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Abstract

In many applications individuals are divided into groups or clusters depending
on individual characteristics. Often cluster measures based on the cluster size distri-
bution are calculated. Incomplete ascertainment of individuals makes the observed
cluster xsizes smaller than the actual sizes. A method to derive estimates that com-
pensates for possible bias, when the ascertainment is random and the ascertainment
probability is known, is suggested. The method is applied to problems in tuberculo-
sis epidemiology. In some examples it is shown that the randomness caused by the
ascertainment is larger than the bias.

1. Introduction

This paper is concerned with the problem of incomplete ascertainment of individuals that
are divided into separate groups or clusters. In many cases the distribution of the clusters
sizes is an interesting subject for analysis. If not all members of a cluster are identified the
observed cluster sizes will always be smaller than the actual sizes. The present discussion
is motivated by the study of transmission patterns of tuberculosis. We will shortly describe
why the cluster size distribution is interesting in this context. Throughout the paper the
terminology is motivated by this application. However, the related statistical problems are
quite general and may occur in many different applications.

One of the major problems in tuberculosis epidemiology is that an infected person may
not develop disease until decades after infection and the become infectious. In the mean
the infection is said to be ”dormant”. Thus a new case of tuberculosis may be someone
who was infected recently (on the order of months to a year), or someone who was infected
long ago. In order to study the dynamics of transmission of tuberculosis, old and the
recent infections need to somehow be identified. Using DNA fingerprinting techniques,
usually based on RFLP patterns of IS6110-associated DNA polymorphism, it is possible
to classify isolates from tuberculosis patients. Isolates with identical fingerprints form
clusters of individuals. Assuming that the ”fingerprints” are stable, persons with isolates
that have differing fingerprints cannot be assumed to have infected each other. If, as
assumed by Small et al. (1994), a cluster contains a unique primary source, the clustering
of isolates carries information of the relation between reactivated infections and recent
infections. If this is the case the proportion of all tuberculosis cases that are secondary
cases can be calculated. This measure and a few other statistics based on the observed
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cluster size distribution has been considered in a number of recent studies of tuberculosis.
Methodological problems connected with the analysis of clustering data has been discussed
by e.g., Glynn et al. (1999), Godfrey-Faussett (1999), Murray and Alland (2002), and
Svensson (2002)).

In most studies it is not possible to classify all infectious persons with regard to finger-
print pattern. This may be due to difficulties to obtain isolates from all infectious persons
or to failure to obtain a useful RFLP pattern. We will suggest a method to estimate the
real cluster size distribution from the observed cluster sizes. The method is based on the
assumption that the isolates that are not observed or classified can be regarded as a ran-
dom sample of all isolates, and that the sampling proportion is known. This problem has
also been addressed by Glynn et al. (1999). A different method has been suggested by
Murray and Alland (2002).

2. Notation

Let

Gn = �{clusters of size n},
Hi = �{clusters with i observed isolates}, (2.1)

Hin = �{number of clusters of size n where i isolates are observed}.
Obviously

Hi =
∑
n≥i

Hin,

and
Gn =

∑
i≤n

Hin.

The probability to observe i isolates in a cluster of size n is

pin =

(
n
i

)
pi(1− p)n−i.

According to the assumptions
Hin ∼ Bin(n, p),

and
E(Hi) =

∑
n≥i

pinGn.

Usually the cluster size distribution is summarized in a few cluster measures. In tu-
berculosis epidemiology two such measures are the proportion of recent infections and the
proportion of clustered isolates. An isolate is said to be clustered if it belongs to a cluster
with more than one member, i.e., if it is not unique. In the literature (cf. Small et al.
(1994) and Glynn et al. (1999)) they are referred to as the (n − 1)− and the n− measure
respectively.
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The are defined as

Cn−1 =

∑
i(i − 1)Gi∑

i iGi

, (2.2)

and

Cn =

∑
i iGi − G1∑

i iGi

. (2.3)

Observe that Cn−1 has a one-to-one relation with the mean cluster size

M =

∑
i iGi∑
i Gi

, (2.4)

since

Cn−1 = 1− 1

M
.

Cn has a one relation to the proportion of unique isolates

U =
G1∑
i iGi

, (2.5)

since

Cn = 1− U.

If these measures are calculated using the observed cluster sizes rather than the true
cluster sizes the resulting estimates will be biased. One way to remove the bias is to
estimate the actual number of clusters of different sizes, i.e., G = (G1, G2, . . .) from the
observed sizes H = (H1, H2, . . .) and to use these estimates when calculating the clustering
measures.

3. A moment estimate

A straightforward estimate of the true cluster size distribution is based on the moment
relation given above. The true cluster sizes are estimated as solutions to the linear relation

H = PG, (3.1)

where P is a matrix with elements pin.
Since the matrix P is triangular it always has an inverse. Of course, the solution, H of

3.1 need not be a vector of non–negative integers. This can be corrected, by rounding of the
solutions to the nearest integer. However, the moment estimator has other drawbacks. The
solution will give no cluster with size larger than the largest observed size. The moment
estimator does not take the size of the sample (the number of isolates or the number of
clusters) into account. The estimator is inadmissible, in the sense that the solution may
contain negative numbers.

