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Abstract

Recently Ross showed the applicability of Samuelson’s ‘fallacy of

large numbers’ to be limited. He also found a class of utility functions

that eventually will accept a partial sum of individually rejected ‘good’

gambles. We study when a sequence of gambles, that initially are

rejected, eventually are accepted. Acceptance is found to be when a

sequence of gambles follows a large deviation principle and the utility

function is nonsatiated and bounded from below in a certain way. The

number of needed gambles for acceptance is also computed.
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1 Introduction

The following example illustrates ‘when to accept a sequence of gambles’.
Think of the game, you win $ 2 or lose $ 1 with equal chance. The expectation
is positive, but the guiding utility rejects the offer. Then one would suspect
that, if you are offered to play the game a large number of times, then by
the law of large numbers, the probability of losing has decreased so that
the sum of games is accepted. It is not obvious, as it first seems, that the
partial sum is accepted. For example the probability might not decrease fast
enough compared to the negative tail of the utility function, to be accepted.
‘When to accept a sequence’ is all about the competition between the rate
of decrease in the negative tail of the utility function and the probability of
a sequence of gambles.

Decision-makers are assumed to act according to maximised expected
utility, von Neumann-Morgenstern utilities, opting for maximal satisfaction.
An offer to gamble which increases the current expected utility is accepted
while a decrease in expected utility is rejected. Therefore a gamble X is
accepted at the wealth level w if, E[U(w + X)] > U(w), see for example
Ingersoll or Luca-Raiffa [9, 11].

Kelly [10] suggested the logarithm as utility function. The growth rate of
a portfolio selected according to the logarithm outperforms asymptotically
any other strategy. Therefore it is sometimes argued to be the only rational
way to make a decision because of its asymptotic properties.

Samuelson [15, 16] and Merton and Samuelson [13] called the asymptotic
argument a ‘fallacy of large numbers’, as in every practical case the ‘large
number’ is finite. Samuelson shows that if a utility function, U(x), rejects
a gamble X at all wealth levels, then it will reject any arbitrary partial
sum, Sn =

∑n
i=1 Xi, where the Xi are independent identically distributed

replications of X. The point of view of Samuelson and Merton leads to a
real world paradox since the probability of losing is decreasing, Aurell et al.
[1, 2]. Furthermore, Ross shows that the theorem of Saumelson is limited;
the only utility functions that reject the same gambles at all wealth levels
are the risk-neutral function and the exponential U(x) = x or −e−ax. Ross
also finds a class of utility functions, exponentially bounded from below, that
are eventually accepted for ‘good’ gambles, [14]. However the definition of
eventual acceptance differs from the one stated here.

The Eventual Acceptance Property (EAP) is here defined as a pair prop-
erty between the utility and gambles. A class of utility-gamble pairs that
have EAP is found in which the utility function has to be nonsatiated with
a negative tail that decreases at a slower rate than the tail-probability of
the sequence of gambles. The sequence does not have to be a partial sum.
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To estimate the tail-probability, large deviation techniques are used. Fur-
thermore, an expression is computed for the number of gambles needed for
acceptance.

This article is organised as follows: In section 2 the object studied, EAP
is defined and compared to Ross’ definition. When to accept a partial sum of
gambles, independent or dependent gambles, is studied in section 3 together
with some required results from large deviation theory. The EAP is then in
section 4 generalised to any sequence that follows a large deviation principle
with a rate function. (The rate function does not need to be convex.) In
section 5 the actual number of games needed to accept a sequence of gambles
is computed. Section 6 contains two technical lemmas, relaxing technical
conditions in the general theorem, when the rate function is convex and
continuous. Section 7 summarises the findings of this article.

2 Eventual Acceptance Property

The Eventual Acceptance Property (EAP) is the essential property which is
studied.

Definition 1 (EAP) If U(x) is a utility function and Sn a sequence of ran-
dom variables, then the pair (U(x), {Sn}

∞
i=1), has the Eventual Acceptance

Property if there exists a finite n such that Sn is accepted.

