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Abstract

A model for the spread of different strains of an infectious agent is used to study
how diversity of the distribution of attacking infectious strains is reflected in cluster-
ing of infectious cases and in different diversity measures related to such clustering.
Three measures are considered: the number of clusters, the mean cluster size and
an index based the coefficient of variation of the observed cluster sizes. Monotonic-
ity properties related to strain diversity, attack intensity, duration of the study and
speed of transmission are derived.

1. Introduction

The relative abundance of different subgroups of a population is often referred to as the
diversity of the population. Indices measuring diversity have been used in ecology (related
to distribution of a population over different species in the flora or fauna), in genetics
(related to the distribution of different alleles at the same locus), and in economics (related
to the distribution of individuals over income classes).

The concept of diversity is of growing importance in the epidemiology of infectious
diseases. Modern biotechnology now makes it possible, in many cases, to classify the
infectious agents into groups with similar features, e.g. DNA fingerprints obtained through
RFLP. This makes it possible to identify infections with a possible common source. It has
proved to be a valuable complement to contact tracing which often is used to find chains
of sexually transmitted infections.

A considerable number of studies have been published discussing clustering patterns
obtained from DNA fingerprints of isolates from tuberculosis patients (cf. Godfrey-Faussett
(1999) and Murray and Alland (2002)). The present study started from an interest to
analyze such clusters. Tuberculosis is initiated be the reactivating of a dormant infection
that initiates a further spread in the surrounding population. It is important to distinguish
between transmission chains that consists of one primary case and the secondary cases
that descends from it and clusters that contain all infections with the same distinguishable
strain. Actual calculations of diversity indices has to be based on observations of clusters.
We will be interested in the relation between diversity of the primary cases and diversity
or the strains causing infections.

In section 2 the concept of diversity is formulated and in section 3 some diversity
indices are defined and the connection between diversity and Schur convexity is explained.
A model for the occurrence of transmission chains, which apply to more general situations
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than the spread of tuberculosis, is formulated in section 4. The model is used in section 5
to investigate how different measures of clustering depends on basic parameters.

In ecology indices that uses closeness of groups are referred to as measures of bio–
diversity. The indices, studied in this paper, are defined from the relative abundances
of different strains, e.g., we will not consider ”closeness” the strains or of their DNA
fingerprints). The focus is on diversity rather than on bio–diversity.

2. A partial ordering for diversity

The study of diversity is based on the distribution (or relative abundance) of members in
a population in a finite (or at most countable finite) number of mutually exclusive groups.
We will assume that pi stands for the proportion of members in the population that belongs
to group i. Let

Sn = {p = (p1, . . . , pn); pi ≥ 0 for all i = 1, . . . , n, and
n∑

i=1

pi = 1}. (2.1)

We will consider distribution vectors that belongs to ∪nS
n. Let (p(1), p(2), . . . , p(n)) be a

permutation of the elements of the vector p such that p(1) ≥ p(2) ≥ p(3) . . .. Since we are
comparing the distributions it is of no importance to which groups the proportions are
related.

A distribution p is said to majorize p̃, if

k∑
i=1

p(i) ≥
k∑

i=1

p̃(i), (2.2)

for all k = 1, 2, . . .. If this relation is satisfied we write p � p̃. When comparing the two
distribution with unequal number of elements we expand vector with lower dimension by
adding a suitable number of zeros.

It is natural to say, as has been suggested by Solomon (1979), that the distribution p̃ is
more diverse than a distribution p if p � p̃. There is a equivalent, more abstract definition
of the partial ordering given by the relation �. It says that p � p̃, if there exist a doubly
stochastic nxn real matrix P such that

p̃ = pP. (2.3)

A proof can be found in Hardy et al. (1934) and Marshall and Olkin (1979).
We will be interested in diversity indices, which are functions of the relative abundance

distribution. It is natural to require that a diversity index should have a greater value for
a more diverse relative abundance distribution than for a less. There is a mathematical
term for this requirement. A function φ is said to be Schur–convex if

φ(p) ≥ φ(p̃)
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whenever p � p̃. cf. Marshall and Olkin (1979) and Baczkowski et al. (1998). Thus a
diversity index should be Schur–concave.

If the diversity index has the form

φ(p) =
∑

i

ψ(pi),

where ψ is a continuous function it follows from results in Hardy et al. (1934) and Marshall
and Olkin (1979) that a necessary condition for φ to be Schur–concave is that the function
ψ is concave on the interval [0, 1/2[. A sufficient condition is that it is concave on the
interval [0, 1]. In case ψ is not continuous characterizations are given by Ng (1998).

In case the diversity index has a more complicated structure there are still rather
simple characterizations guaranteeing Schur–concavity. If the function φ is continuously
differentiable then it is Schur–concave on an interval if and only if

φ(i)(z) = ∂φ(z)/∂z(i)

is increasing in i for all z(1) ≥ z(2) ≥ . . .. This result is due to Schur (1923) and Ostrowski
(1952) (cf Marshall and Olkin (1979)).

