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Abstract

If two infectious agents that causes cross-immunity spread simultaneously in a
population they will compete for susceptible individuals. The outcome of the com-
petition will depend on the strength and the speed with which the agents spread.
Asymptotically, in a large population, a faster agent will be undeterred by a slower
agent. However, if the agents spread equally fast, the proportion of the total number
of infected that is infected by a particular of the two agents is a non–degenerate ran-
dom variable. Its value depends on the early diffusion of the epidemic. It is shown
how the distribution of this random variable can be calculated by numerical methods.

1. Introduction

We consider the simultaneous spread of two distinct infectious agents in a closed population.
The setting is as follows. At time t = 0 the population consists of n individuals, all
susceptible to both infections. At that time infected individuals enters the population from
outside. Some of these individuals spread agent 1 and other agent 2. The two infectious
agents interact in such a way that an individual which has been infected by one of the two
agents can not be reinfected by any of the agents. Since the two agents infer immunity
towards each other they will compete for susceptible individuals. Agents that are strong
(i.e. has large total infectivity) and fast (i.e. spreads the infectivity shortly after being
infected) have an advantage in this competition. Our aim is to study how these properties
of the agents decide the relative outcome of the two epidemics.

The spread is assumed to follow the rules of a general epidemic model (cf. Bailey (1975)
and Lefévre (1990)). This means that each infected individual is infectious with a constant
infectivity during an exponentially distributed infectious time. After this the infected
individuals are non–infectious and immune, i.e. they can not be re-infected. Important
features of this model is that there are no latency times and no variation of infectivity
during the infectious period.

We will study the proportion of the population that is finally infected and the distribu-
tion of the infections between the two agents. The main results are asymptotic, i.e., they
give approximations that are valid in large populations.
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There are a number of studies on how cross immunity between different strains of
infectious agents influences the equilibrium in a dynamic population (cf White et al. (1998),
Adler and Brunet (1991), and Lin et al. (1999)). These studies are focused on properties of
solutions to differential equations. In this paper we will study the non equilibrium situation
where the an epidemic spread is started by a small number of infected persons entering a
totally susceptible (closed) population. This force us to consider a non stationary situation
where the randomness at the early stage of the spread has a decisive role for the progress
of the epidemic. The paper Kendall and Saunders (1983) studies a situation similar to
the one studied in this paper. However, they consider an epidemic that is started when a
small proportion of the population being infected by the competing agents. Also in this
situation the analysis is carried through by studying solutions to differential equations.

The presentation of the models and the proofs of the results are based on general theory
for counting processes and limit theorems for martingales. An introduction to methods
of this kind applied to infectious disease modelling can be found in Becker (1989) and in
Svensson (1993).

In section 2 the notation is introduced and the epidemic model is defined with the use
of counting processes. An equation of balance that the epidemic has several the possible
final states is derived in section 3. The speed at which the infections spread initially is
an important factor that influence the outcome of the competition between the agents. In
fact, this decides which of the possible final states is attained. Section 4 contains a detailed
analysis of the progress of the epidemic through four phases. This analysis is the basis for
the derivation of asymptotic distributions for the final sizes of the two agents, the final
size of the sum of the agents, and the final proportion of the infected by the two agents in
section 5. The speed of convergence to the asymptotic results are slow.

In a forthcoming paper we will extend the results to models where the parameters that
describe infectivity depend on the population size.

2. The general epidemic model with two infectious agents

The progress of the epidemic can be traced through counting processes that count the
number of infected and the number of non–infectious immune individuals.

The two types of infections are distinguished by the subscripts 1 and 2. In order to
indicate the dependence on the population size we will use n as superindex. Let Nn

i (t),
i = 1, 2, count the number of individuals in the population that are infected, by a specific
agent, up till time t. This means that Nn(t) = Nn

1 (t) +Nn
2 (t) is the number of individuals

infected by any of the agents. Furthermore let Dn
i (t) count the number of individuals in

the population that, at time t, are non–infectious and immune after an infection with agent
i.

We will assume that the spread starts at time t = 0. At that time Ci individuals
spreading infectious agent i enters the population. Thus at time t the number of individuals
actively spreading agent i is

En
i (t) = Nn

i (t) −Dn
i (t) + Ci, (2.1)

i = 1, 2.
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The lengths of infectious periods are assumed to be independent and exponentially dis-
tributed with mean length 1/γi, i = 1, 2. During the infectious period the (instantaneous)
infectivity of an infectious individual is measured by the parameter αi, i = 1, 2.

The epidemic model is defined by the intensities of the counting processes involved. We
will assume that the intensities of the counting processes Nn

i are

λn
i (t) = αi(1 −Nn(t−)/n)En

i (t−), (2.2)

and that the intensities of the counting processes Dn
i are

µn
i (t) = γiE

n
i (t−), (2.3)

i = 1, 2.
The strength of an infectious agent is measured as the mean amount of infectivity

spread by an infectious individual. In the model considered here the infectious agents have
the strengths

θi = αi/γi (2.4)

i = 1, 2. The strength is, in this case, equal to the basic reproduction number. This
parameter is usually denoted by R0 and can be interpreted as the expected number of
individuals one infectious individual infects in a totally susceptible population. Throughout
this paper we will assume that agent 1 is stronger than agent 2 and that both agents have
strengths (R0) greater than 1, i.e., θ1 ≥ θ2 > 1.