The definition is made to stress the dependent relation between the utility
function and the gamble. The sequence in mind can be a partial sum of, in
some sense ‘nice’ random variables, such that, even if all of the single gambles
are rejected, the partial sum will eventually be accepted.

Note that definition 1 does not require the sequence to be a partial sum of
independent random variables, nor does the definition require E[Sn+1−Sn] >
0. This makes it possible to study, for example a Markov chain of gambles
with negative conditional expected gambles but an over all expected positive
gamble, or functions of the partial sum.

The class of sequences of independent random variables {Xi}
∞
i=1, with

expected value E[Xi] = µi and µ = inf µi > 0 is called ‘good’. Ross defines
a utility function to have EAP if for each such sequence of ‘good’ random
variables there exists a finite number such that the partial sum is accepted
[14] .

Example: To illustrate the difference between the definition made here
and by Ross, take Xi independent identically distributed N(µ, σ2) and the
nonsatiated utility function U(x) = 1 − e−ax, a > 0. Let the partial sum be
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Sn =
∑n

i=1 Xi then,

E[U(Sn)] = 1 − E[e−aSn ] = 1 −
(

E[e−aX1 ]
)n

= 1 − exp
(

n(−µa + a2σ2/2
)

).
(1)

If 2µa < σ2a2 then, as the number of gambles grows, the right hand side of
equation (1) approaches minus infinity. Since for every a, a pair (µ, σ2) can
be found, such that 2µa < σ2a2. The EAP definition by Ross is therefore
violated. However the EAP defined here would be satisfied for every utility-
gamble pair with 2µa > σ2a2.

3 Large Deviation Principle and EAP

In the theory of large deviations one usually looks at the distribution of Sn/n
when n is large. By the law of large numbers Sn/n is concentrated around
the mean when it exists, and it is large deviations from it, that are studied.

Definition 2 (Large Deviation Principle) The sequence Sn/n is said to
follow a large deviation principle (LDP) with rate function I(x) if,

1. The function I(x) is lower semi continuous.

2. For each real number a the level set {x ∈ R : I(x) ≤ a} is compact.

3. For each closed subset F ⊂ R

lim sup
n→∞

1

n
log P

(

Sn

n
∈ F

)

≤ − inf
x∈F

I(x). (2)

4. For each open subset G ⊂ R

lim inf
n→∞

1

n
log P

(

Sn

n
∈ G

)

≥ − inf
x∈G

I(x). (3)

Usually one writes P (Sn

n
≈ x) ≈ e−nI(x) for n large enough.

To find a class of utility-gambles pairs that has the EAP, we use large
deviation techniques. The question of eventual acceptance arose from partial
sums of independent identically distributed random variables with positive
mean, so a natural starting point of the analysis is to state and prove a
theorem for that class.

Consider the sum

Sn =

n
∑

i=1

Xi, (4)
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of independent identically distributed random variables with positive ex-
pected value and cumulant function g(t) = log(E[etXi ]). Cramér’s theorem
states that Sn/n satisfies a LDP if g(t) < ∞ for all t [4]. The condition
g(t) < ∞ can be replaced by a requirement that g(t) is steep, Bucklew [3].

In Cramér’s theorem the rate function is defined as,

I(x) = sup
t

(tx − g(t)). (5)

Moreover the rate function satisfies therefore three important properties.
First the rate function is convex. Secondly the rate function attains its
minimum at µ = E[X] and I(x) ≥ I(µ) = 0 for all x. Third if X has no
upper or lower bound, then there exists a t ∈ R such that I(x) = tx − g(t)
for every value of x and t solves the equation g ′(t) = x.

Theorem 1 Let {Xi}
∞
i=1 be independent identically distributed random vari-

ables, with E[X1] > 0 and g(t) < ∞ for every t. Denote the partial sum by
Sn =

∑n
i=1 Xi.

Sufficient conditions for the pair (U(x), {Sn}
∞
i=1) to have the EAP are

that U(x) is nonsatiated and there are constants C > 0 and γ > 0 such that
for every x ≤ 0,

|U(x)| ≤ Ce−γx.