3. Diversity indices

Several diversity indices has been suggested in the literature. We will here only mention
a few. A commonly used index is the Gini–Simpson index (cf Gini (1912) and Simpson
(1949)) which is defined as

G(p) = 1 −
∑

i

p2
i . (3.1)

The function G is obviously Schur-concave. In genetics this index occurs under the name
of heterozygosity (cf Sham (1998)). G(p) is the probability that two individuals chosen
at random, independently of each other, does not belong to the same group. There are
several equivalent versions of this index, e.g.,

D(p) = − ln(G(p)).

The Shannon–Wiener index, is derived from information theory, and is defined as

H(p) = −
∑

pi ln(pi). (3.2)

The function G is obviously Schur–concave.
A general diversity index suggested by Good has the form

Hα,β(p) =
∑

pα
i {− ln(pi)}β, (3.3)

where α and β are positive integers (cf. Good (1953) and Good (1982)), or more general
for positive real numbers (cf. Baczkowski et al. (1998)). H2,0 gives the Gini–Simpson
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index and H1,1 gives the Shannon–Wiener index. Baczkowski et al. (1998) investigates for
which values of α and β the function Hα,β is Schur–concave.

In ecology there is a set of indices that are based on the species richness that is observed
in a random sample. Assume that there are S members in a population distributed over N
species according to the distribution given by p. The expected number of species observed
in a random sample (taken without replacement) of size s equal

N −
N∑

j=1

(
S(1 − pj)

s

)
/

(
S

s

)
≈ N −

N∑
j=1

(1 − pj)
s. (3.4)

The approximation is valid when the sampling fraction is small. These indices are called
rarefaction diversity (cf. Hurlbert (1971) and Heck et al. (1975)) and are Schur–concave.

4. A model for transmission chains

We will assume that the population under consideration is exposed to attacks of different
strains of infections agents. If an infection ”attacks” the population it may start spreading
within the population and a transmission chain will develop. The starting impulse of the
chain may be that a dormant infections becomes infectious (as in the case of tuberculosis),
that an infectious individual enters the population, or that a member of the population
comes in contact with an external source of infection. Depending on the situation and the
population the chain may or may not include a primary case.

We will consider infections that occurs in a population of size P during the time of
study. The observations are assumed to be gathered during the time interval [0, T ).

Different strains of infectious agents that will, independently, start transmission chains
according to Poisson process in time with the intensity πpi respectively. It is natural to
assume that the attack intensity π depends on the size of the population under study. A
simple relation is that π is proportional to the size of the population, i.e., π = λP .

The number of individuals in the population that belongs to a transmission chain will
increase in time. Let Xt be this number t time units after the primary attack. The
stochastic processes describing the development of the transmission chains are assumed to
be independent and identically distributed. Denote the Laplace transform of Xt by

Lt(s) = E (exp{−sXt}) .

Given that m transmission chains are started during the study the starting times will
be distributed as m independent random variables which are uniformly distributed over
the interval (0,T). The number of cases in the chains will have the distribution of m
independent random variables with Laplace transforms

QT (s) =
1

T

T∫
0

Lt(s)dt. (4.1)
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We will assume that we can distinguish between strains (fingerprints) but that we are
not able to determine which transmission chain a case belongs to. Thus, the analysis have
to be based on observed clusters and observed cluster sizes. The number of cases in a
cluster with fingerprints in accordance with strain i has Laplace transform:

exp{Tπpi (QT (s) − 1)}. (4.2)

5. Diversity indices derived from clusters

We will here study some statistical functions based on observations on clusters and their
sizes. In particular, we will be interested in how the expected values of these statistics
are influenced by the transmission of the strains. The formation of transmission chains
and clusters depends, according to the model, on several parameters. Our main interest
is related to the diversity distribution of the attacking infectious strains given by p =
(p1, p2, . . .). In particular, we will discuss monotonicity properties related to the partial
ordering of the abundance distribution p.

The other components of the model are the attack rate π, the time of the study T ,
and the distribution, L(X.), of the stochastic process Xt that describes the spread of a
transmission chain. These auxiliary parameters will in the following be collected in the
vector θ = (π, T,L(X.)). We will also be interested in monotonicity properties related to
θ.

The parameters π and T are real numbers and have the corresponding natural ordering.
There is a natural partial ordering of the processes describing the development of the
transmission chains. We will say that the transmission process X. develops faster than
the chain Y., or that X. ≥ Y., if P(Xt ≤ k) ≤ P(Yt ≤ k) for all t and all k. These
inequalities implies that the Laplace transform of Xt is smaller than the Laplace transform
of Yt. By constructing a convenient sample space it is always possible to find a (Skorohod)
representation such that Xt = Yt + Ỹt where Ỹt is a non-negative random variable.

5.1 The number of clusters

The number of infections with strain i is denoted by Ki. This means that the total
number of observed infections is

∑
i Ki.