When two infectious agents spreads simultaneous in a population it is not sufficient to
consider their strengths. In such cases the speed of the spread is of importance. For this
reason we consider

ρi = αi − γi, (2.5)

i = 1, 2. As we shall see, ρi is related to the rate with which the agent spreads initially in
a totally susceptible population.

3. The final sizes

Since the population is closed the epidemics will die out in finite time. The proportion of
the population that eventually are infected by the agents are

πi = Nn
i (∞)/n, (3.1)

i = 1, 2. These numbers are referred to as the final size of the agents. The total final size,
i.e., the proportion of individuals finally infected by either of the agents is

π = π1 + π2. (3.2)

We will also be interested the proportion of infections that comes from the two agents.
For this reason we define the ratio

P =
π1

π1 + π2

. (3.3)
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This ratio will be called the final proportion.
In the general epidemic model with only one infectious agent it is well–known that

the distribution of the final size can have a bimodal behavior. If the strength of the
agent exceeds 1 the epidemic will either be small or reach a substantial proportion of the
population. The final size will be one of two possible solutions to an equation of balance.
With two infectious agents the situation is more complicated. However, also in this case
there is a equation of balance, which is given in theorem 3.1 below.

First we will prove a lemma that will be used repeatedly in the following.

Lemma 3.1. Let Mn be a sequence of martingales with means 0 and let tn be a sequence
of stopping times then

(a) E([Mn](tn)) → 0 as n→ ∞ implies that

Mn(tn) → 0

in probability as n→ ∞, and

(b) [Mn](tn) → 0 and sups≤tn | ∆Mn(s) |→ 0 in probability as n→ ∞ implies that

sup
s≤tn

|Mn(tn) |→ 0

in probability as n→ ∞.

Proof. Since E((Mn)2(tn)) = E([Mn](tn)) proposition (a) follows from Chebyshev’s in-
equality.

The quadratic variation [Mn] L–dominates (Mn)2. According to Lenglard’s inequality
(see Jacod and Shiryaev (1987))

P(sup
s≤tn

(Mn)2(s) > ε) ≤ 1

ε
[η + sup

s≤tn
| ∆Mn(s) |2] + P([Mn](tn) ≥ η). (3.4)

for any η > 0 and ε > 0. This proves proposition (b).

Theorem 3.1. The asymptotic distribution of (Nn
1 (∞)/n,Nn

2 (∞)/n) is concentrated on
the solutions to the equation

− ln(1 − π) = θ1π1 + θ2π2. (3.5)
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Proof. Since the epidemics ends in finite time

Nn
i (∞) = Dn

i (∞) + Ci,

i = 1, 2. For each n we can define the martingales:

Mn(t) =

t∫
0

dNn(s)

n−Nn(s−)
− θ1D

n
1 (t)/n− θ2D

n
2 (t)/n.

The elementary inequality

n∫
n−Nn(t)

dx/x ≥
Nn(t)−1∑

i=0

1/(n− i) ≥
n+1∫

n−Nn(t)+1

dx/x, (3.6)

implies that

− ln(1 − π) − θ1π1 − θ2π2 ≥ Mn(∞)

≥ − ln(1 − nπ/(n+ 1)) − θ1(π1 + C1/n) − θ2(π2 + C2/n). (3.7)

Now

[Mn](t) =

t∫
0

dNn(s)

(n−Nn(s−))2
=

n∑
i=n−Nn(t)+1

1/i2 ≤

≤
n∫

n−Nn(t)

dx/x2 =
Nn(t)

n(n−Nn(t))
. (3.8)

First observe that [Mn] is uniformly bounded by
∑∞

i=1 1/i2, for all n. Thus Mn(∞) is
uniformly bounded in probability and (3.7) implies that π is uniformly bounded away from
1. From (3.8) it follows that [Mn](∞) → 0 in probability as n → ∞. Lemma 3.1 implies
that Mn(∞) → 0. Together with (3.7) this proves the theorem.

We will say that an agent has asymptotically large (or epidemic) spread if has a final size
is positive. Equation (3.5) gives the possible final sizes. First consider the equation

− ln(1 − π) = θiπ,

i = 1, 2.This equation has always the solution π = 0. Since θi > 1 it also has a positive
solution, πi. Evidently (π1, π2) = (0, 0), (π1, 0) and (0, π2) are possible solutions of (3.5).
These solution corresponds to cases where none of the agents or only one of the agents have
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Figure 3.1. Solutions of the balance equation for which both π1 and π2 are positive, which
are possible final sizes. Here θ1 = 2 and θ2 = 1.25.

epidemic spread. However, there are also solutions such that both π1 and π2 are positive.
These solutions define a curve in the (π1, π2)–plane. Elementary calculations shows that
these solutions all lies on a concave curve connecting (0, π2) and (π1, 0). It is (at least
heuristically) obvious that agent 2 can never spread more in case agent one also spreads in
the population that if it were on its own. Similarly the spread of agent one will never be
less than if agent 2 has optimal spread. This makes a further restriction on the possible
final states for (π1, π2).

Let π1 be the largest solution of

− ln(1 − π1 − π2) = θ1π1 + θ2π2. (3.9)

(as a function of π1), An elementary analysis reveals that π1 > 0 if and only if θ1 >
1/(1 − π2) or equivalently

θ2 <
ln(θ1)

1 − 1/θ1
. (3.10)

Positive final sizes π1 are contained in the interval [π1, π1].
In figures 3.1 and 3.2 the possible solutions are indicated. In the first case π1 > 0 and

in the second case π1 = 0.