The constant γ satisfies g(−γ) < 0 that is, τ < −γ < 0 where τ is the
negative root to the equation g(τ) = 0.

The last sentence of the theorem can be rephrased in terms of the rate func-
tion. The constant τ is equal to I ′(xτ ). This is true since the cumulant
function is connected to the rate function by the Legendre transform. The
choice of τ is such that g(τ) = 0. Let xτ = g′(τ), then the Legendre trans-
formation is I(xτ ) = τxτ − g(τ) = τxτ . Hence I(xτ ) = I ′(xτ )xτ a fact that
also can be concluded from the convexity of I(x). One can also see that
τ = I ′(xτ ).

The conditions for the gambles in theorem 1 assure that the conditions in
Cramér’s theorem are fulfilled, therefore Sn/n follows a LDP with a convex
rate function I(x). The use of large deviation techniques is not necessary in
the proof at this stage, but will in the general case.

The theorem loosely states that if the sequence obeys the LDP and the
rate function decreases faster than the negative tail of the utility function,
then the pair has the EAP. It is an exponential competition between the tail
of the utility function and the rate function, and when the rate function is
the winner, then the pair is EAP.
Proof. Since utility functions are not unique in the information they carry,
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they can be normalised for every level of wealth without any lost of generality,
such that U(0) = 0. Only affine transformations aU(x) + b, a > 0, preserve
equivalence between two von Neumann-Morgenstren utility functions, Inger-
soll [9]. Therefore to prove the EAP, one has to show that there exist a n
such that Sn satisfy, E[U(Sn)] > U(0). Divide the expected utility into a
positive and a negative part,

E[U(Sn)] =

∫ ∞

−∞

U(nx)dFn(x) =

∫ 0

−∞

U(nx)dFn(x) +

∫ ∞

0

U(nx)dFn(x).

In the equation the measure Fn(x) denotes the probability distribution func-
tion of Sn/n. The last integral is positive for a n sufficiently large, because of
the assumptions of nonsatiation and positive expected value. According to
nonsatiation there exists a constant a such that U(0) < U(a) and a < nE[X1]
leads to 0 < P (Sn ∈ [a,∞)) = 1 − Fn(a/n). Therefore choose n such that
a < nE[X1],

0 ≥ E[U(Sn)] ≥

∫ 0

−∞

U(nx)dFn(x) + U(a)(1 − Fn(
a

n
)). (6)

The utility-gamble has the EAP if the first integral on the right hand side
in equation (6) is converging to zero. By the condition |U(x)| ≤ Ce−γx and
integrating over real line the first integral is,

E[U(Sn), Sn ≤ 0] ≥ −CE[e−γSn ] = −Ceng(−γ). (7)

If g(−γ) < 0 then equation (7) converges to zero as n increases. The convex-
ity of g(t), 0 = g(0) and 0 < g′(0) = E[Xi] assure that g(t) < 0 for τ < t < 0,
where τ < 0 is a point where 0 = g(τ). Therefore the condition τ < −γ < 0
assures g(−γ) < 0. Graphically this is easily realised, use the figure on page
8. This completes the proof. �

Example: Exponential-, gamma- and normal distributed random vari-
ables are examples of random variables with steep cumulant functions which
therefore have convex rate functions.

The structure of the proof of theorem 1 is only dependent on LDP, con-
vexity of the cumulant function, (convexity of the rate function) nonsatiation
of the utility function, and that for some finite number of gambles there is a
strictly positive probability to be above the nonsatiation point for the par-
tial sum of gambles. Theorem 1 could therefore be extended to dependent
variables.

A more general large deviation result is the Gärtner-Ellis theorem, [8, 7]
which guarantees a convex rate function. Define gn(t) = n−1 log

(

E
[

etSn
])

.
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Then there is a convex rate function, I(x) = supt(tx − g(t)), if g(t) =
limn→∞ gn(t) exists for all t ∈ R, where we allow infinity both as a limit
value and as an element of the sequence {gn(t)}∞n=1.

Now let us make use of the Gärtner-Ellis theorem, to state an theorem
which is applicable to sequences of dependent gambles. Some of the gambles
may even conditionally have negative expected value.