3



4. An EM–algorithm

An ML-estimate seems to be an alternative to the moment estimate discussed above. It
is rather simple to get an expression of the likelihood of the observations treating the
unknown G as a parameter. However, the ML equations have no explicit solutions and
finding the maximum of the likelihood will cause numerical problems. For this reason we
will suggest an algorithm which will provide an estimate that should have approximately
the same properties as the ML-estimate.

First assume that Gi, i = 1, 2, . . . are independent random variables that are Poisson
distributed with intensity λi. This implies that Hin are also Poisson distributed with
intensities pinλi and, which is important, are all independent. The likelihood for the
observations Hin, i = 1, . . . , n, n = 1, 2, . . . has a very simple structure. The problem is to
derive an ML-estimate based on observations of H1, H2, . . . only. Such a solution may be
found with the use of an EM-algorithm. The algorithm is defined in the following way:

1. Guess the values of that are consistent with the observations, i.e.,
∑
n≥i

Hin = Hi,

i = 1, 2, . . ..

2. Find the ML-estimates of λi, i = 1, 2, . . ., based on the assumed values of Hin. These

estimates are λ̃n =
n∑

i=1

Hin/(1− (1− p)n). (This is the M-step).

3. Generate new guesses Hin = Hipinλ̃n/
∑
m≥i

pimλ̃m. (This is the E-step).

4. Repeat the procedure from step 2 until convergence.

ML-estimates of the interesting measures can now be derived from the estimates λ̂i, i =
1, 2, . . .. They are derived as

Ĉn−1(p) =

∑
i

(i − 1)λ̂i

∑
i

iλ̂i

,

and

Ĉn(p) =
iλ̂1 − λ̂1∑

i

iλ̂i

.

The argument p indicates that the estimates depend on the assumed ascertainment
probability. The special case p = 1 corresponds to using the observed cluster sizes.

To apply the algorithm the dimension of the parameter vector λ has to be decided. In
principle it would be an infinitely-dimensional parameter. However we would be rather
safe to assume that it is less than, e.g., dH/p + 4

√
dH(1− p)/p2, where dH is the largest

observed cluster size.
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The sample distribution of the estimates can be approximated using a (parametric)
bootstrap technique. The following procedure is applied

1. From the observed cluster sizes H = (H1, H2, . . .) the ML-estimates λ̂ = (λ̂1, λ̂2, . . .)
are derived under the assumption of a known value of p.

2. The true cluster sizes are estimated from λ̂, by choosing an integer valued vector Ĝ
so that maxi |

∑
j≤i(Ĝj − λ̂j) | is minimized.

3. A new set of ”observations” Ĥi =
∑
n

Ĥin, i = 1, 2, . . ., are simulated by generating

independent Multinomial distributed random vectors (H0n, . . . , Hnn) with parameters
(Ĝn, p0n, . . . , pnn).

4. ML-estimates of the mean cluster size and the proportion of unique isolates are
derived from the simulated (observed) cluster sizes.

5. Steps 3 and 4 are repeated until a sufficient number of replicates of the estimates is
obtained.

An alternative way of deriving properties of the estimators would be to apply asymp-
totic theory. However, it should be observed that the situation is non-standard since the
underlying parameter space, i.e., the λ’s, has infinite dimension. Still it should be possible
to verify that the distribution of the estimators are asymptotically normal. An formula for
asymptotic variance of the estimator can also be calculated.

5. Numerical examples

We will illustrate the use of the estimation method with three numerical examples.
In the first example we will start with a hypothetical known cluster size distribution

G = (G1, G2, . . .). From this distribution observed cluster size distributions are simulated.
Simulations are made with different ascertainment probabilities. The method is then ap-
plied to the simulated distributions. The purpose is to investigate if the estimates come
close to the values of the cluster measures, which in this case are known.

The second example is based on an observed cluster size distribution. In this example
the ascertainment probability is not known. We assume different values of the ascertain-
ment probability and use the method to derive estimates of the unknown cluster measures.
The precision of the estimates are evaluated using bootstrap simulation as described above.
From the calculations is it seen an estimate based on the observed cluster sizes will dif-
fer from estimates obtained after correcting for incomplete ascertainment. It is seen that
the random variation caused by the fact that only a random sample of the isolates are
fingerprinted is , at least, of the same magnitude as the bias.