4. The phases of an epidemic

To find out how large part of the total epidemic that is caused by the two agents we will
divide the progress of the epidemic into four phases. The division is essentially the same
as used by Barbour (1975) in his study of the duration of the general epidemic.
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Figure 3.2. Solutions of the balance equation for which both π1 and π2 are positive.,
which are possible final sizes. Here θ1 = 2 and θ2 = 1.5.

During the initial phase the infectivity builds up in the population but still only a
negligible part of the population is infected. In this paper the initial phase is defined to
last until ln(n)a individuals are infected. During the initial phase there is no interference
between the spread of the two agents and the spread can be approximated by independent
birth–and–death processes. Asymptotically this phase will last for a considerable time.
The duration is of order ln(n). During the initial phase it is decided if the spread of an
agent will be asymptotically large (i.e. πi > 0) or not.

During the second phase the number of infected individuals grows to εn, where ε is a
small positive number. The duration of this transitional phase is of size ln(ln(n)).

After the transitional phase follows an epidemic phase with rapid spread of the epidemic.
At the start of this phase a small proportion of the population is infected and at the end a
proportion of infected is close to a solution of (3.5). If both agents begins to spread in the
initial phase there are two possibilities depending on the relative speeds and strengths of
the two agents. One possibility is that the all epidemic spread takes place during a short
time span, whose length is uniformly bounded independent of the population size. Another
possibility, which takes place if and only if ρ1 < ρ2 and the inequality (3.10) holds, is that
there are two distinct time intervals for epidemic spread. First the fastest agent approaches
its final size,π2. During this time the lower, but stronger, agent 1 still has only infected
a almost negligible proportion of the population. The spread of agent 1 passes through a
transition phase and an epidemic phase after which it almost reaches its final size π1.

Finally there is a fading–out phase during which the spread stops due to lack of sus-
ceptible individuals in the population.
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4.1 The initial phase

In the initial phase the two agents will not interfere with or deter each others spread.
They can be studied separately. Technically we will approximate the spread of in the early
phase by independent birth–and–death–processes.

Let N
(ε)
i (t) and D

(ε)
i (t) be counting processes with intensities

λ
(ε)
i (t) = αi(1 − ε)E

(ε)
i (t−), (4.1)

and
µ

(ε)
i (t) = γiE

(ε)
i (t−) (4.2)

where
E

(ε)
i (t) = N

(ε)
i (t) −D

(ε)
i (t) + Ci, (4.3)

i = 1, 2.
This means that (N

(ε)
i , D

(ε)
i ), i = 1, 2 are two independent birth-and-death processes

with birth intensities αi(1 − ε) and death intensities γi.

Lemma 4.1. The inequalities

N
(ε)
i (t) ≤ Nn

i (t) ≤ N
(0)
i (t), (4.4)

D
(ε)
i (t) ≤ Dn

i (t) ≤ D
(0)
i (t), (4.5)

and
E

(ε)
i (t) ≤ En

i (t) ≤ E
(0)
i (t) (4.6)

hold (in distribution) for i = 1, 2 and all t such that Nn(t)/n ≤ ε.

Proof. The proof is based on a coupling argument. We will construct a probability space
on which all processes are defined and on which the inequalities hold for sure.

Let (N
(0)
i , D

(0)
i ), i = 1, 2, be two independent birth-and-death processes. To the

probability space where these processes are defined we add four independent sequences
Ui1, Ui2, . . . and Vi1, Vi2, . . . of independent uniformly distributed random variables, i = 1, 2.

Let Nn
i jump each time the process N

(0)
i jumps and

U
iN

(0)
i (t)

≤ (1 −Nn(t−)/n)En
i (t−)

E
(0)
i (t−)

and let Dn
i jump each time the process D

(0)
i jumps and

V
iD

(0)
i (t)

≤ En
i (t−)

E
(0)
i (t−)
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In the same way let N
(ε)
i jump each time the process N

(0)
i jumps and

U
iN

(0)
i (t)

≤ (1 − ε)E
(ε)
i (t−)

E
(0)
i (t−)

and let D
(ε)
i jump each time the process D

(0)
i jumps and

V
iD

(0)
i (t)

≤ E
(ε)
i (t−)

E
(0)
i (t−)

With this construction En
i (t) ≤ E

(0)
i (t) for all t since if equality holds at some time t

then D
(0)
i jumps simultaneously with Dn

i and Nn
i jumps only if N

(0)
i jumps. After the next

jump the equality still holds or En
i (t) < E

(0)
i (t).

From a similar argument it follows that E
(ε)
i (t) ≤ En

i (t) for all t. This proves (4.6).
Inequalities (4.4) and (4.5) then follow directly from construction.

We will say that a random variable has a L(k, θ)–distribution if it is the sum of k
independent identically distributed random variables Z1, . . . , Zk with distribution functions

P(Zj ≤ z) =
1

θ
I(z ≥ 0) + (1 − 1

θ
)(1 − exp{−(1 − 1

θ
)z}). (4.7)

The distribution of Zj is a mixture of a distribution with all mass at 0 and an exponential
distribution such that the expectation of Zj equals 1.

It is well–known that the speed at which the birth–and death processes grows is related
to ρi = αi − γi. We will need the following lemma:

Lemma 4.2. As t→ ∞
E

(0)
i (t)/ exp{ρit} → ξi (4.8)

and

N
(0)
i (t)/ exp{ρit} → θi

θi − 1
ξi (4.9)

almost surely where ξi has a L(Ci, θi)–distribution. Furthermore N
(0)
i (∞) is bounded with

probability θ−Ci
i .