Theorem 2 Assume the utility function U(x) is nonsatiated, that is there is
an a such that U(0) < U(a). Let {Sn}

∞
n=1, be a sequence of random variables

satisfying the conditions of Gärtner-Ellis theorem and that there is a N such
that for n ≥ N , P (Sn > a) > 0.

Sufficient conditions for (U(x), {Sn}
∞
i=1) to have the EAP are that there

are constants C > 0 and a γ > 0 such that for every x ≤ 0,

|U(x)| ≤ Ce−γx,

The constant γ satisfies g(−γ) < 0 that is, τ < −γ < 0 where τ is the
negative root to the equation g(τ) = 0.

The ingredients are the same as before to have the EAP. The gamble sequence
need to fulfil the LDP and its rate function must dominate the negative tail
of a nonsatiated utility function. The proof of theorem 2 is skipped since it
can be constructed almost identically as the proof of theorem 1 and it follows
directly from the general theorem 3, lemma 2 and lemma 3.

Example: The EAP definition in this article makes it possible to study
gambles, which are described by a Markov-model. Theorem 2 handles this
case. Assume that we have an ergodic Markov chain with two states, 1 and
2. We get $ 2 for every visit to state 1 and we lose $ 1 in state 2. Denote
what we earn at time i by Xi and the current state by Yi. The Markov chain
Yi is characterised by the transition matrix,

P =

(

1/2 1/2
7/24 17/24

)

.

Given that the process is in state 1 the conditional expectation is E[Xi+1|Yi =
1] = 1/2 and if it is in state 2, E[Xi+1|Yi = 1] = −1/8. This gamble is not a
‘good’ one, but it is an interesting one for the definition of EAP stated here.

The Markov chain is ergodic and therefore it has a limit distribution.
The limit distribution π is the solution to πP = π. The solution is π =
(7/19, 12/19). The expected value of the game under the limit distribution
is, limi→∞ Eπ[Xi] = 2/19. The asymptotic game is a positive one. Therefore
the partial sums Sn =

∑n
i=1 Xi have positive drift, although some of the

individual games have negative conditional expectation.
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The function g(γ) for a Markov chain is found as the logarithm of largest
eigenvalue to the matrix,

T =

(

1/2e2γ 1/2e−γ

7/24e2γ 17/24e−γ

)

.

Eigenvalues λ are found by solving the equation det(T− λI) = 0. Hence the
largest eigenvalue is,

λmax(γ) =
1/2e2γ + 17/24e−γ

2
+

√

(1/2e2γ − 17/24e−γ)2

4
+ 7/24e2γ · 1/2e−γ.

The cumulant function is therefore equal to g(γ) = log(λmax(γ)). By solving
the equation g(τ) = log(λmax(τ)) = 0 the EAP utility-gamble pair can be
found. By numerical calculations τ = −0.0685 see figure on page 8. Therefore
every nonsatiated utility function such that |U(x)| < Ce−0.0685x when x < 0
will eventually be accepted.

Figure 1: The cumulant function g(t) for the Markov chain example. Notice
the points where g(t) = 0, t = 0 and t = −0.0685.

All large deviations results used in this section can be found in Bucklew
[3].



When to Accept a Sequence of Gambles 9

4 Main Result

In a more general situation where for example the sequence studied is a
function of the partial sum, f(

∑

Xi), the rate function no more has to be
convex.

In large deviation theory the contraction principle can be used to find
the rate functions for a function of a sequence that follows the LDP. Assume
that f(·) is a continuous function with inverse f−1(·). If the sequence Sn/n
is LDP with rate function I(x) then the contraction principle can be found
by using,

P

(

f

(

Sn

n

)

≈ y

)

= P

(

Sn

n
≈ f−1(y)

)

.

Therefore the rate function J(y) for f(Sn/n) is given by,

J(y) = inf
x:f(x)=y

I(x).

