

(1−zk)·µ, where we have used that µuk here equals yk =
∑

i wikyk/w·k.

This is readily seen to be the same as the predictor in (11) of Kaas et

al. (1997), if we identify our µ as x0 there, and note that our s2/a =

φα/µ2−p corresponds to their w0. Note that the predictor by Kaas et

al. corresponds to the classical Bühlmann-Straub estimator. Hence,

our result is really an extension of classical credibility to cases where

ordinary rating factors are present. It is not a proper generalization

though, since our result is restricted to the (albeit important) Tweedie

family with 1 ≤ p ≤ 2.

2.3.2 Special cases

Finally, it is of interest to specialize our predictors to the important

special cases p = 1 (Poisson) and p = 2 (gamma), by looking at the

corresponding experience factors.

p = 1 ⇒ uk =

∑
i wikyik∑
i wikµi

(2.23)

p = 2 ⇒ uk =

∑
i wik

yik

µi∑
i wik

(2.24)
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It can be noted that equation (2.23) corresponds to an estimating equa-

tion in the so called method of marginal totals and that (2.24) corre-

sponds to the so called direct method (see, e.g., Kaas et al., 2001, pp.

179-181).

In these cases — and in general — equation (2.18) is easily verified to be

the estimating equation for uk if considered a fixed effect in a standard

GLM analysis (remembering that we are using a log-link). This is

appealing: in a case with with very high credibility our predictors are

the same as the estimators resulting from treating the random effect

as just another covariate in our GLM.
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3 Estimation

Lee and Nelder (1996) suggest iteration between GLM parameter esti-

mation for fixed effects, estimation of the dispersion parameters φ and

α and prediction of random effects uk. In our setting such iteration

leads to the following algorithm for simultaneous rating of ordinary

(fixed effect) factors and multi-level (random effect) factors.

(0) Initially, let ûk = 1 for all k.

(1) Estimate the µi in the usual way, with all ordinary rating factors

as explanatory variables in a GLM, using a log-link and having

log(û) as offset-variable.

(2) Estimate φα using µ̂i from Step 1 (this is discussed in Section 3.1

below).

(3) Compute ûk for k = 1, 2, . . . , K, using the estimates from Step 1

and 2.

(4) Return to Step 1 with the offset-variable log(û) from Step 3.

Repeat Step 1-4 until convergence.

Lee and Nelder (1996) suggest a general likelihood-based approach, uti-

lizing the concept of h-likelihood. For the models we consider (Tweedie

with 1 ≤ p ≤ 2), which are the most common in insurance practice,

one has the alternative of using the minimum MSE predictor ûk in

Step 3. For p = 1, our predictor (2.15) is a w-weighted version of the

estimator on p. 623 in Lee & Nelder (1996). In the case p = 2, the

predictor in Lee & Nelder’s (2.12) is slightly different from (2.15) — a

term +1 appears in the denominator. In most insurance applications

the difference between the predictors can be expected to be small. The

case 1 < p < 2 is not explicitly treated in the paper by Lee & Nelder.
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We will now show that in Step 2 it is possible to use unbiased estimators

based on sums of squares — analogous to the estimation procedures

used in classical crediblity.

3.1 Unbiased estimation of variance parameters

The derivations in this section are restricted to Tweedie models with

1 ≤ p < 2 and p = 2 with α > 1, where the assumptions of Lemma

2.1(b) are satisfied. The idea is to compute separate unbiased estima-

tors of σ2 = φE[Up] and σ2
U = Var(U), whose ratio is φα, cf. (2.13).

Note that these quantities are closely related to the variance parame-

ters s2 and a in the classical Bühlmann-Straub model, cf. (2.21).

For estimation of φE[Up] note that conditionally on Uk, the variables

Xik
.
= Yik/µi are independent with common expectation Uk. From

standard GLM theory we have (2.2), which in the present conditional

form is

Var(Yik|Uk = uk) =
φ

wik

(µiuk)
p Var(Xik|Uk = uk) =

φ

w̃ik

up
k (3.1)

with new weights w̃ik = wikµ
2−p
i . Note that uk in (2.18) is the w̃ik-

weighted average of the Xik’s. Now standard results on weighted vari-

ances — collected in Lemma A.1 of the Appendix for the sake of com-

pleteness — supplies us with the following conditionally unbiased esti-

mator of σ2
k = φup

k,

σ̂2
k =

1

Ik − 1

∑
i

wikµ
2−p
i

(
Yik

µi

− uk

)2

where Ik are the number of tariff cells i where we have wik > 0. We

conclude that unconditionally we have E(σ̂2
k) = E[E(σ̂2

k|Uk)] = φE[Up
k ].