Proof. It follows from general theory of branching process that E
(0)
i (t)/ exp{ρit} converges

almost surely, as t→ ∞, to a non–degenerate random variable (see Harris (1963)).

In case Ci = 1 the Laplace transform of E
(0)
i (t)/ exp{ρit} equals, (see Kendall (1948)),
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γi(1 − e−ρit) + (αie
−ρit − γi)e

−u exp{−ρit}

αi − γie−ρit + αi(1 − e−ρit)e−u exp{−ρit}

As t→ ∞ this Laplace transform converges to

ρi + γiu

ρi + αiu
,

which is the Laplace transform of a random variable with a L(1, θ)–distribution.
If Ci > 1 the birth–and–death process can be regarded as the sum of Ci independent

birth–and–death processes. In that case the limit distribution of E
(0)
i (t)/ exp{ρit}, if it

exists, is the convolution of Ci limit distributions.

Theorem 4.1. Nn
i is uniformly bounded in n with probability θ−Ci

i , i = 1, 2, and Nn is
uniformly bounded in n with probability θ−C1

1 θ−C2
2 .

Proof. If Nn
i (t)/n ≤ ε for all t and some finite n then N

(ε)
i (t) is, according to Lemma 4.1,

bounded for all t. This happens with probability (θi(1 − ε))−Ci . Thus Nn
i (∞) is bounded

with a probability that is smaller than (1/(θi(1 − ε)−Ci .

Now N
(0)
i (t) is bounded for all t with probability θ−Ci

i . According to lemma 4.1 Nn
i has

the same bound.
Since ε can be made arbitrarily small the first part of the theorem follows. The uniform

bound on Nn = Nn
1 +Nn

2 follows since the processes N
(ε)
1 and N

(ε)
2 are independent as well

as N0
1 and N

(0)
2 .

If ρ1 	= ρ2 then the speed at which the two infectious agents spread differ initially. The
speed at which the total epidemic grows is determined by

ρ̃ = max(ρ1, ρ2).

Let
gn = (ln(n))a ,

for some a > 1.

Lemma 4.3. If tn = ln(n/gn)/ρ̃ then

(
En

1 (tn)
(gn

n

)ρ1/ρ̃

, En
2 (tn)

(gn

n

)ρ2/ρ̃
)

→ (ξ1, ξ2) (4.10)
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and (
Nn

1 (tn)
(gn

n

)ρ1/ρ̃

, Nn
2 (tn)

(gn

n

)ρ2/ρ̃
)

→ (
θ1

θ1 − 1
ξ1,

θ2
θ2 − 1

ξ2) (4.11)

in distribution, where ξ1 and ξ2 are independent random variables with distributions
L(C1, θ1) and L(C2, θ2) respectively.

Proof. The proof is based on the coupling between the epidemic processes and birth–and–
death processes described above.

It follows from lemma 4.2 that N
(0)
i (tn)/ exp{ρit

n} is bounded in probability. Using the
right-hand inequality (4.4) we find that

Nn
i (tn)/nρi/ρ̃ ≤ N

(0)
i (tn)/nρi/ρ̃ =

(
N

(0)
i (tn)/ exp{ρit

n}
)
g−ρi/ρ̃

n → 0 (4.12)

as n→ ∞.
Let εn = (ln(n))−ã, where a ≥ ã > 1. Then εngn → ∞ and εntn → 0 as n→ ∞.
It follows from (4.12) that Nn(tn) ≤ εnn with a probability that tends to 1. If this is

the case lemma 4.1 implies that

E
(εn)
i (tn)

(gn

n

)ρi/ρ̃

≤ En
i (tn)

(gn

n

)ρi/ρ̃

≤ E
(0)
i (tn)

(gn

n

)ρi/ρ̃

. (4.13)

The upper bound converges to a random variable ξi which has a L(Ci, θi)–distribution (cf.
lemma 4.2).

To prove that the lower bound in (4.13) has the same limit distribution we observe that

E
(ε)
i (t)/ exp{(ρi − εαi)t}

are martingales with mean Ci. Combining this with inequality (4.6) we find that

E

(
| (E(0)(tn) − E(εn)(tn)) |

(gn

n

)ρi/ρ̃
)

= Ci(1 − e−αiε
ntn) → 0

This L1–convergence implies that

E
(εn)
i (tn)

(gn

n

)ρi/ρ̃

→ ξi

in distribution as n→ ∞. Thus (4.10) follows from (4.13).
A similar argument shows (4.11).

We will say that an agent has large spread if En
i (tn) > 0. A results that holds with a

probability that tends to 1 on the subset En
i (tn) > 0 is said to hold asymptotically if agent

i has large spread. It may seem odd to use a definition that based on the duration of the
epidemic spread rather than on its actual size. However, from lemma 4.1 and lemma 4.2
it follows that En

i (tn) and Nn
i (tn) are of the same size when En

i (tn) > 0.
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4.2 The transition phase

From lemma 4.3 we can derive the asymptotic distribution of the ratio En
1 (tn)/En

2 (tn)
in case both agents have large spread. In case ρ1 = ρ2 it is the same as the distribution of
ξ1/ξ2 given that both ξ1 and ξ2 are positive. If ρ1 < ρ2 the asymptotic distribution has all
mass at 0 and if ρ1 > ρ2 all mass is concentrated at ∞.

Let
sn

ε = inf{t;Nn(t) ≥ εn} (4.14)

The following lemma allows us to derive the distribution of En
1 (sn

ε )/En
2 (sn

ε ).