Example: If Xi are independent identically distributed N(µ, σ2) then the
rate function for the estimated mean is I(x) = (x − µ)2/2σ2. If the gamble
sequence of interest is f(Sn/n) = b − (Sn/n)4, where b is a constant, then
the inverse of y = f(x) = b− (x)4 is f−1(y) = ±(b− x)1/4. Assume that it is
the positive root that minimises the rate function for this y. Then the rate
function for this sequence is J(y) = I((b − y)1/4) = ((b − y)1/4 − µ)2/2σ2,
y ≤ b, which is not convex. From this simple example one understands that
a rate function that is not convex is not uncommon and quite natural.

Theorem 3 The pair (U(x), {Sn}
∞
n=1) have the EAP if the following suffi-

cient conditions hold:

1. Sn

n
follows the LDP with rate function I(x).

2. U(x) is nonsatiated, that is, there is an a such that U(0) < U(a).

3. There is an N such that for every n ≥ N , P (Sn > a) ≥ δ > 0.

4. limn→∞ infx<0 U(nx)e−nI(x) = 0.

5. limM→∞ lim supn→∞ log
(

E
[

−U(Sn)1{U(Sn)≤−enM}

])

= −∞.

It can be shown that the technical conditions 4 and 5 in theorem 3 are
equivalent to the condition |U(x)| ≤ Ce−γx, x ≤ 0 and τ < −γ < 0, when
I(x) is convex and continuous, see lemma 2 and 3 in the section 6.
Example: To see that the condition |U(x)| ≤ Ce−γx when x ≤ 0 from theorem
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2 is not enough when I(x) is not convex, take the rate function I(x) =
((b − x)1/4 − µ)2/2σ2, from the example above and µ = 0. Take the utility
function to be |U(x)| = Ce−γx then,

lim
n→∞

inf
x<0

−Ce−nγxe−n (b−x)1/2

2σ2 = −∞.

Varadans integral lemma is needed to prove theorem 3.

Lemma 1 (Varadhan) If φ : X → R is an upper semi continuous function
for which one of the tail conditions holds,

lim
M→∞

lim sup
n→∞

log
(

E
[

enφ( Sn
n

)1φ(Sn)≥M

])

= −∞

or for some γ > 1,

lim sup
n→∞

log
(

E
[

enγφ( Sn
n

)
])

< ∞,

and the large deviations upper bound holds with a good rate function, then,

lim sup
n→∞

1

n
log

(

E
[

enφ( Sn
n

)
])

≤ sup
x∈X

(φ(x) − I(x))

For formulation of the lemma and further details see [5].
Proof. Without loss of generality, let the utility functions be normalised, for
every level of wealth such that U(0) = 0 . Therefore to prove the EAP, one
has to show that there exist a n such that Sn satisfy, E[U(Sn)] > U(0). The
probability distribution function of Sn/n is denoted Fn(x). Split the integral
in two,

E[U(Sn)] =

∫ ∞

−∞

U(nx)dFn(x) =

∫ 0

−∞

U(nx)dFn(x) +

∫ ∞

0

U(nx)dFn(x).

The second integral is for n large enough positive, because the existence of
an a such that U(0) < U(a) (nonsatiation), and that there is a N such that
for every n ≥ N , P (Sn > a) ≥ δ > 0 . Therefore,

E[U(Sn)] ≥

∫ 0

−∞

U(nx)dFn(x) + U(a)δ, (8)

for every n ≥ N . Heuristically one would expect that,

∫ 0

−∞

U(nx)dFn(x) ≈

∫ 0

−∞

U(nx)e−nI(x)dx ≈ inf
x<0

U(nx)e−nI(x) → 0, (9)
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as n → ∞ by assumption.
Varadhan’s Integral lemma verifies this conclusion. By the existence theo-

rem for utility functions Ingersoll [9], U(x) is continuous, and therefore lower
semi continuous. Together with the fact that Sn/n obeys the LDP with
rate function I(x) and by substituting −U(x) = enφ(x/n) the conditions in
Varadhans lemma are fulfilled. Equation (8) is therefore,

≥ inf
x

U(nx)e−nI(x) + U(a)δ → U(a)δ > 0, n → ∞.

