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Abstract

In many studies of tuberculosis DNA fingerprinting techniques is used to classify
isolates from patients. The isolates is then been divided into clusters with identical
fingerprints and various measures of the amount of clustering are calculated. One
purpose is to estimate the proportion of cases that is due to recent transmission.
It is shown that cluster measures, generally, depends on the rate of reactivation of
dormant infections, the diversity of strains, the rate of transmission of infections and
the duration of the study. The understanding of how these factors influences the
measures is essential for understanding how to interpret and compare results from
different studies and also how to compare clustering in subpopulations.

1. Introduction

Using DNA fingerprinting techniques it is possible to classify isolates from tuberculosis
patients. The classification is usually based on RFLP patterns of IS6110-associated DNA
polymorphism. The classification makes it possible to form clusters of isolated with iden-
tical fingerprints. Isolates with the same fingerprint can be expected to be related to the
same transmission chain or, at least, assuming that the ”fingerprints” are stable, the op-
posite should hold, i.e., persons with isolates that have differing fingerprints can not be
assumed to have infected each other. If there is a large variation of distinguishable finger-
prints in the population it is tempting to assume that all primary sources of infections have
different fingerprint and that accordingly patients with isolates with identical fingerprints
are infected by the same primary case.

This idea has been used to analyze which proportion of tuberculosis is due to recent
transmission and which is caused be reactivated infections. Small et al. (1994) made
a study of the clustering of isolates from patient with tuberculosis reported to the San
Francisco Department of Public Health, Division of Tuberculosis Control, between Jan-
uary 1, 1991, and December 31, 1992. The idea was to use the fingerprinting to analyze
importance of recent transmission. The proportion of ”clustered” patients (defined as the
patient whose isolates had fingerprints that were not unique) and the proportion of the
active tuberculosis cases that were the result of recent infection were calculated. Here the
number of recent infections is calculated as the number of patients minus the number of
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clusters. This is based on the assumption that each cluster contains exactly one primary
case, which is a reactivated dormant infection.

In Borgdorff et al. (2001) an attempt is made to distinguish the primary case in each
cluster, assuming that there is a single primary case. Alland et al. (1994) present a similar
study of the spread of tuberculosis in New York City. Recently a large number of investi-
gations based similar ideas have been carried through. Methodological problems related to
the use of DNA fingerprinting has been discussed by Godfrey-Faussett (1999) and Murray
and Alland (2002). They address a number of questions related to the interpretation of
different measures of clustering, of comparing sub-populations and analyzing risk factors
for recent transmission.

The purpose of the present paper is to discuss how some, more or less implicit, assump-
tions influence the results and the interpretations of the data. We will focus on

• The consequences on ”clustering” if the fingerprints of the primary cases are not
distinct. This implies that in a cluster of patients with identical fingerprints there
may be several primary cases.

• The effect of the duration of the study, the reactivating intensity and the transmission
rate in the population under study.

• The possibilities to compare ”clustering” in different subpopulations.
Of course there are more assumptions, than those considered in this paper, that needs

to be evaluated. It is, e.g., important that the fingerprints are reasonable stable in time.
We will disregard the possibility that fingerprints changes during the study period. de Boer
et al. (1999) has calculated a half-life time of 3.2 years for isolates from infectious patients
(cf also Yeh et al. (1998)). This is of importance if the duration of the study is long.
Vynnycky et al. (2001) consider the effect of such instabilities and also the effects of age
related infectivity. Another important assumption is that an individual only can carry one
strain at a time. There are some evidence that this may not be the case cf Yeh et al.
(1999).

In section 2 we discuss the difference between transmission chains and clusters. Here
the basic notations used in the paper are defined. A simple model for the reactivation of
dormant infections and for recent spread is defined in section 3. The model is used, to
analyze the impact of diversity and reactivating and transmission dynamics on different
cluster measures. In section 4 measures obtained from different kinds of subpopulations is
discussed. The relation between cluster measures in a subpopulation and the measures in
the entire population is considered in section 5.