Lemma 4.4. If E1(t
n) > 0 and E2(t

n) > 0 then

En
1 (sn

ε )

En
2 (sn

ε )

En
2 (tn)

En
1 (tn)

exp{(α2 − α1)

sn
ε∫

tn

Nn(s)/n ds+ (ρ1 − ρ2)(s
n
ε − tn)} → 1

as n→ ∞

Proof. The martingale

M̃n(t) =

t∫
0

I(t > tn)d(Nn
1 −Dn

1 )(s)/En
1 (s−)

−
t∫

0

I(t > tn)d(Nn
2 −Dn

2 )(s)/En
2 (s−)

+ (α1 − α2)

t∫
0

I(t > tn)Nn(s)/n ds− (ρ1 − ρ2)(t− tn) ∨ 0 (4.15)

has mean 0.
The optional quadratic variation at time t = sn

ε equals

[M̃n](sn
ε ) =

sn
ε∫

0

I(t > tn)d(Nn
1 +Dn

1 )(s)/(En
1 (s−))2

+

sn
ε∫

0

I(t > tn)d(Nn
2 +Dn

2 )(s)/(En
2 (s−))2

Let us do the same coupling as in lemma 4.1 but this time starting at time t = tn,
i.e. with Ci = En

i (tn). The birth–and–death process defined by (N
(ε)
i , D

(ε)
i ) behaves after

time tn as the sum of Ci independent birth–and–death processes. If αi(1 − ε) > γi each
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of these processes has a positive probability to survive (and grow) indefinitely, i.e. it has
at least one descendant. Let rε be a positive number smaller than the survival probability.
According to the previous lemma En

i (tn) is (at least) of order (n/gn)ρi/ρ̃ if the i’th agent
spreads. Since En(tn) → ∞ it follows from the law of large numbers that if rε > 0 then

En
i (t) ≥ rεE

n
i (tn) (4.16)

for all t ∈ [tn, sn
ε ] with a probability that tends to 1 as n→ ∞.

With a probability that tends to 1 as n→ ∞ none of the counting processes Nn
i +Dn

i

jumps more than nρi/ρ̃ times. This combined with the lower bound for En
i (t) given in

(4.16) implies that the quadratic variation given by (4.16) is (at most) of size (g2
n/n)

ρi/ρ̃

and thus tends to 0 as n→ ∞. Since | ∆Mn(s) |≤ 1/minEn
i (s) it follows from lemma 3.1

that M̃n(sn
ε ) → 0 as n→ ∞.

The next step is to approximate the different terms of M̃n(sn
ε ). Elementary calculations

yield that

sn
ε∫

0

I(t > tn)d(Nn
i −Dn

i )(s)/En
i (s−)

=

En
i (sn

ε )∑
j=En

i (tn)

1/j +

sn
ε∫

tn

dDn
i (s)/(En

i (s−)(En
i (s−) − 1)).

Thus the first term on the right-hand side is approximated by ln(En
i (sn

ε )/En
i (tn)), cf (3.6).

The second term tends to 0 as n→ ∞ due to the bound (4.16).
Applying the approximations above we find that

ln(En
1 (sn

ε )/En
1 (tn)) − ln(En

2 (sn
ε )/En

2 (tn))

+(α1 − α2)

sn
ε∫

0

I(t > tn)Nn(s)/n ds− (ρ1 − ρ2)(s
n
ε − tn) ∨ 0 → 0

as n→ ∞. This implies the lemma.

Lemma 4.5.

lim
ε→0

lim
n→∞

1

n

sn
ε∫

0

Nn(s)/n ds = 0 (4.17)

Proof. In the following u
(i)
n denotes sequences of approximations such that u

()
n → 0 as

n → ∞. The equalities are due to the fact that for any counting process Q, such that
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Q(0) = 0,
t∫

0

Q(s)ds =

t∫
0

(t− s)dQ(s). (4.18)

The inequalities comes from approximating integrals over a counting process with its com-
pensator (and vice versa) and applying lemma 3.1. For any t ≤ sn

ε

t∫
0

Ni(s) ds =

t∫
0

(t− s)dNi(s)

≤ αi

t∫
0

(t− s)Ei(s) ds+ nu(1)
n

≤ αi

ρi − αiε

t∫
0

(t− s)dEi(s) + nu(2)
n

=
γi

ρi − αiε

t∫
0

Ei(s)ds+ nu(2)
n

≤ αi

(ρi − αiε)2
Ei(t) + nu(3)

n .

This implies that

sn
ε∫

0

N(s) ds ≤ const(E1(s
n
ε ) + E2(s

n
ε ) + nu(4)

n

≤ const(N1(s
n
ε ) +N2(s

n
ε ) + nu(4)

n

≤ εn+ nu(4)
n .

The theorem follows directly after dividing the last relation with n.

Theorem 4.2. If both epidemics are asymptotically large then:
if ρ1 = ρ2

lim
ε→0

lim
n→∞

En
1 (sn

ε )

En
2 (sn

ε )
→ ξ1

ξ2
| ξ1, ξ2 > 0,

where ξ1 and ξ2 are independent random variables with distributions L(C1, θ1) and L(C2, θ2)
respectively;

if ρ1 < ρ2

lim
ε→0

lim
n→∞

En
1 (sn

ε )

En
2 (sn

ε )
→ 0;

14



if ρ1 > ρ2

lim
ε→0

lim
n→∞

En
1 (sn

ε )

En
2 (sn

ε )
→ ∞.

Proof. According to lemma 4.3

En
1 (tn)

En
2 (tn)

exp{(ρ1 − ρ2)t
n} → ξ1

ξ2
as n→ ∞.