This concludes that Sn is eventually accepted. �

5 Number of gambles needed

A natural question to ask is for what number of gambles is the sequence
accepted? For a convex rate function which ‘dominates’ the negative tail of
the utility function, an explicit formula for a sufficient number of gambles
needed can be derived.

Theorem 4 Assume the conditions of theorem 2 hold i.e., the pair (U(x), {Sn}
∞
n=1)

have the EAP. Let,

N1 = log

(

C

U(a)

)

1

γxγ + I(xγ)
= log

(

U(a)

C

)

1

g(−γ)
,

where xγ solves γ = −I ′(xγ). Let N2 be the smallest n such that a/n < µ. A
sufficient N for acceptance of Sn for every n ≥ N is N = max(N1, N2).

Notice that if g(τ) = 0, for some τ < 0 then,

lim
−γ→τ

log

(

U(a)

C

)

1

g(−γ)
= ∞.

The conclusion is that when the utility function is close to the rate function
in the rate of decrease in the negative tail, then a big number of gambles is
needed.

Proof. From the proof of theorem 1 we know that,

E[U(Sn)] ≥ inf
x<0

−Ce−n(γx+I(x)) + U(a) sup
x≥a/n

e−nI(x) > 0. (10)

Since the pair has the EAP a x that minimises −Ce−n(γx+I(x)) can be found.
Differentiate with respect to x and put the first order derivative equal to zero
leads to the equation,

C (γ + I ′(x)) e−n(γx+I(x)) = 0.
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Therefore the equation to be solved is,

−γ = I ′(x),

which has the solution xγ. If n ≥ N2 then supx≥a/n −nI(x) = 0 and hence
equation (10) can be solved with xγ,

log

(

C

U(a)

)

1

γxγ + I(xγ)
≤ n.

Recall the Legendre transform, which states that g(−γ) = − (−γxγ − I(xγ))
and

log

(

U(a)

C

)

1

g(−γ)
≤ n.

which ends the proof. �

6 Relaxing the Technical Conditions

The essence of the two lemmas in this section is that the technical conditions
4 and 5 in theorem 3 are equivalent to the condition |U(x)| ≤ Ce−γx, x ≤ 0
and I ′(xτ ) < −γ < 0, when I(x) is convex and continuous. The point xτ is
found by g(τ) = 0 and xτ = g′(τ), also I ′(xτ ) = τ .

Lemma 2 Let the rate function I(x) be convex and I(µ) = 0 for 0 < µ. If
and only if for every x ≤ 0,

|U(x)| ≤ Ce−γx

for I ′(xτ ) = τ < −γ < 0, then,

lim
n→∞

inf
x<0

U(nx)e−nI(x) = 0.

Proof. As before assume that U(x) is normalised for every level of wealth
such that U(0) = 0. First we prove the if part. The utility function U(x) is
not decreasing and U(0) = 0, therefore

0 ≥ inf
x<0

U(nx)e−nI(x).

By the assumption |U(x)| ≤ Ce−γx and U(x) ≤ 0 for x < 0,

≥ inf
x<0

−Ce−γnxe−nI(x) = −C sup
x<0

e−nx(γ+
I(x)

x
).



When to Accept a Sequence of Gambles 13

The convexity of the rate function guarantees that it is bounded from below
by a line: That is I(x) ≥ I ′(xτ )x, xτ < 0, I(µ) = 0 for 0 < µ and the
convexity of I(x), I ′(xτ ) < 0. Therefore,

≥ −C sup
x<0

e−nx(γ+I′(xτ )) → 0,

as n → −∞ by choosing 0 < γ such that I ′(xτ ) < −γ. The convexity of I(x)
assures that I ′(xτ ) ≤ I ′(0) < 0 which can be used as an easy check if γ is
small enough. Alternatively one can use the Legendre transform instead of
the convexity of I(x) to show the last step.

The proof of the only if part. By the continuity of U(x), U(0) = 0 and
limn→∞ infx<0 U(nx)e−nI(x) = 0, assures that inf0≤n infx<0 U(nx)e−nI(x) =
−C > −∞ exists and

inf
0≤n

inf
x<0

−|U(nx)|e−nI(x) = − sup
0≤n

sup
x<0

|U(nx)|e−nI(x).