For each k we get a separate estimator and it is natural to weigh them

together with weights Ik − 1 to the overall estimator

σ̂2 =

∑
k(Ik − 1)σ̂2

k∑
k(Ik − 1)

(3.2)
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This is our estimator of φE[Up]. Our starting point for estimation of

σ2
U is uk in (2.18). By (2.8) we have

E(Uk|Uk = uk) = uk E(Uk) = 1 (3.3)

Now

E[(Uk − 1)2] = Var[Uk] = Var[E(Uk|Uk)] + E[Var(Uk|Uk)]

= Var(Uk) + E[Var(Uk|Uk)]

By the definition of uk in (2.18) plus the fact that the Yik’s are con-

ditionally independent according to Assumption 1(c), and by (3.1) we

get

Var(w̃·kUk|Uk) =
∑

i

(w̃ik)
2Var

(
Yik

µi

|Uk

)
=

∑
i

w̃ikφUp
k = w̃·kφUp

k

Hence

E[w̃·k(Uk − 1)2] = w̃·kVar(Uk) + φE[Up
k ]

By Assumption 1(a) we can drop the k in Var(Uk) and E[Up
k ]. Summing

over the index k we get

E[
∑

k

w̃·k(Uk − 1)2] = w̃··Var(U) + KφE[Up]

where K is the number of classes k. We conclude that the following is

an unbiased estimator of σ2
U = Var(Uk).

σ̂2
U =

∑
k w̃·k(uk − 1)2 −Kσ̂2

w̃··
=

∑
k

∑
i wikµ

2−p
i (uk − 1)2 −Kσ̂2

∑
k

∑
i wikµ

2−p
i

(3.4)

Note. Even though the GLM dispersion parameter φ is included in

some of our equations, it does not enter in the calculations. Hence, ûk

does not depend on the choice of estimator of φ.
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3.1.1 Comparison with classical credibility theory

We return to the special case without any ordinary rating factors,

see Section sec:classical, and compare the above estimators with the

ones used in classical credibility theory, as presented by Goovaerts &

Hoogstad, 1987, p. 48. Our estimator of s2 is

ŝ2 = µpσ̂2 =
1∑

k(Ik − 1)

∑

k

∑
i

wik

(
Yik − Y ·k

)2

In case all Ik are equal, this is exactly the classical estimator of s2.

Turning to a our estimator is

â = µ2σ̂2
U =

∑
k

∑
i wik(Y ·k − µ)2 −Kŝ2

w··

while the classical estimator is
∑

k

∑
i wik(Y ·k − Y ··)2 − (K − 1)ŝ2

w·· −
∑

k w2
·k/w··

with Y ·· denoting the grand wik-weighted average and w·· the corre-

sponding sum of weights. These estimates are very similar — notice

that the natural, GLM estimate of µ will be Y ··. Seemingly, the other

differences are due to that the classical estimator of a does take into

account the randomness of Y ··, while our analysis is conditional on the

GLM estimation of ordinary rating factors — in this case of µ.

Note. In the special case above, the index i should point to a single

observation rather than to a tariff cell. In general, our estimators of

variance parameters are presented at the aggregated level of tariff cells,

while they could alternatively be applied at the unaggregate level of

single observations. The latter form has been avoided for simplicity in

presentation.
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4 Application

As an illustration of the method discussed in this paper, we present

some results from a study of car hull insurance, using data from the

Swedish insurance group Länsförsäkringar. The multi-level factor in

this case was car model, having roughly 2 500 levels. The analysis

was made separately for claim frequency using a Poisson distribution

(p = 1) and average claim amount using a gamma distribution (p = 2).

In step 1 of the algorithm in Section 3 the price relativities of the

ordinary rating factors where estimated by standard GLM software; in

step 2 the estimators in (3.2) and (3.4) were used; the u-predictor in

step 3 was (2.15). We will show some results from the claim frequency

part of the study.

To achieve a fair rating of car models the idea is to describe the mod-

els using auxiliary rating factors like weight and weight/power ratio

as far as possible; then the residual variation is taken care of by the

u-predictors. (These factors are called auxiliary since, unlike other or-

dinary rating factors, like sex and age of the policyholder, they are

introduced mainly as as an aid in the risk classification of car models.)