The theorem is then a consequence of lemmata 4.4 and 4.5.

When studying the spread in the third or epidemic phase we will need approximations of
the sizes of Nn

1 (sn
ε ), Nn

2 (sn
ε ), En

1 (sn
ε ) and En

2 (sn
ε ) when En

1 (sn
ε )/En

2 (sn
ε ) equals some fixed

ratio ν. Observe that at time t = sn
ε the total number of infected, i.e. Nn

1 (t) +Nn
2 (t) = εn.

Theorem 4.3. If
En

1 (sn
ε )

En
2 (sn

ε )
= v then as n→ ∞ and ε→ 0

Nn
1 (sn

ε )

εn
→ vα1/ρ1

vα1/ρ1 + α2/ρ2

(4.19)

Nn
2 (sn

ε )

εn
→ α2/ρ2

vα1/ρ1 + α2/ρ2

(4.20)

E1(s
n
ε )

εn
→ v

vα1/ρ1 + α2/ρ2

(4.21)

E2(s
n
ε )

εn
→ 1

vα1/ρ1 + α2/ρ2

(4.22)

Proof. Consider the martingale

Nn
i (t) − θiD

n
i (t) + αi

t∫
0

Nn(s)

n
En

i (s) ds.

This martingale has a optional quadratic variation which is majorised by (1+θ2
i )Nn

i (t).
This implies that if t ≤ sn

ε the quadratic variation is smaller than a constant times εn and
thus the martingale is itself bounded in probability by

√
εn. Since the integral

1

n

t∫
0

Nn(s)

n
En

i (s) ds

according to the proof of the preceding theorem is asymptotically smaller than ε2 it follows
that:

15



lim
ε→0

lim
n→∞

Ni(s
n
ε ) − αi

ρi
Ei(s

n
ε )

εn
→ 0.

This implies the theorem.

4.3 The epidemic phase

At the end of the transition phase a small proportion of the individuals in the popu-
lation are infected. During the second (or epidemic) phase of the process there is a rapid
spread of the infections. We will see that during this phase the epidemic develops almost
deterministically. We are interested in the limit value of the proportion

P (t) =
Nn

1 (t)

Nn
1 (t) +Nn

2 (t)
(4.23)

This proportion changes during the epidemic phase but there are (asymptotically) be no
random element in this change.

Let
Xn(t) = (Nn

1 (t+ sn
ε )/n,Nn

2 (t+ sn
ε )/n,Dn

1 (t+ sn
ε )/n,Dn

2 (t+ sn
ε )/n)

and let
X(t) = (X1(t), X2(t), X3(t), X4(t))

be a solution of the differential equations:

Ẋ1(t) = α1(1 −X1(t) −X2(t))(X1(t) −X3(t)),

Ẋ2(t) = α2(1 −X1(t) −X2(t))(X2(t) −X4(t)),

Ẋ3(t) = γ1(X1(t) −X3(t)),

Ẋ4(t) = γ1(X2(t) −X4(t)) (4.24)

with starting values X(0) = Xn(sn
ε ).

If (X1(0) − X3(0))/(X2(0) − X4(0)) = v and X1(0) + X2(0) = ε then, according to
theorem 4.3), the relevant starting values are:

X1(0) = ε
vα1/ρ1

(vα1/ρ1 + α2/ρ2)
,

X2(0) = ε
α2/ρ2

(vα1/ρ1 + α2/ρ2)
,

X3(0) = ε
vγ1/ρ1

(vα1/ρ1 + α2/ρ2)
,

X4(0) = ε
γ2/ρ2

(vα1/ρ1α2/ρ2)
. (4.25)
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It follows from general theory of differential equation that (4.24), with these starting
values, has a unique solution. This solution will be used to approximate the random
epidemic process during the epidemic phase. Even if we can not derive an explicit solution
some important features of the solution are easily derived. First Xi(t), i = 1, 2, 3, 4, are all
non-decreasing functions. In the limit

X1(∞) = X3(∞),

X2(∞) = X4(∞),

− ln(1 −X1(∞) −X2(∞)) = θ1X1(∞) + θ2X2(∞). (4.26)

The last equation of (4.26) implies that X1(∞) +X2(∞) is uniformly bounded away from
1 for all possible starting values.

Let Y1(t) = X1(t) −X3(t), and Y2(t) = X2(t) −X4(t). Then

Y1(t) = ε
ν

ν α1

ρ1
+ α2

ρ2

exp{ρ1t− α1

t∫
0

X(s)ds},

and

Y2(t) = ε
1

ν α1

ρ1
+ α2

ρ2

exp{ρ2t− α2

t∫
0

X(s)ds},

Together with (4.26) this implies that, if 0 < ν then X(∞) > ρ1/α1. In this case we
can define

T = inf{t; {ρ1t− α1

t∫
0

X(s)ds} < 0}.

If ν = 0 we define

T = inf{t; {ρ2t− α2

t∫
0

X(s)ds} < 0}.

According to (4.24)

(Ẋ1 + Ẋ2)/(1 −X1 −X2) = α1Y1 + α2Y2 ≥ ε
α1ν

α1

ρ1
+ α2

ρ2

for all t ≤ T . Consequently

− ln(1 −X1(T ) −X2(T )) ≥ const ενT. (4.27)

T ≤ constant

νε
.
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Lemma 4.6. For any sufficiently small ε

sup
t≤T

| Xn(t) −X(t) |→ 0 (4.28)

as n→ ∞.