For every x and n is − supx,n f(n, x) ≤ −f(x, n),

≤ −|U(nx)|e−nI(x) ≤ −|U(nx)|e−nI′(xτ )x,

where the second inequality is due to the convexity of I(x). Exchange y = nx,

≤ −|U(y)|e−yI′(xτ ) ≤ −|U(y)|eyγ.

where I ′(xτ ) < −γ < 0. Conclude that, supn supx<0 |U(nx)|e−nI(x) = C and
that,

|U(y)| ≤ Ce−yγ ,

for y < 0. �

Lemma 3 Let the rate function I(x) be convex, continuous and I(µ) = 0
for 0 < µ. If and only if for every x ≤ 0,

|U(x)| ≤ Ce−γx

for I(xτ ) < −γ < 0, then,

lim
M→∞

lim sup
n→∞

log
(

E
[

−U(Sn)1{U(Sn)≤−enM}

])

= −∞.

Proof. Start by proving the if part. It is equivalent to show that E
[

−U(Sn)1{U(Sn)≤−enM}

]

→
0,

0 ≤ E
[

|U(Sn)|1{U(Sn)≤−enM}

]

≤
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by assumption is |U(Sn)| ≤ Ce−γSn,

E
[

|U(Sn)|1{U(Sn)≤−enM}

]

≤ CE
[

e−γSn1
]

.

Use the definition of upper integral, written as a sum,

≤ C
∑

i

sup
x∈∆xi

e−γnxP (Sn ∈ ∆xi)1

where ∆xi = [xi, xi+1) is some partition of the negative real line. U(x) is not
decreasing and therefore has its lowest value for U(x) in xi and e−nI(xi+1) ≥
P (Sn ∈ ∆xi). By continuity xi → xi+1 the difference is small, therefore using
the convexity of I(x), we get I(x) ≥ I ′(xτ )x and

= C
∑

i

e−γnxie−nI(xi)1 ≤ C
∑

i

e−nxi(γ+I′(xτ )).

The sum is convergent if I ′(xτ ) < −γ < 0, and as M, n → ∞, the sum
converges to 0.

The proof of the only if part. The facts that U(0) = 0, U(x) is contin-
uous and that limM→∞ lim supn→∞ E [−U(Sn)1] = 0 assure the existence of
supn E [|U(Sn)|] = C < ∞. Use the definition of a lower integral,

E[|U(Sn|] ≥
∑

|U(Sn)|P (Sn ∈ ∆xi)

The LDP is used to find a upper bound for the probability,

≥
∑

i

|U(nxi)|e
−nI(xi) ≥ |U(nx)|e−nI(x).

Exchange y = nx,

C = sup
n

E[|U(Sn)|] ≥ |U(y)|e−y
I(x)

x ≥ |U(y)|e−yI′(xτ ),

which ends the proof. �

7 Conclusions

In this article we examined the Eventual Acceptance Property. EAP was de-
fined as a pair property between the utility function and a sequence of gam-
bles. This definition does not require positive expectation for every gamble.
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The class of utility-gamble pairs to have EAP depended on three things:
First, that the utility function was not decreasing and nonsatiated. Secondly
that the sequence of gambles followed the LDP. Third, that the negative tail
of the utility function was decreasing more slow than the rate function. The
technical conditions for this domination of the rate function, when it was con-
vex, was that the utility function was bounded from below by an exponential
function. The exponential function was related to the first order derivative of
the rate function. The large deviation techniques made it possible to study
for example Markov chains with conditional negative expectation.

When the rate function was not convex the technical conditions for EAP
to hold was less transparent. Rate functions that is not convex could for
example arise by transformations of the partial sum.

We proved that the two technical conditions 4 and 5 in the general theo-
rem 3, could be substituted by the condition in theorem 2. This was possible
when the rate function of the gambles were convex and continuous.

When the conditions for EAP to hold were fulfilled with a convex rate
function, a closed form formula for a sufficient number of gambles needed to
accept the gamble was derived.
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