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1 Introduction

Statistical inference for epidemics is most often based on stochastic epidemic models (see
Epidemic Models, stochastic). A special property of such models is that individuals
are dependent in that the chance of getting infected depends on whether or not other
individuals are infected. When making inference another complicating property is that
most often the underlying epidemic process is only partially observed. It is very rare that
information about who infected whom is available. The most common type of data actually
consists of only knowing who was infected and who was not, i.e. having no information
about the time evolution of the spread. This type of data is called final size data.

In the present overview we present inference procedures for what is known as the
general epidemic model which assumes a homogeneous community, and a model for a
structured community (see Epidemic models, structured population) in which the
community is partitioned into households. Which inference procedure to use depends on
the underlying model, but also on the type of available data. Below, both maximum-
likelihood and martingale methods are used on the general epidemic model, depending
on the type of data. Further, in a separate section Markoc chain Monte Carlo (MCMC)
methods for more complex models, having other structured communities or partial obser-
vations, are discussed.

2 Outbreak in a homogeneous community

Below we present inference procedures for the general epidemic model. It assumes a com-
munity of homogeneous individuals that mixes uniformly. One way to relax the assumption
of homogeneity is to allow for different types of individual, where different types may have
different susceptibility, infectivity and/or mixing patterns. Inference procedures for such
extended models can for example be found in [10], where inference for a multitype epide-
mic in a closed community is considered, or Farrington et al. [18|, who consider estimation
procedures for an endemic situation where types corresponds to age-cohorts.

The general epidemic is an SIR model (see SIR epidemic models) for a closed com-
munity. Let S(¢), I(t) and R(t) respectively denote the number of susceptible, infectious
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and removed (= recovered and immune), at time ¢, and let n denote the community si-
ze. One way to define the general epidemic is by specifying the intensities for the two
counting processes N(t) = n — S(t) (the number of individuals who have been infected)
and R(t): given the process at time ¢, the rate of new infections (the intensity for N(t)) is
An(t) = BS(t)I(t), where S(t) = S(t)/n, and the rate of removals (the intensity for R(t))
is Ag(t) = vI(t). See [2] for theory on counting processes. The parameter [ is hence the
rate at which an infectious individual has contact with other individuals, so betaS(t—)
is the rate at which he or she infects other individuals since only susceptivle individuals
can get infected. The parameter v is the recovery rate of infectious individuals, and 1/~
is the average length of the infectious period.

2.1 Complete data

First we sketch how to perform inference assuming the epidemic process is observed con-
tinuously — so called complete data. If (S(u), I(u), R(u)), or equivalently (N(u), R(u)) is
observed continuously up to time ¢, then the log-likelihood is given by

(5,7) = [ log (88(u)1(w)) AN (w) ~ 55 (u) ()] + [ [log (1 R(u)) dR(w) — 7 Rlw)du].
1)

The first term of each integral above is actually a sum. The counting process N (u) increase
one unit at a time making dN(u) = 1 at these time instants and dN(u) = 0 otherwise.
The first term of the first integral is hence the sum of log (ﬁg (u)l (u)) evaluated at these
time instants, and similarly for the first term of the second integral.

From this the maximum likelihood estimates can be derived and shown to equal:

b = N(1)/ /OtS(u)I(u)du, ()
i = R(1)/ /Otl(u)du. (3)

Standard errors can also be derived using large population results from the general epide-
mic (e.g. [8]). The most important parameter, the basic reproduction number R, for the
general epidemic is given by R = (/v (see Reproduction number), so the maximum
likelihood estimator of R, given complete data, is

B N() Jg I(u)du
v, R() f3 S(u) I (u)du’

The critical vaccination coverage v*, the community proportion necessary to vaccinate in
order to obtain herd immunity assuming a 100% effective vaccine, is given by v* = 1—1/R
(see Epidemic models, thresholds). Accordingly v* is estimated by

o5, =1—1/Rur. (5)

Standard errors for Ry, and Uy, can be obtained using the delta-method.