Proof. The function

F (a, b, c, d) = (α1(1 − a− b)(a− c), α2(1 − a− b)(b− d), γ1(a− c), γ2(b− d))

is Lipschitz-continuous, when 0 ≤ a, b, c, d ≤ 1, i.e.,

| F (X) − F (Y ) |≤M | X − Y |

for some finite constant M .
First observe that

Xn
i (t) −Xn

i (0) −
t∫

0

Fi(X
n(s)) ds

are martingales with the optional quadratic variations

[Xn
i ](t) = (Xn

i (t) −Xn
i (0))/n2.

As a consequence of Lenglard’s inequality

√
n | Xn(t) −Xn(0) −

t∫
0

F (Xn(s)) ds |

is uniformly bounded for all t ∈ [0, T ].
Since by definition

X(t) =

t∫
0

F (X(s)) ds+X(0).

it follows that

| Xn(t) −X(t) |=| Xn(t) −
t∫

0

F (Xn(s)) ds+

t∫
0

{F (Xn(s) − F (X(s))} ds | .

Thus if

κn = sup
t≤T

| Xn(t) −
t∫

0

F (Xn(s)) ds |

18



then

| Xn(t) −X(t) |= κn +M

t∫
0

| Xn(s) −X(s) | ds.

It follows from Gronwall’s inequality that

| Xn(t) −X(t) |≤ κne
Mt,

for all t. Since κn → 0 as n→ ∞ and since T is finite this inequality proves the lemma.

From theorem 4.2 it follows that 0 < ν <∞ only in case ρ1 = ρ2 In case ρ1 	= ρ2 we have
to make some further considerations.

Let us first assume that ρ1 > ρ2, i.e. the strongest agent is also the fastest. If E2(t
n) > 0

then En
2 (sn

ε ) is of size nρ2/ρ1 . Since T is finite at all infectious turns immune according to
an exponential distribution E2(T ) will be of the same size. However at time T agent 1
has already infected approximately nπ1 members of the population. Even if there are
many individuals still infectious with agent 2 they can never keep an epidemic going since
θ2(1 − π1) < 1.

Next assume that ρ2 > ρ1, i.e. the weaker agent spreads initially faster than the
stronger. If E1(t

n) > 0 then both En
2 (sn

ε ) and En
2 (T ) are of size nρ1/ρ2 . If θ1(1 − π2) < 1

these infected can not keep the epidemic going. However if θ1(1 − π2) > 1 they will
continue the epidemic spread after agent 2 the spread of agent 2 has seized. The number
of individuals infective with agent 1 will grow to be of size n during a transitional phase
and then there will be another epidemic phase where only agent 1 spreads. According to
the equation of balance and equation (3.9) it will continue until the proportion π1 > 0 of
the population has been infected by agent 1.

4.4 The fading–out phase

After the epidemic phase there are few infectious individuals spreading the two agents.
In case there are any at all both (1 − Nn()θ1 and (1 − Nnθ2 are less than 1. As during
the initial phase the further progress of the process may be approximated by independent
birth–and–death processes. However now the death intensities will be greater than the
birth intensities. This implies that there will only a arbitrarily small proportions of the
population that will be newly infected during this last phase.

Hence:

Theorem 4.4. If E1(t
n) > 0 and E2(t

n) > 0 then if ρ1 = ρ2

lim
ε→0

lim
n→∞

Nn
1 (∞)

Nn
1 (∞) +Nn

2 (∞)
= lim

ε→0

X1(∞)

X1(∞) +X2(∞)
(4.29)

if ρ1 	= ρ2

lim
ε→0

lim
n→∞

Nn
1 (∞)

Nn
1 (∞) +Nn

2 (∞)
=

π1

π1 + π2

. (4.30)
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Solutions of equations like (4.24) have been studied by Kendall and Saunders (1983).
They investigate how the final values X3(∞) and X4(∞) depend on the starting values
of X1(0) − X3(0) and X2(0) − X4(0). Using a probabilistic argument they prove that
X3(∞) increases and X4(∞) decreases if X1(0) −X3(0) is increased by a number δ and if
X2(0)−X4(0) is decreased with the same number. Let us assume that the first agent is the
strongest, i.e., θ1 > θ2. Then X1(0) −X3(0) increases more than X2(0) −X4(0) decreases
this effect will be even stronger. It follows, in cases where the first agent is the strongest,
that X1(∞) increases and X2(∞) decreases with v.

This will be an important observation when we derive the asymptotic distribution of
ratio of the final sizes of the two epidemics. Combining this lemma with the observation
on monotonicity made at the start of this section we conclude:

Lemma 4.7. If ρ1 = ρ2, θ1 > θ2 and if E1(s
n
ε )/E1(s

n
ε ) = v for some small ε, then

Nn
1 (∞)/(Nn

1 (∞) +Nn
2 (∞))

is asymptotically increasing in v.

5. Distribution of the proportions of the final sizes

After the preparations in the previous sections we can now study the relation between the
final sizes of the two infectious agents. We will derive the distribution of the proportion

P =
π1

π1 + π2

(5.1)

The distribution of this ratio depends on how many infectious agents of the two kinds
that comes into the population.

The ratio P is only of interest if at least one of the agents have large spread. It may be
the case that only one of the agents spread in the population. If only agent 1 spreads then
P = 1 and if only agent 2 spreads P = 0. the interesting situation is when both agents
has asymptotically large spread.

Let

P n(t) =
Nn

1 (t)

Nn
1 (t) +Nn

2 (t)
.