2. Clusters and transmission chains

We will distinguish between transmission chains and cluster of isolates. A transmission
chain contains all cases derived from the same source, here called the primary case, via a
chain of infections. A cluster of isolates is made up of all isolates with the same fingerprint
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pattern. All isolates in the same transmission chain belongs to the same cluster. However,
a cluster may consist of more than one chain. In general, we can not assume that there is
a one-to-one correspondence between transmission chains and clusters.

The properties that are of real importance to describe the spread of infectivity are
related to transmission chain rather than to clusters. Thus it is of interest to know the
mean chain size (i.e. the mean number of isolates in the transmission chain) and the
proportion of primary cases that are not attached to any secondary cases. If each cluster
consists of only one transmission chain these measures correspond to the mean cluster size,
and the proportion of unique isolates (i.e. the proportion of isolates that are not clustered).

2.1 Measures and notation

We will denote the number of clusters with i members by, Gi. The total number of
isolates equals

I =
∑

i

iGi, (2.1)

the number of clusters equals

K =
∑

i

Gi, (2.2)

and the number of unique isolates equals

U = G1. (2.3)

Several measures of the ”amount of clustering” have been suggested. We will consider
two such measures which are commonly used. In the paper by Glynn et al. (1999) they
are referred to as derived by the n-method and the (n − 1)-method. These measures
were already defined by Small et al. (1994). A discussion in Murray and Alland (2002)
illuminates the interpretation of these measures.

The first measure, Cn, describes the proportion of ”clustered” isolates. An isolate is
clustered if it belongs to a cluster with two or more members. Thus the proportion of
”clustered” isolates is:

Cn =

∑
i iGi −G1∑

i iGi

. (2.4)

This measure is closely related to the proportion of unique isolates

U

I
=

G1∑
i iGi

= 1− Cn. (2.5)

A second measure, Cn−1, is natural to consider if we assume each cluster contains a
unique primary source, i.e, all but one member in the cluster are secondary cases. Then
the proportion secondary cases is:
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Cn−1 =

∑
i(i− 1)Gi∑

i iGi

. (2.6)

This measure is related to the mean cluster size

M =
I

K
=

∑
i iGi∑
i Gi

=
1

1− Cn−1

, (2.7)

since

Cn−1 = 1− 1/M.

3. Diversity and dynamics

3.1 A simple model

We will consider cases that occur during in a study of tuberculosis cases in a certain
population. Assume that the study takes place during the time interval (0, T ). During this
time we identify tuberculosis cases and fingerprint isolates. There is no reason to assume
that the identified cases comes from primary sources that are reactivated during the time
of the study. Our basic assumption is that each tuberculosis infection that is reactivated
before the end of the study generates a (random) number of cases identified during the
study. These cases may or may not include the primary case.

The clustering will depend on several basic parameters related to the population and
the study. We will consider:

• The diversity of the strain distribution of (possible) primary cases,
• The reactivation rate at which dormant cases becomes infectious,
• The duration of the study.
• The speed which a transmission chain develops.

We will only consider incident cases, that is cases that are noted for the first time during the
study period. Such cases may belong to transmission chains that have started before the
study started. Clusters formed by incident cases do not, necessarily, include the primary
(reactivated) cases. This should be kept in mind, since it invalidates the usual motivation
for the clustering measure, Cn−1.

Figure 3.1 give a schematic illustration of how the cases included in the study are
related to transmission chains and clusters.
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Figure 3.1. Illustration of observation plan. Each horizontal line refers to a transmission
chain. x denote reactivated infections, incident clusters, o incident chains, + incident

cases

3.1.1 Diversity The concept of diversity is used in ecology, genetics and economics
to describe the relative abundance of subgroups in a population. It may concern the
distribution of different species in the flora or fauna, the distributions of alleles at the
same chromosomal locus of the distributions of individuals in income classes. Here our
interest is focused on the distribution of fingerprints in the population of possible primary
cases. In particular we will see how the cluster measures are related to the diversity in a
population.

