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1. Introduction

To capture the aggregated credit loss of a portfolio in a realistic way, the dependence

of defaults between the entities has to be considered. For example, in order to measure

credit risk in a portfolio a quantile is usually used, Value at Risk, which relies heavily

on the dependence. For contracts such as Collateralized Debt Obligations (CDO), the

pricing of the super senior tranche depends mostly upon the dependence. A tranche is

an interval of the total credit loss, where the investor is risking his capital. The super

senior tranche is the last tranche with the best rating.

The dependence between defaults is a well known empirical feature which has been

modelled in a number of ways. Moody’s Binomial Expansion Technique (BET) model

the dependency of defaults by lowering the number of contracts, called a diversity score,

and raising the exposure such that the expected credit loss is unchanged, Gluck and

Remeza [6] and Cifuentes and O’Conner [2]. Rating and diversity score is a common

way of describing the properties of a CDO contract in the market.

There are other models incorporating default dependencies, which are usually not

straightforward to use in a pricing situation and can easily get cumbersome. These

models are based on copulas, shot noise models, Cox processes, structural models etc,

see for example Embrechts et al. [5] or Bielecki and Rutkowski [1].

Davis and Lo propose a new way of modelling the dependency between defaults,

through ’infection’ [3]. The idea is that a defaulting company may infect another

company to default in the following way: A portfolio subject to credit risk contains

n bonds, loans or other types of debt. In sector k, out of K sectors, the portfolio is

invested in nk bonds and n =
∑K

k=1 nk. When bond i in sector k defaults, it is indicated

by,

1i(k) =

{

1 if default,

0 otherwise.

The number of defaults in sector k are Nk =
∑nk

i=1 1i(k) and the total number of defaults

are N =
∑K

k=1 Nk. Every default in a sector gives a credit loss Lk.

Let Xi(k) and Yij(k) be independent Bernoulli random variables with

P (Xi(k) = 1) = pk and P (Yij(k) = 1) = qk.

The Bernoulli variable Xi(k) represents spontaneous default without external influence

and the Bernoulli variable Yij(k) is the infection default, where company j’s spontaneous

default might cause company i to default. The indicator of default,

1i(k) = Xi(k) + (1 − Xi(k))

(

1 −
∏

i6=j

(1 − Xj(k)Yij(k))

)

.

The defaults between different sectors are independent. Davis and Lo stated and proved

the following theorem:
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Theorem 1.1 The probability

P (Nk = m) =

(

nk

m

)(

pm
k (1 − pk)

nk−m(1 − qk)
m(nk−m)

+

m−1
∑

i=1

(

m

i

)

pi
k(1 − pk)

nk−i(1 − (1 − qk)
i)m−i(1 − qk)

i(nk−m)

)

.

The expected value and variance in each sector,

E [Nk] = nk

(

1 − (1 − pk)(1 − pkqk)
nk−1

)

V ar(Nk) = E[Nk] + nk(nk − 1)βk − (E[Nk])
2

where

βk = p2
k + 2pk(1 − pk)

(

1 − (1 − qk)(1 − pkqk)
nk−2

)

+ (1 − pk)
2
(

1 − 2(1 − pkqk)
nk−2 + (1 − 2pkqk + pkq

2
k)

nk−2
)

.

The continuous time version of this model by Davis and Lo [4] is not considered here.

In order to calculate P (N = mtotal), we have to sum over all the configurations

in each sector that gives mtotal defaults. This summation can be ”colossal even for

moderate” K [3]. To get the distribution of the overall credit loss a homogeneous

exposure and other homogeneous assumptions on the default probabilities are suggested

to make the computations possible.

To be of any interest to practitioners in the financial market a credit risk model must

be able to handle realistic portfolios. This means that the model has to handle a free

choice of pk, qk and exposure Lk for a large K. Therefore, we will tackle the aggregation

problem by deriving two algorithms. The first algorithm computes the total credit loss,

where heterogeneous assumptions on exposures and probabilities between sectors are

easily handled. Furthermore, the distribution of the total number of defaults may be

computed by putting all the exposures equal to one. This algorithm is similar to the

De Pril’s algorithm, see section 2.

To derive the second algorithm we replace the zero or one outbreak assumption

with a Poisson number of outbreaks. This enables the derivation of a Panjer type of

algorithm, which is less cumbersome than the first algorithm and more numerically

stable, see section 3.

Finally we compare the two algorithms applied to a portfolio of loans, that tries

to be realistic in a real world setting. The result indicates that the difference can be

neglected, see section 4.