In the third example is also based on observed cluster sizes. here only a (known) fraction
of the tuberculosis patient are fingerprinted.
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Table 5.1
True cluster sizes used in the hypothetical example

Cluster size # of clusters of isolates
1 64 64
2 32 64
3 16 48
4 8 32
5 4 20
6 2 12
7 1 7
all 127 247

Table 5.2
Mean, quantiles and standard deviation for estimates Ĉn−1(p) and Ĉn(p) in 1000

simulations with different ascertainment probabilities

Ĉn−1(p) Ĉn(p)
p mean 5 % 95 % st.d mean 5 % 95 % st.d.

percentile percentile percentile percentile
1.0 0.486 - - - 0.741 - - -
0.9 0.485 0.466 0.501 0.011 0.739 0.708 0.766 0.017
0.7 0.484 0.446 0.520 0.023 0.739 0.668 0.809 0.043
0.5 0.484 0.413 0.554 0.042 0.739 0.603 0.896 0.091

5.1 Hypothetical distribution

The calculations are based on the true cluster given in table 5.1. The mean cluster size
equals 1.945 (= 247/127), and the proportion of unique isolates isolate is 0.259 (= 64/247).
This implies that the true values of Ĉn−1 = 0.486 and Ĉn = 0.741.

For each of the ascertainment probabilities p = 0.5, 0.7, and 0.9 1000 simulations of
observed cluster sizes have been made. The estimates of the cluster measures are from the
EM-algorithm suggested above are given in the table 5.2. The estimates seems to have a
small bias. As can be expected the variation of the estimate increases as the ascertainment
probability decreases. It can be shown that the expected values of Cn−1 and Cn calculated
from observed cluster sizes are increasing in p (cf. Glynn et al. (1999) and Svensson
(2002)). If the ascertainment probability is known this bias can be removed, at least in
this example.
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Table 5.3
Observed cluster sizes for 473 Tuberculosis patients in San Francisco

Cluster size # of clusters of isolates
1 282 282
2 20 40
3 13 39
4 4 16
5 2 10
8 1 8
10 1 10
15 1 15
23 1 23
30 1 30
all 326 473

5.2 San Francisco data

The cluster sizes observed for the 473 San Francisco patients with tuberculosis analyzed
by Small et al. (1994) are given in table 5.3. This cluster sizes gives the observed mean
cluster size 1.45 (= 473/326), and the proportion of clusters with only one isolate is 0.87
(= 282/326). This implies that Ĉn−1 = 0.31 and Ĉn = 0.40.

Table 5.4 gives the estimates of these parameters for different values of p. It turns out
that the estimates of two proportion varies with the ascertainment probability assumed.
As should be suspected, the estimates decreases as function of p. However the effect is
rather moderate. Both Cn−1 and Cn are proportions and it should be fair to evaluate the
change using an oddsratio. For Cn−1 the oddsratio is ≈ 0.77 and for Cn it is ≈ 0.87 when
the ascertainment drops from p = 1 to p = 0.5.

The statistical properties of the estimates are investigated with the bootstrap method
described above. The results are represented in table 5.5. As could be suspected the vari-
ability in the estimates increases as p decreases. The standard deviation of the estimates
is approximately of the same size as the bias.

5.3 South African data

In a survey of South African gold miners 438 tuberculosis cases were identified (Godfrey-
Faussett et al. (2000)). Fingerprints that could be used for dividing the isolates into
clusters were only obtained from 371 og these isolates. The data are presented in table 5.6.
In this case the part of the ascertainment that is due to problems of fingerprinting existing
isolates is known. Of the 438 isolates 371 ,i.e. 371/438 ≈ 0.847 are used to define clusters.
We will assume that the isolates are fingerprinted independently of each other and with the
same probability, i.e., that the isolates that are divided into clusters is a random sample
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Table 5.4
estimates of the cluster measures for the San Francisco data

p Ĉn−1 Ĉn

1.0 0.311 0.404
0.9 0.318 0.410
0.8 0.329 0.418
0.7 0.341 0.425
0.6 0.354 0.431
0.5 0.369 0.438
0.4 0.384 0.444

Table 5.5
Mean, quantiles and standard deviation for 100 bootstrapped ML-estimates for Ĉn−1(p)

and Ĉn(p), San Francisco data

Ĉn−1(p) Ĉn(p)
p mean 5 % 95 % st.d mean 5 % 95 % st.d.

percentile percentile percentile percentile
0.9 0.315 0.303 0.326 0.007 0.406 0.387 0.421 0.010
0.7 0.336 0.313 0.357 0.013 0.423 0.389 0.455 0.018
0.5 0.381 0.353 0.415 0.018 0.453 0.412 0.494 0.024

Table 5.6
Result of fingerprinting of 438 Tuberculosis patients in a South African mining community

Cluster size # of clusters of isolates
1 123 123
2 29 58
3 12 36
4 10 40
5 5 25
6 2 12
7 2 14
20 1 20
43 1 43

not observed 67
all 185 438
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Table 5.7
Cluster measures based on observed cluster sizes and estimates with a 95 %, confidence

interval based on ascertainment probability p = 0.847

cluster measure based on observed estimate 95 %
cluster sizes confidence interval

Cn−1 0.501 0.523 [0.505, 0.543]
Cn 0.668 0.689 [0.665, 0.719]

of all isolates. Of course, this may not be the case since the possibility to obtain a good
fingerprint may depend on properties of the isolate correlated to the fingerprint pattern.

In table 5.7 calculation of the cluster measures based on the observed cluster sizes and
on estimates corresponding to p = 0.847 are given.
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