Suppose that are in total N (which may be a large number), of possible fingerprints. We
consider two populations. In the first the distribution over the fingerprints are described
by the proportions pi, which is the proportion that has strain i, i = 1, . . . , N . In the
second population the proportions are p̃i, i = 1, . . . , N , Since we are only interested in the
distribution of the strains and not on which of the strains is more or less common we may
assume that the proportions are ordered within each population, i.e., p1 ≥ p2 ≥ . . . ≥ pN

and p̃1 ≥ p̃2 ≥ . . . ≥ p̃N . With this ordering the index i may not relate to the same strain in
the two populations. It is natural to say that the strain distribution is more concentrated
in the first population (or equivalently more diverse in the second) if
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p1 ≥ p̃1,

p1 + p2 ≥ p̃1 + p̃2,

p1 + p2 + p3 ≥ p̃1 + p̃2 + p̃3, (3.1)

. . . ,

. . .

A function φ is said to be Schur-convex if

φ(p1, . . . , pN) ≥ φ(p̃1, . . . , p̃N)

if the distribution (p̃1, . . . , p̃N) is more diverse than the distribution (p1, . . . , pN), (cf Hardy
et al. (1934) and Marshall and Olkin (1979)). If the function φ has the form

φ(p1, . . . , pN) =
∑

i

f(pi),

then it is Schur-convex if f is convex for p ≤ 1/2.

3.1.2 Rate of reactivation We will assume that new transmission chains are started
according to a (time homogeneous) Poisson process with intensity π. The probability that
an observed chain carries the i’th strain is equal to the proportion, pi, of dormant strains of
type i. The assumption implies that all dormant cases are equally likely to be reactivated.
Assume that we compare two populations, one with reactivating intensity π and the other
with reactivating intensity π̃. We will say that the first of these populations has a higher
reactivation if π > π̃.

3.1.3 Duration of the study The number of tuberculosis cases identified during the study
that is caused by a certain reactivated case will depend on when the chain is initiated and
how the chain develops in time. Let Xs(0, T ) denote a random variable that counts the
number of cases identified during the study that are part of a transmission chain started
by a infection that is reactivated at time s (s ≤ T ). According to this assumption the
transmission dynamics does not depend on the strain involved. Of course, the number of
cases identified will increase with the duration of the study.

3.1.4 Rate of transmission The rate at which incident cases occurs depends on the
distribution of the random variables Xs(0, T ). When comparing two populations we will
say that the transmission rate is faster in population A than in population B if for any s
and T the distribution of Xs(0, T ) is stochastically larger in population than in population
B. A random variable Z is said to be stochastically larger than Z̃ if P(Z ≥ k) ≥ P(Z̃ ≥ k)
for all k.
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3.2 Measures of clustering

3.2.1 Basic statistics The first statistics that appears in an analysis are the number of
isolates, the number of clusters and the number of unique clusters.

According to the model formulated above. The expected number of tuberculosis cases
included in the study is:

E(I) = π

T∫
−∞

E(Xs(0, T ))ds. (3.2)

This number will of course increase with T and π. It does not depend on the strain
diversity. It will be larger the higher the rate of transmission is. As a function of T the
expected number of (incident) isolates is a linearly increasing function. This implies that
it is proportional to T , i.e.,

E(I) = ρπT.

The expected number of observed clusters is

E(K) =
∑

j


1− exp(−πpj

T∫
−∞

P (Xs(0, T ) > 0)ds)


 . (3.3)

Observe that this number depends the reactivation rate, the diversity of dormant strains
and on the duration of study. The expected number of clusters will increase with π and
T . Since the function defined by (3.3) is Schur-concave (cf Svensson (2002)) the expected
number of clusters are larger the more diverse the strain distribution is.

The expected number of unique isolates is

E(G1) =
∑

j

πpj

T∫
−∞

P (Xs(0, T ) = 1)ds exp(−πpj

T∫
−∞

P (Xs(0, T ) > 0)ds). (3.4)

Also this number depends on all factors considered in the model. However, there are
no simple inequality relations.