2. An algorithm for the original model

In this section we state and prove an algorithm to compute the distribution of the

total credit loss S in the portfolio. By an outbreak, we mean that at least one

company in a sector defaults. An outbreak may only occur if at least one company

defaults spontaneously. The number of outbreaks is either zero or one with probability

P (Nk > 0) = 1 − (1 − pk)
nk .
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When an outbreak occurs in sector k, each single default causes an integer valued

credit loss of Lk and the total loss of Sk = NkLk, where Nk > 0. Conditioned on an

outbreak in a sector, the distribution of the number of defaults,

P (Nk = m|Nk > 0) = P (Nk = m)/ (1 − (1 − pk)
nk) , m ≥ 1, (1)

and the probability of the total credit loss given an outbreak

P (Sk = mLk) = P (Nk = m|Nk > 0). (2)

Theorem 2.1 The probability P (S = s) can be computed by

P (S = 0) =

K
∏

k=1

(1 − pk)
nk and P (S = s) =

1

s

K
∑

k=1

vk(s),

where for s ≥ 1,

vk(s) =
1 − (1 − pk)

nk

(1 − pk)nk

[s/Lk]
∑

m=1

P (Nk = m|Nk > 0)
(

mLkP (S = s − mLk) − vk(s − mLk)
)

and vk(s) = 0 otherwise. The notation [s/Lk] is the integer part of s/Lk.

This algorithm can easily handle heterogeneous exposure and default probabilities

between sectors, even for a large portfolio, which is an improvement of the scheme

suggested by Davis and Lo [3].

We will use the same technique as Rolski et al. in proving Theorem 4.4.1 in [7]. In

fact, this theorem could, after some rearrangements be used to prove Theorem 2.1. We

chose not to do so since no intuition is gained on how the algorithm comes about ‡.

Proof: In sector k no default occurs with probability (1 − pk)
nk . Naturally, the

probability generating function of sector k,

gk(t) = (1 − pk)
nk +

nk
∑

m=1

P (Nk = m)tmLk .

Let θk = 1 − (1 − pk)
nk , then

gk(t) = 1 − θk + θk

nk
∑

m=1

P (Nk = m|Nk > 0)tmLk = 1 − θk + θkĝk(t),

where ĝk(t) =
∑nk

m=1 P (Nk = m|Nk > 0)tmLk . The independence between sectors gives

the probability generating function of the total credit loss

g(t) =

K
∏

k=1

gk(t) =

K
∏

k=1

(1 − θk + θkĝk(t)) .

By the elementary property of the probability generating function we have that

P (S = s) =
g(s)(0)

s!
=

1

s!

ds

dts
g(t)

∣

∣

∣

t=0
.

‡ Anders Martin-Löf kindly pointed out how to make a detail in an early version of the proof more

simple.
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Therefore, P (S = 0) =
∏K

k=1(1 − pk)
nk , and

g(1)(t) = g(t)
d log(g(t))

dt
=

K
∑

k=1

θkĝ
(1)
k (t)g(t)

1 − θk + θkĝk(t)
=

K
∑

k=1

Vk(t),

where Vk(t) = θkĝ
(1)
k (t)g(t)(1 − θk + θkĝk(t))

−1. Put

vk(s) = ((s − 1)!)−1V
(s−1)
k (0), vk(0) = 0, (3)

then

P (S = s) =
g(s)(0)

s!
=

1

s!

K
∑

k=1

V
(s−1)
k (0) =

1

s

K
∑

k=1

vk(s).

The idea now is to compute a recursive formula for vk(s). It is possible to write

(1 − θk)Vk(t) = θkĝ
(1)
k (t)g(t) − θkĝk(t)Vk(t). (4)

We expand Vk(t) in terms of vk(s)

Vk(t) =
∞
∑

s=1

ts−1vk(s). (5)

The probability generating function of the credit loss conditioned on an outbreak and

the first order derivative,

ĝk(t) =
∞
∑

m=1

tmLkP (Nk = m|Nk > 0),

ĝ
(1)
k (t) =

∞
∑

m=1

mLkt
mLk−1P (Nk = m|Nk > 0).

Use these last two expressions and equation (5) to rewrite equation (4),

(1 − θk)

∞
∑

s=1

ts−1vk(s) = θk

∞
∑

m=1

∞
∑

l=1

mLkt
mLk−1+lP (Nk = m|Nk > 0)P (S = l)

−θk

∞
∑

m=1

∞
∑

l=1

tmLk+l−1P (Nk = m|Nk > 0)vk(l)

= {s = l + mLk}

= θk

∞
∑

s=1

ts−1
(

[s/Lk]
∑

m=1

mLkP (Nk = m|Nk > 0)P (S = s − mLk)

−P (Nk = m|Nk > 0)vk(s − mLk)
)

,

where {s = l + mLk} indicates a change of variable and [s/Lk] is the integer part of

s/Lk. By this we se that

vk(s) =
θk

1 − θk

[s/Lk]
∑

m=1

P (Nk = m|Nk > 0)
(

mLkP (S = s − mLk) − vk(s − mLk)
)

.