The introduction of auxiliaries decreases the (residual) variation of the

car models, with the effect that the uk-values become more concen-

trated around 1. This is illustrated by the bar chart in Figure 1.

The effect of using auxiliary factors is shown in more detail in Table

4.1, for a sample of car models sorted by the exposure weights w·k
(number of policy years). As expected, with large w·k, the experience

factors uk produce reliable estimates, and the rating of car models is

hardly affected by the introduction of auxiliaries, as seen by comparing

the ”No auxiliaries” ûk to the ”With auxiliaries” column µ̂kûk, where

µ̂k is the product of the rating factors for the auxiliaries.

At the other end of the table, with data from very few policy years,

credibility is low and the experience factors uk are shaky. Here one has
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Figure 1: Histogram of credibility predictors ûk with and without auxiliary
rating factors.

to rely, to a large extent, on the auxiliary car model rating factors.

Our conclusion is that GLMs that combine fixed and random effects

are useful tools for the simultaneous analysis of ordinary and multi-

level factors, with efficient handling of the problem of having varying

amounts of data for the different levels of the latter. The credibility

approach taken in this paper has, in our experience, been helpful in

the understanding of the estimators and in the communication of the

results to both actuaries and non-actuaries.
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k w·k No auxiliaries With auxiliaries
uk ûk zk uk ûk zk µ̂kûk

1 41275 0.74 0.74 1.00 0.98 0.98 0.99 0.75
2 39626 0.58 0.58 1.00 0.89 0.89 0.99 0.59
3 39188 0.59 0.59 1.00 0.86 0.86 0.99 0.60
4 31240 0.82 0.82 1.00 0.93 0.93 0.99 0.82
5 28159 0.49 0.50 1.00 0.74 0.75 0.98 0.50
...

...
...

...
...

...
...

...
...

401 803 2.08 1.95 0.88 1.43 1.35 0.82 1.99
402 802 0.97 0.97 0.86 1.11 1.08 0.70 0.95
403 801 1.77 1.66 0.86 1.54 1.40 0.74 1.62
404 799 0.74 0.78 0.86 0.83 0.88 0.69 0.79
405 798 1.32 1.27 0.86 0.73 0.78 0.82 1.41

...
...

...
...

...
...

...
...

...
901 181 1.38 1.22 0.58 1.14 1.06 0.42 1.29
902 180 1.61 1.38 0.63 0.91 0.95 0.56 1.70
903 180 2.28 1.76 0.59 1.35 1.18 0.51 2.01
904 179 0.79 0.88 0.56 0.86 0.95 0.34 0.88
905 179 2.38 1.80 0.58 1.52 1.25 0.48 1.98

...
...

...
...

...
...

...
...

...
1801 7 2.39 1.07 0.05 2.05 1.03 0.03 1.22
1802 7 4.63 1.19 0.05 3.86 1.08 0.03 1.31
1803 7 0.00 0.96 0.04 0.00 0.99 0.01 0.55
1804 7 0.00 0.95 0.05 0.00 0.98 0.02 0.87
1805 7 0.00 0.94 0.06 0.00 0.98 0.02 0.58

...
...

...
...

...
...

...
...

...

Table 4.1: Selected car models k with number of policy years w·k, experience
factors uk, credibility predictors ûk and credibility factors zk; without and
with auxiliary rating factors, the product of the latter being µ̂k.
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A Appendix

Lemma A.1 Let X1, X2, . . . , Xn be a sequence of uncorrelated random vari-
ables with common mean µ and variance inversely proportional to weights
wi, i.e. Var(Xi) = σ2/wi; i = 1, 2, . . . , n. With w· =

∑
i wi we let

X =
1
w·

∑

i

wiXi and s2 =
1

n− 1

∑

i

wi(Xi −X)2

Then s2 is an unbiased estimator of σ2.

Proof.

Var(Xi −X) = Var


Xi(1− wi

w·
)−

∑

k 6=i

wk

w·
Xk




= (1− wi

w·
)2

σ2

wi
+

∑

k 6=i

wk

w2·
σ2 =

σ2

wi
(1− wi

w·
)

and we get

E

[
n∑

i=1

wi(Xi −X)2
]

=
n∑

i=1

wiVar(Xi −X) = σ2(n− 1)