3.2.2 Cn−1 and Cn Number the incident cases occurring after time t = 0 consecutively
by i = 1, 2, . . .. Some of these cases will incident chains, i.e. be the first observed belonging
to a particular transmission chains. Let Di denote the number of incident chains and
Ki denote the number of incident strains (clusters) among the i first cases. The strains
attached to each chain is a mark which is given with probability equal to the proportion
of dormant strains of that type. This marking does not influence the flow of incident cases
or the flow of incident chains.
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Now
E(Ki | Di) =

∑
j

(1− (1− pj)
Di). (3.5)

The function of the right-hand side of the equality is a Schur-concave function. This the
expected number of observed clusters among the first i observed cases are larger the more
diverse the strain distribution is. Thus the expectation of K is an increasing function of
the diversity.

We can also show E(Ki+2 − Ki+1) ≤ E(Ki+1 − Ki) for all i. This implies that the
expectation of Ki/i is a decreasing function in i. The more incident cases that are observed
the larger the expected value of Cn−1 will be. Thus E(Cn−1) is increasing both with the
reactivation rate and the duration of the study.

The inequalities we have obtained are all related to Cn−1. There seems not to be any
obvious inequalities for Cn.

4. Measures of clustering in a subpopulation

It is sometimes of interest to restrict the study to a subpopulation of a larger population.
The considerations made above are still valid if Xs(0, T ) ar interpreted as the number of
cases in the subpopulation that turns up in the study. Of course, the distribution of these
numbers depend on the interaction between the subpopulation and the rest of the entire
population.

In this section we will analyze how the cluster measures for a subpopulation are related
to the corresponding measures from the entire population. To do this we have to consider
how the subpopulation is formed. We will here only consider three cases.

The first case concerns a totally random subpopulation, i.e., we assume that the subpop-
ulation is a random sample of the complete population. This means that the subpopulation
is formed by selecting each member of the population independently of each other with the
same probability. Such a subpopulation can, e.g., be the responders in survey.

Since it is well known that a large part of the infectious spread is local, e.g. within a
family, it is natural to assume that a considerable part of the spread takes place within
the subpopulation. The second case relates to a model where the possibility is considered.

The third example is a subpopulation which can not generate primary cases in itself.
A typically example of such a subpopulation are all children.

4.1 Random subpopulation

We assume that the subpopulation is formed from the total population as a random
sample. The selection is assumed to be made with replacement, i.e., there is a certain
individual belongs to the subpopulation with a certain probability p. An alternative model
is that the subpopulation is a random sample of m individuals out of the n individual in
the total population, i.e., a selection without replacement, where p = m/n. An important
feature of this kind of subpopulation is that the individuals interacts with other individuals
in the same way regardless if they are members in the subpopulation or not.
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Table 4.1
Number of secondary cases in a transmission chain depending on which subpopulation the

primary case comes from

Primary case secondary cases in S secondary cases in non-S
S X1 X2

non-S Y1 Y2

After the selection we will form the clusters of infected with isolates of the same type
in the subpopulation. Observe that it is not certain that the primary case belongs to
the population. The cluster measures obtained in this way will be denoted by Cn(p) and
Cn−1(p).

In order to see how the selection procedure influences the measures of clustering we
will first consider the effect of subtracting exactly one isolate from the population. If the
subtracted isolate is unique isolate then Cn−1 changes from 1− I/K to 1− (I− 1)/(K− 1)
and if it is a non-unique isolate it changes from 1− I/K to 1− (I−1)/K. If the individual
is chosen at random the first of these changes will take place with probability G1/I and the
second with probability 1 − G1/I. A simple calculation yields that the expected value of
the change is negative. Repeating this procedure in step by step we see that the expected
value of Cn−1 decreases as the more and more individuals are subtracted. Thus a random
selection of m out of n individuals without replacement will yield a lower expected value
the smaller m is. From this we can conclude that E(Cn−1) is an increasing function of p.