RML =

(4)

2.2 Final size data

As mentioned in the introduction, the most common type of data is final size data in
which only the final state of the outbreak is observed, i.e. how many were infected and
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how many were not. It is not possible to get an estimate of 5 and ~ separately for this
type of data, since both parameters are related to time, and final size data contains no
information about the time evolution of the epidemic. In fact, the log-likelihood in (1) is
not observable for final size data. Instead we use that M; = N(t) — [ S (u)I(u)du and
My = R(t) — [{ vI(u)du are martingales (see [2] for the underlying theory behind this).
From M; and M, we can form a new martingale such that the unobservable quantities of
M, and M; cancel out. It turns out that the rightmartingale is

M) = [ gamidh() = 200 = [ gasave) - ZRe) (©
_ m%+gj§+~+§75-§ﬂ)~MMWﬂD “RO. (0

The second equality relies on the assumption that initially one individual was infectious
and the rest were susceptible, i.e. (S(0), I(0), R(0)) = (n — 1, 1, 0). At the end of
the epidemic (t = 7) there are no infectious individuals present, so R(7) = n — S(7)
and M (1) =~ —nlog(l —p) — n%ﬁ, where p = R(7)/n is the observed final proportion
infected. Since M is a zero mean martingale we can apply the method of moments to get
an estimate of R = 3/~ from final size data:

%w=(ﬁﬂfn72+w+gf§%:ﬁ/Mﬂzi@%;@. ®)

This is the same estimator as if estimation would be based on the deterministic limit of
the general epidemic (see Epidemic models, deterministic) where the final proportion
infected p is known to solve the equation 1 — p = exp(—Rp). However, in the stochastic
setting we can also obtain standard errors for the estimator using martingale theory (e.g.

[24]):

~ 1/2
. 1 1 1 Riop - _

The critical vaccination coverage v* = 1—1/R is of course estimated by o5, = 1—1/Rpsp
from final size data. Standard errors can as before be obtained by applying the delta-
method.

The maximum likelihood estimate of R, and hence also of v* given final size data
can in principle be derived using formulae for the final size distribution (e.g. Bailey [5]).
However, these formulae quickly become cumbersome for large communities, making such
inference computationally involved and numerically unstable.

3 Outbreak in a community of households

We now present inference procedures in a different setting where individuals reside in
households and where it is believed that infection rates are much higher between indi-
viduals of the same households than between individuals of different households. We do
this for a fairly simple model originating from Longini and Koopman [20] where house-
holds are treated as if they were independent. Since then these ideas have been refined



in several ways, for example by allowing individuals of different types and/or treating a
fully stochastic model where households are dependent (e.g. [1], [6], [21] and [11].

The key idea in the Longini-Koopman model [20] is to treat the probability of getting
infected from outside the household during the course of the epidemic as a parameter. In
reality this probability depends on the number of individuals who get infected and is hence
a stochastic quantity, but the simplifying assumption reduces computational complexities
tremendously. Further, by estimating the parameter it will be close to its "correct'value.

3.1 A simple household model

Individuals reside in households. An individual who gets infected has infectious contacts
with other individuals in the household independently and with equal probability pyy = 1—
gw - Additionally, each individual receives an infectious contact from outside the household
with probability pp = 1 — ¢p (the indices stand for within and between households).
Individuals who receive at least one infectious contact from infected household members,
or from outside the household, get infected. Only those who escape infectious contacts
both from within and outside the household avoid getting infected during the epidemic
outbreak. Let p,(j);7 =0, ..., h denote the probability that j individuals get infected in
a household having h (initially susceptible) individuals. Then these probabilities can be
derived recursively from the following equations:

_ A\ oo L i .
ph<j>:(.)qééh ”q’;f—z(. )ph<r>qéﬁ Wi _o o h(10)
r=0

J J—r

e.g. [1]. For example, p,(0) = ¢% and py(1) = (h)(l qB)qy *ql' which can easily be
explained. No one gets infected if everyone escapes infection from outside. One individual
gets infected if 1 out of h gets infected from outside, and the remaining A — 1 individuals
escape infection both from outside and from the infected household member. The pro-
babilities quickly become complicated as the requested number of infected increases, but
for households smaller than say 5 or even 10 they can be computed algebraically using a
computer.

3.2 Inference for the simple household model

Inference is quite straightforward once the relevant p,(j)’s have been calculated, since
households were assumed independent. Let {n;(j)} denote the collected data, where n(j)
denotes the observed number of households of size h in which j individuals got infected
during the epidemic. Then the log-likelihood for the data is simply

((qw, qB) Znh ) log(pn(7)), (11)

where the dependence on the parameters is implicit from the definition of {p,(j)} in
(10). The parameters are simply estimated by maximizing the log-likelihood with respect
to g and qp. Because households are assumed independent, standard large population
theory is applicable when the number of households is large, and the maximum likelihood
estimators are consistent. Standard errors for the estimates can be obtained from the
observed information matrix by differentiating the log-likelihood twice (e.g. [13]).
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As the model is defined, there is no basic reproduction number R, because households
behave independently. In Ball et al. [6] a related fully stochastic model is considered,
enabling estimation of the basic reproduction number R.