�

The number of defaults can easily be computed by Lk = 1 in theorem 2.1.
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Corollary 2.2 The probability P (N = m) can be computed by

P (N = 0) =
K
∏

k=1

(1 − pk)
nk and P (N = h) =

1

h

K
∑

k=1

vk(h),

for k = 1, . . . , K where

vk(h) =
1 − (1 − pk)

nk

(1 − pk)nk

h
∑

j=1

P (Nk = j|Nk > 0)
(

jP (N = h − j) − vk(h − j)
)

and vk(h) = 0 otherwise.

3. An algorithm based on Poisson number of outbreaks

In this section we make a small change of assumption compared to the original model.

The change is that the number of outbreaks is assumed be a Poisson random variable

Λk with intensity

µk = 1 − (1 − pk)
nk .

Hence the expected number of outbreaks and the expected credit loss remain unchanged.

An alternative choice of intensity could be µk = −nk log (1 − pk). Then the distribution

would be an upper limit for the distribution of the original model.

This change to a Poisson number of outbreaks can be justified. A default does not

have to mean bankruptcy, or a defaulted credit may be replaced by an equivalent credit

before the next infectious outbreak. A mathematical argument for this change is that

g(t) =
∏K

k=1 (1 − θk + θkĝk(t)) ≈ exp
(

∑K
k=1 θk(ĝk(t) − 1)

)

, which is the probability

generating function of a compound Poisson random variable.

On outbreak l = 0, . . . , Λk in sector k, the loss Skl = NklLk, where Nkl is the number

of defaults. These numbers of defaults, Nkl, are independent over sectors and outbreaks.

The distribution of the credit loss on outbreak l is still given by the number of defaults

conditioned on an outbreak, equation (2). The total loss in a sector Sk =
∑Λk

l=0 Skl, and

therefore the total credit loss S =
∑K

k=1

∑Λk

l=0 Skl.

Theorem 3.1 Assume the number of outbreaks Λk is Poisson distributed with intensity

µk. Then, P (S = 0) = exp
(

−
∑K

k=1 µk

)

and

P (S = s) =
1

s

K
∑

k=1

[s/Lk]
∑

mk=1

µkmkLkP (Nk = mkLk|Nk > 0)P (S = s − mkLk).

This is a Panjer type of algorithm. The Panjer algorithm is used in insurance and by

CreditRisk+ model by Credit Suisse First Boston, but in a different setting, without

dependencies through infection.
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Proof: The event that any company default in the portfolio is a Poisson random

variable with intensity
∑

k µk. The probability of no default is therefore,

P (S = 0) = exp

(

−

K
∑

k=1

µk

)

.

The moment generating function of the loss on an outbreak

M̃k(γ) =

nk
∑

m=1

emγLkP (Nk = m|Nk > 0).

Remember that the moment generating function of a Poisson random variable, MΛk
(γ) =

exp(µk(γ − 1)). Therefore, when we condition on Λk,

Mk(γ) = E
[

E [exp (γLkNkl)|Nkl > 0]Λk

]

= exp
[

µk(M̃k(γ) − 1)
]

.

The assumed independence between sectors gives the moment generating function of

the total credit loss,

MS(γ) = E
[

eγ
�

K

k=1
Sk

]

= exp

(

K
∑

k=1

µk(M̃(γ) − 1)

)

.

The first order derivative of M ′
S(γ) = MS(γ)

∑K
k=1 µkM̃

′
k(γ), where

M ′
S(γ) =

∞
∑

s=0

eγssP (S = s). (6)

and also

M ′
S(γ) =

∞
∑

j=0

K
∑

k=1

∞
∑

mk=1

eγ(j+mkLk)µkmkLkP (Skl = mkLk)P (S = j)

= {s = j + mkLk}

=
∞
∑

s=0

eγs
K
∑

k=1

[s/Lk]
∑

mk=1

µkmkLkP (Nk = mk|Nk > 0)P (S = s − mkLk).

The notation {s = j +mkLk} stands for the change of variables. If we compare this last

expression with (6) we see that

sP (S = s) =
K
∑

k=1

s
∑

mk=0

µkmkLkP (Nk = mk|Nk > 0)P (S = s − mkLk), s > 1.