Similarly subtracting one isolate at random will change Cn from 1−G1/I to 1− (G1 −
1)/(I − 1) with probability G1/I, to 1 − (G1 + 1)/(I − 1) with probability 2G2/I, and
to 1 − G1/(I − 1) with probability 1 − (G1 + 2G2)/I. Also this change has a negative
expectation. Thus E(Cn) is an increasing function of p.

The last fact has been observed by Glynn et al. (1999) for a subpopulation that has
been randomly selected with a fixed size, i.e. the subpopulation has been selected without
replacement rather than with fixed probability.

4.2 Clustering within the subpopulation

We will consider a division of the entire population into two subpopulations S and N .
N are all individuals that do not belong to S. We will assume that a primary case may
cause a random number of secondary cases in both subpopulations. The probability law for
these bivariate random vector depends on from which population the primary case comes.
Table 4.1 gives the notation for these random variables.

It could be expected that X1 and X2 (as well as Y1 and Y2) are positively correlated.
Let VS be the number of members in the subpopulation S in a chain and VN be the number
of members outside S. Furthermore let p be the probability that a primary case in the
population comes from subpopulation S and let q = 1− p. Elementary calculations yields:
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E(VS) = p+ pE(X1) + qE(Y1),

Var(VS) = pq(1 + E(X1)− E(Y1))
2 + pVar(X1) + qVar(Y1),

Cov(VS, VN) = −pq(1 + E(X1)− E(Y1))(1 + E(Y2)− E(X2)) + (4.1)

pCov(X1, X2) + qCov(Y1, Y2).

It is also possible to calculate the conditional distribution of the number of members
from subpopulation S in a cluster of size n.

E(VS | VS + VN = n) = np+ (qE(Y1 | Y1 + Y2 = n)− pE(X2 | X1 +X2 = n))

Var(VS | VS + VN = n) = pVar(X1 | X1 +X2 = n) + qVar(Y1 | Y1 + Y2 = n) + (4.2)

pq(E(X1 | X1 +X2 = n)− E(Y1 | Y1 + Y2 = n))2

Assuming that the potential to reactivate and spread the infection is the same in the
subpopulation as in the entire population it is natural to assume that

• p equals the proportion of the population that belongs to S,

• X1 +X2 = Y1 + Y2 in distribution, i.e., the distribution of the number of secondary
cases is the same independent of which population the primary case comes from, and

• pE(X2) = qE(Y1), i.e., the expected spread outside of the subpopulation from which
the primary case comes from is proportional to the size of population.

We will call a subpopulation with this property balanced (within the population). Observe
that a random subpopulation is balanced.

Another example, of a balanced subpopulation, occurs if we assume that each primary
case gives rise to a random number, Z1, of cases exclusively in its own subpopulation and
an independent random number, Z2 which is distributed randomly in the entire population.
Formally we can write

X1 = Z1 +

Z2∑
i=1

δi,

X2 =

Z2∑
i=1

(1− δi), (4.3)

Y1 =

Z2∑
i=1

δi,

Y2 = Z1 +

Z2∑
i=1

(1− δi),

where δi, i = 1, . . . , Z2 are independent random indicators such that δi = 1 with probability
p, and Z1 and Z2 are independent random variables.
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In a balanced population
E(IS) = pE(I). (4.4)

If there is a one-to-one correspondence between chains and clusters then

E(KS) = (p+ qP(Y1 > 0))E(K). (4.5)

If a cluster can contain isolates from more than one transmission chain the rate of occur-
rence of new chains and the diversity of strains has to be considered. According to the
observation plan the number of incident chains will be Poisson distributed with the mean,
λ, that depends on reactivation rate and the duration of the study. The number of incident
chains with strains i will be Poisson distributed with mean λpi. Then

E(KS) =
∑
(1− exp(−λpi(p+ qP(Y1 > 0))). (4.6)

When considering the number of unique clusters it is important to distinguish between
the number of clusters with exactly one member in the subpopulation S (denoted by US)
and the number of clusters that is represented by one unique isolate in the entire population
which belongs to S (denoted by ŨS).