If both agents have large spread the development of this function after time t = sn
ε is

asymptotically (for large n) determined by the ratio

ν =
En

1 (sn
ε )

En
2 (sn

ε )
. (5.2)

According the theorem 4.3

P n(sn
ε ) → να1ρ2

να1ρ2 + α2ρ1

as n→ ∞ and ε→ 0 if (5.2) holds..
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Figure 5.1. Asymptotic trajectories for the number of infected of the two agents, i.e.
(Nn

1 /n,N
n
2 /n) for P n(sn

ε ) = 0.1, 0.3, 0.5, 0.7, and 0.9. Here θ1 = 2 and θ2 = 1.25. The
possible final sizes are indicated by the dotted line. (C1 = C2 = 1).

In order to find the asymptotic distribution of P n(∞) we use lemma 4.2 to derive the
asymptotic distribution of P n(sn

ε ) and solve the differential equation (4.24) to find out how
P n(t) changes from t = sn

ε till t = ∞.
It should be clear from the investigation above that we have to distinguish the two

cases where ρ1 = ρ2 and ρ1 	= ρ2. The first of these two cases will yield a non-degenerate
distribution for P conditionally on that both agents have asymptotically large spread.

5.1 The case ρ1 = ρ2

The number of infected by the two agents will grow at different speed, depending on
the strengths of the agents and of the initial phases of the epidemic , during the epidemic
phase. Figures 5.1 and 5.2 shows the trajectories for (X1(t), X2(t)) during the epidemic
phase for different starting values. These trajectories will be the approximate trajectories
for (Nn

1 (t)/n,Nn
2 (t))/n for large n.

Figures 5.3 and 5.4 illustrates how the final proportion of the two agents are related
to the initial proportion at time t = sn

ε . The asymptotic distribution of P depends the
distribution of the initial proportion.

5.1.1 The case C1 = C2 = 1 If both agents have asymptotically large spread the dis-
tribution of P (t) at the start of the epidemic phase is can be calculated using the result
that E1(t

n)/E2(t
n) is approximately distributed as the ratio between two independent ex-

ponential distributed random variables with intensities 1− 1/θ1 and 1− 1/θ2 respectively.
Let
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Figure 5.2. Asymptotic trajectories for the number of infected of the two agents, i.e.
(Nn

1 /n,N
n
2 /n) for P n(sn

ε ) = 0.1, 0.3, 0.5, 0.7, and 0.9. Here θ1 = 2 and θ2 = 1.25. The
possible final sizes are indicated by the dotted line. (C1 = C2 = 1).
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Figure 5.3. Relation between the initial proportion, P n(sn
ε ), and the final proportion,

P n(∞). Here θ1 = 2 and θ2 = 1.25.
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Figure 5.4. Relation between the initial proportion, P n(sn
ε ), and the final proportion,

P n(∞). Here θ1 = 2 and θ2 = 1.5.

P n(t) =
Nn

1 (t)

Nn
1 (t) +Nn

2 (t)
. (5.3)

Simple calculations yields that P (tn) and P (sn
ε ) has approximately the distribution

function

Pr(P n(sn
ε ) ≤ z) ≈ α2

2z

α2
1 + (α2

2 − α2
1)z

. (5.4)

During the epidemic phase of the spread this ”initial” distribution will be distorted in
a way that is approximated by the differential equations (cf. theorem 4.4). Figures 5.5
and 5.6 below illustrates the distribution of the proportion at the initial phase and of the
final sizes.

It is also of interest to study the distribution of the sum of the final sizes of the two
agents separately, i.e. the distribution of the proportion of individuals who becomes in-
fected by any of the two agents during the epidemic. This distribution is illustrated in
figures 5.7 and 5.8.

5.2 The case ρ1 	= ρ2

This case leads to simpler results since the distributions of (Nn
1 (∞)/n,Nn

2 (∞)/n) will
asymptotically be concentrated at at most four points. The probabilities are given in table
5.1.
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Figure 5.5. Asymptotic distribution of the final proportion (unbroken line) and initial
distribution (broken line) conditional on that both agents have large spread, when θ1 = 2
and θ2 = 1.25. (C1 = C2 = 1).
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Figure 5.6. Asymptotic distribution of the final proportion (unbroken line) and initial
distribution (broken line) conditional on that both agents have large spread, when θ1 = 2
and θ2 = 1.5. (C1 = C2 = 1).
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Figure 5.7. Asymptotic distribution of the final sum of the two agents, when θ1 = 2 and
θ2 = 1.25. (C1 = C2 = 1).
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Figure 5.8. Asymptotic distribution of the final sum of the two agents, when θ1 = 2 and
θ2 = 1.5. (C1 = C2 = 1).
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Table 5.1
Probabilities for possible outcomes when ρ1 	= ρ2

(π1, π2) P probability
(0, 0) undefined (θ1θ2)−1

(π1, 0) 1 (θ1 − 1)(θ1θ2)−1

(0, π2) 0 (θ2 − 1)(θ1θ2)−1

(π1, π2) π1/(π1 + π2) (θ1 − 1)(θ2 − 1)(θ1θ2)−1

As pointed out above the two last outcomes will be identical in case (3.10) holds. Their
probabilities should then be added.
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Svensson, Å. (1993). Dynamics of an epidemic in a closed population. Adv. Appl. Prob.
25, 303–313.

White, L., Cox, M. and Medley, G. (1998). Cross immunity and vaccination against
multiple microparasite strain. IMA Journal of Mathematics Applied in Medicine &
Biology 15, 211–233.

27