A first concern may be the number of clusters, i.e., the number of different strains that
are observed during the study. Let

N =
∑

i

I(Ki ≥ 1). (5.1)

This number equals the number of clusters.
The probability that a strain, or a collection of strains, which has the proportion q is

observed during the study, i.e.,

Iθ(q) = 1 − exp {πTq(QT (∞) − 1)} . (5.2)
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Analogously with the rarefaction index we can consider the expected number of strains
that are active under the course of the study, i.e. the number of clusters observed. Simple
calculations yield that the expected number of clusters observed is

Rθ(p) = E(N) =
∑

i

Iθ(pi) =
∑

i

(1 − exp{πTpi(QT (∞) − 1)}) . (5.3)

For a fixed θ the function Rθ is well defined and Schur–concave. Thus, it can serve as a
diversity index. The expected number of clusters will be larger the more diverse the strain
distribution is.

However, it is important to note that the function are also monotone in the other
parameters. The expected number of clusters increases in π and T . It is also larger the
faster the development of the transmission chain is.

5.2 The clustering index

The observed mean cluster size equals:

M =

∑
i Ki∑

i I(Ki ≥ 1)
. (5.4)

Heuristically it seems clear that the expected mean cluster size will be smaller the more
diverse the strain distribution is. In epidemiological literature on clusters of tuberculosis
it is common to consider

Cn−1 = 1 − 1/M =

∑
i [Ki − I(Ki ≥ 1)]∑

i Ki

. (5.5)

There is a one-to-one correspondence between M and Cn−1. If all clusters have a unique
primary case Cn−1 is the proportion of all cases that are secondary cases. Simple calculation
yields that the expected value of Cn−1, given that there are at least one observed case, is

Cθ(p) = E(Cn−1) = 1 −
∑

i [Zθ(0) − (1 − Iθ(pi))Zθ(pi)]

Iθ(1)
. (5.6)

where

Zθ(q) =

∞∫
0

exp(πT (1 − q)(QT (s) − 1))ds.

To prove this we consider the functions

rj(s) = E

(
I(Kj ≥ 1)∑

i Ki

exp({−s
∑

i

Ki} |
∑

i

Ki ≥ 1

)
.
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Differentiating with respect to s we find that

r′j(s) = −E

(
I(Kj ≥ 1) exp{−s

∑
i

Ki)} |
∑

i

Ki ≥ 1

)

= −E{exp(−s
∑

i

Ki} |
∑

i

Ki ≥ 1)

+ P(Kj = 0)E{exp(−s
∑
i�=j

Ki} |
∑
i�=j

Ki ≥ 1). (5.7)

The functions rj can be obtained by solving this differential equation with the boundary
value rj(∞) = 0.

Obviously Cθ(p) =
∑

i ri(0) is Schur-convex for fixed value of θ. This means that the
expected value of Cn−1 is larger for a less diverse strain distribution than for a more diverse
distribution. Thus the inequality is reversed compared to the index that counts the number
of observed strains.

The simple inequality∑
i Ki + 1∑

i I(Ki ≥ 1) + 1
≤

∑
i Ki∑

i I(Ki ≥ 1)
≤

∑
i Ki + 1∑

i I(Ki ≥ 1)

implies that the the mean cluster size (and Cn−1) decreases when a new cluster is formed
and increases if a new case with a strain that is alreadey observed occurs. There can thus
not exist any general monotonicity property related to the parameters π and T . Trivially M
and Cn−1 are increasing in the partial ordering defined above for the transmission processes
X..

5.3 The quadratic index

It seems natural to define an index that is based on the variability on the cluster sizes.
We will thus define the quadratic index:

V = 1 −
∑

i K
2
i

(
∑

i Ki)2
. (5.8)

Let

vj(s) = E

(
K2

j

(
∑

i Ki)2
exp{−s

∑
i

Ki} |
∑

i

Ki ≥ 1

)
.

This function will solve the differential equation

v′′j (s) = E

(
K2

j exp{−s
∑

i

Ki} |
∑

i

Ki ≥ 1

)

=
[πTpiQ

′′
T (s) + (πTpiQ

′
T (s))2] exp{πT (QT (s) − 1)}
Iθ(1)
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with the boundary conditions v′j(∞) = v′′j (∞) = 0.
The expected value of 1− V is the sum of vj(0) over all strains. Simple manipulations

yield that
Sθ(p) = E(V ) = G(p)H(θ), (5.9)

where G is the Gini-Simpson index and H is a function of θ. In fact, H(θ) = J(0) where
J is the solution of of the differential equations

J ′′(s) = (πTQ′
T (s))2 exp{πT (QT (s) − 1)}/Iθ(1),

J(∞) = 0

J ′(∞) = 0.

This implies that

H(θ) = J(0) =
1

Iθ(1)

∞∫
0

s(πTQ′
T (s))2 exp{πT (QT (s) − 1)}ds. (5.10)

Sθ(p) is Schur-concave for a fixed value of θ. This means that the expected value is
larger for a more diverse strain distribution than for a less diverse distribution.

The dependence on the elements of the parameter θ is more complex. In general it is
increasing in π and T for small values of πT and decreasing for large values. This is partly
due to the fact that new cases when πT is small tends to be the formation of new clusters
which will increase the value of V and changes when πT is large tends to be addition to
already formed clusters, which will tend to decrease V if the clusters are large.
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