E(ŨS) = pE(U). (4.7)

If there is a one-to-one correspondence between chains and clusters then

E(US) = pE(U) + qP(Y1 = 1)E(K). (4.8)

The general expression is

E(US) =
∑

λpi(p+ qP(Y1 = 1)) exp(−λpi(p+ qP(Y1 = 1)). (4.9)

Approximating the mean cluster size with the ratio between the expectation of IS and
KS, we see that the mean number of cases in a cluster with at least one member from
the subpopulation S increases with p. The same holds for the mean number of members
from S in clusters with at least one member from S. Since Cn−1 is a function of the mean
cluster size it will approximately have the same monotonicity properties.

Approximating Cn for the subpopulation in the same way

Cn ≈ 1− E(US)

E(IS)
(4.10)

there is no monotonicity related to p. However, observe that

E(ŨS)

E(IS)
(4.11)

does not depend on p. Thus with a balanced subpopulation

E(ŨS)

E(IS)
=
E(ŨN)

E(IN)
=
E(Ũ)

E(I)
. (4.12)
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Table 5.1
Number of unique and clustered isolates in two subpopulations

in S in N total

unique isolates ŨS Ũn U

clustered isolates IS − ŨS IN − Ũn I − U

all isolates IS IN I

Table 5.2
The expected number of unique and clustered isolates in two balansed subpopulations

W = P(Z > 0) + E(Z)

in S in N total

unique isolates λpP(Z = 0) λqP(Z = 0) λP(Z = 0)
clustered isolates λpW λqW λW

all isolates pλ(1 + E(Z)) qλ(1 + E(Z)) λ(1 + E(Z))

4.3 Innocent subpopulation

An innocent population is a population that can not include any individuals which can
serve as primary cases. This is a special case of the situation treated in previous subsection,
when p = 0. A typical such population is the population of small infants.

The formulas derived above are valid also in this situation

5. Test if a subpopulation is balanced

A division of the population into two parts, S and N , and a division of the unique and
clustered isolates results in a two by two table:

According to the assumptions made the number of (incident) chains is Poisson dis-
tributed. Let its mean be denoted by λ. Then according to the calculations made above
the expected number of unique and clustered isolates are given by table 5.2. Here Z is
the number of secondary cases, which if the population is balanced have the same distri-
bution regardless of which population the primary cases belongs to. If the populations are
balanced the cross-product ratio

Q =
ŨS(IN − ŨN)

UN(IS − ŨN)
(5.1)

should be, according to the calculations made above, be close to 1. It is possible to base a
test of the hypothesis that the populations are balanced on this approximation.
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Asymptotic theory and a Taylor expansion of the logarithm in (5.1) yields that if there
are many transmission chain Q is asymptotically normal distributed with mean 0 and
variance v2 which can be approximated by ṽ2, where

ṽ2 =
1

ŨS

+
1

ŨN

+
1

IS − ŨS

+
1

IN − ŨN

+ d2. (5.2)

If d2 = 0 then the variance is the same as in two-by-two contingency table for test of
homogeneity. This implies that a usual test for if the odds ratio equals 1 in such tables (or
equivalently a common χ2-test) is relevant.

In general d2 �= 0. Tedious but trivial calculations yield that

d2 =
1

λ(P(Z > 0) + E(Z))2

(
E(VS(VS − 1))

p2
+
E(VN(VN − 1))

q2
− 2E(VSVN)

pq

)
. (5.3)

In case we have a randomized population d2 = 0. However, if the structure is as described
in (4.3) then Z = Z1 + Z2 and

d2 =
E(Z1(Z1 + 1))

pqλ(P(Z > 0) + E(Z))2
. (5.4)

In this case the use of a standard χ2-test of the hypothesis that the populations are balanced
will be conservative, unless Z1 also is equals 0.

In case there is a one-to-one correspondence between chains and clustered d2 may be
estimated from the observations. The parameter λ is estimated by the number of observed
clusters, P(Z = 0) by the proportion of clusters with only one isolate, p by the proportion
of isolates (or clustered isolates) in subpopulation S. The other moments in the expression
(5.3) are estimated by their corresponding empirical moments.
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