4 Inference using MCMC methods

In previous sections we have mainly treated models and data for which it was possible
to derive expressions for outcome probabilities. In more realistic (i.e. complex) settings
this may not be practically possible. Often the detail in the data does not allow for
straightforward estimation of parameters. Then some missing-data method can sometimes
be helpful. There are a few examples where the EM-algorithm can be helpful (see e.g.
[4]), but here we focus on Markov chain Monte Carlo (MCMC) methods (e.g. [17]). This
methodology has been successfully applied in a few situations but its real breakthrough
in epidemic inference still lies ahead.

The main idea of MCMC analysis in epidemic inference is to explore the outcome
space of unobserved (latent) variables for which inference procedures would have been
much easier, had these variables been observed. Most often uninformative priors are used
for model parameters, but in specific cases prior knowledge can of course be expressed
into informative prior distributions. Below we list some inference problems where MCMC
methods have been applied, and refer to listed references for details.

Inference is non-trivial even for the general epidemic model when the removal times,
but not the infection times, are observed. This type of data is quite common since the
removal time of an individual is approximately the same as detection time, which is
quite often known. The reason for the complication is that the likelihood then has to be
integrated over all possible infection times, a time-consuming task even for very small
community sizes. In O’Neill and Roberts [23| this problem is analysed using MCMC
methods in which the Markov chain explores the space of possible infection times. (A
different approach, using martingales, is performed in [9].)

Also for household data, detection times but not infection times may sometimes be
available. For a model allowing a fairly general distribution for the infectious period,
perhaps preceded by a latency period, inference is complicated even for households of size
two and when treated as independent. In O’Neill et al. [22] this type of data is analysed
using MCMC methods, where the unobserved infection times and latency periods are
explored in the Markov chain.

It is of course hard to include all heterogeneities into a model. For example, to de-
termine all social connections between individuals in a community is impossible. A way
out of this problem is to model unknown social structures by introducing unobserved
random social contacts. In Britton and O’Neill [12] a first step in this direction was taken
by modelling the social structure using a random graph, and assuming that transmission
may only occur between neighbouring individuals of the graph. Inference is performed
without assuming any information about the social graph, and the Markov chain explores
the possible graphs, where detection times close in time increase the probability of a social
link between the corresponding pair of individuals.



5 Concluding remarks

The emphasis of this article has been on inference procedures for epidemic models in
general, rather than on models for specific diseases. The methods are suited for diseases in
which transmission occurs by person-to-person contact, and not for vector-borne diseases
like malaria or infectious diseases caused by contaminated water or food like salmonella.
Examples of such diseases are childhood diseases like measles and mumps, smallpox, HIV
(although heterogenous structures tend to be very complex here), influenza and common
cold.

We have described inference procedures for a few stochastic epidemic models. In many
applications the underlying setting is too complicated to enable inference from stochastic
models, for example when long term endemic situations are considered and the community
changes dynamically, or when there are too many types of heterogeneities. Then data
can be calibrated to deterministic models thus giving parameter estimates. A thorough
treatment of many such situations is given in Anderson and May [3| (see also Epidemic
models, deterministic). Inference using stochastic models, as opposed to deterministic,
has the advantage that it provides uncertainty estimates of parameters. Stochastic models
are also better suited for situations where small social units, such as households, play an
important role in the disease spread. In this case deterministic models, relying on large
population results, may give misleading results. Deterministic models on the other hand,
have the clear advantage of being simpler to analyse, thus permitting more complex models
to be used.

The practical problem to estimate the effect of a vaccine against an infectious disease,
the vaccine efficacy, is not treated in the present article. Clearly this is an important
inferential problem within infectious disease epidemiology, but it is left out from the
presentation as epidemic models play a minor role in such analyses. Estimation procedures
for such problems can for example be found in [19] and [15] and the references therein.

For more detailed presentations on statistical inference for epidemic models we recom-
mend the monographs by Becker |7] and Andersson and Britton [4], and the survey paper
|8]. More on epidemic models in general can be found in [5], [3] [14] and [16].
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