�

If we put Lk = 1 in theorem 3.1, we get the distribution of the number of total defaults

in the portfolio.

Corollary 3.2 Assume the number of outbreaks in a sector Λk is Poisson distributed

with intensity µk. Then, P (N = 0) = exp
(

−
∑K

k=1 µk

)

and

P (N = h) =
1

h

K
∑

k=1

h
∑

mk=1

µkmkP (Nk = mk|Nk > 0)P (N = h − mk).
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Table 1. Reference portfolio

Sector nk pk qk Adjusted pk Lk

Aerospace & Defense 3 1% 5% 0.9% 5

Automobile 3 2% 5% 1.8% 3

Banking 10 0.1% 10% 0.1% 10

Broadcasting 3 2% 5% 1.8% 2

Buildings & Real Estate 12 1% 5% 0.6% 9

Electronics 6 1% 5% 0.8% 2

Entertainment 4 2% 5% 1.7% 5

Finance 15 0.5% 10% 0.4% 8

Food & Tobacco 2 1% 5% 1.0% 4

Health care 3 1% 5% 0.9% 7

Insurance 6 1% 10% 0.7% 5

Mining, Metals 4 2% 5% 1.7% 3

Oil & Gas 2 3% 5% 2.9% 3

Printing & Publishing 4 1% 5% 0.9% 2

Telecommunications 15 4% 5% 2.6% 12

Utilities 11 3% 5% 2.0% 6

4. A comparison between the two algorithms and discussion

In this section we will compare the two algorithms applied on a credit portfolio. The

quantities of the reference portfolio, given in table 1, try to be realistic for a loan

portfolio. The investment horizon in the case of regulatory capital is one year, and

for CDO usually five years. Usually, investment graded bonds should have a default

probability of less than one percent each year. This may, however, vary greatly over

time. The reference portfolio could therefore be on both one and five years, where the

one year portfolio would have more speculative quantities.

From a regulatory capital perspective, the probabilities P (S ≥ s) are of interest.

These probabilities are easily derived in both of the algorithms by

P (S ≥ 0) = 1 and P (S ≥ s) = P (S ≥ s − 1) − P (S = s).

To be able to understand the dependence effect through infections, the expected

number of defaults needs to be fixed, see theorem 1.1. Therefore, we adjust the

spontaneous probability p of default. The adjusted probabilities in the table are

computed such that the expected values of the sectors remain unchanged compared

to the case of no infection probability. The adjusted probabilities are found through the

Newton-Raphson method.

The mean value credit loss in the reference portfolio is 15. The difference between

the two models is presented in graphical form, see figure 1 and 2.

From a regulatory capital perspective, it is the quartiles 95-99.9 % that are of

interest, which means −7 ≤ log(P (S ≥ s)) ≤ −3. In this interval the distribution of

the Poisson model dominates the true distribution, since we are far to the right of the

expected value, where the Poisson arrival of infections makes a difference, see figure 2.
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Figure 1. The difference between the Poisson approximation algorithm (solid line)

and the exact solution (dashed line) for P (S ≥ s).
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Figure 2. The difference between the Poisson approximation algorithm (solid line)

and the exact solution (dashed line) on log scale, log (P (S ≥ s)).

A practical problem is that losses can not be too large in absolute numbers, since

this may cause numerical problems in the computations. This however, may always be

solved by scaling, but with the loss of the exact distribution. For example, if Lk = 113

would cause numerical problems, then a scaling to 11 or 1 might solve the problems, but

we lose the true distribution. The exact distribution can however easily be ’sandwiched’

between an upper and a lower bound after scaling.
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The difference between the two algorithms are of less importance since the

estimation uncertainty of the probabilities of default and the probabilities of infection

in each section are probably of greater magnitude. From a regulatory perspective the

Poisson algorithm is an upper bound for small probabilities and could therefore be used

as well. However, the De Pril type of algorithm needs to compute and store K + 1

vectors compared to the Poisson algorithm that only has to store the probability vector.

Also in favor of the Poisson algorithm is the fact that it only adds positive quantities

which is numerically more stable.

A default in the infectious default model is something bad, since the defaulting

company might infect another company to default. Not all practitioner’s agree about

this. A default might leave the remaining companies in a better position to avoid

default. This is probably best modelled by a decrease in probability to default, but this

is another story.

A portfolio in one sector can be very differentiated in exposure. The homogeneous

assumption of loss given default Lk, in a sector k, might therefore be to restrictive in

practise. This might be solved by how the sectors are defined, such that a sorting by

exposure is also made. This however frees the dependence that was assumed to be there

in the first place. How to define sectors is a tricky question in practice, especially when

the number of companies in the portfolio is small.
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