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SUMMARY

Edwards & Lauritzen (2001) have recently proposed the TM algorithm for

finding the maximum likelihood estimate when the likelihood can be truly or

artificially regarded as a conditional likelihood, and the full likelihood is more

easily maximised. They have presented a proof of convergence, provided that

the algorithm is supplemented by a line search. In this note a simple expres-

sion, in terms of observed information matrices, is given for the convergence

rate of the algorithm per se, when it converges, and the result elucidates also

in which situations the algorithm will require a line search. Essentially these

are cases when the full model does not adequately fit the data.

Some key words: Conditional likelihood; Exponential family; Graphical chain

model; Iterative method; Maximum likelihood estimation.
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1 Introduction

Maximum likelihood estimation in mixed graphical chain models usually requires an

iterative method for the solution of the likelihood equations. With such situations

in mind, Edwards & Lauritzen (2001) have recently proposed a general method,

called the TM method, for iterative likelihood maximisation when the likelihood

can be regarded as a conditional likelihood within a full, joint model that allows

an explicit solution. They have found the algorithm to be a useful tool in complex

CG-regression models, which are building blocks in graphical chain models, and they

suggest that the algorithm might be of use also in other situations. However, they

have not proved that the algorithm will always converge even if the starting point

is close to the maximum likelihood estimate, unless the algorithm is supplied with a

line search, and they have not investigated the convergence rate theoretically. Here

we will supplement their study with a simple result concerning this rate. From the

same result it will be seen that the algorithm can be expected to converge if the full

model constructed is an adequate description of data, but not necessarily otherwise.

The result is general, with no explicit reference to graphical chain models. A simple

toy example, admitting an explicit solution, and a logistic regression will be used

for illustration.

2 Rates of convergence

2.1 Application of Ostrowski’s theorem.

We will use essentially the same notation as in Edwards & Lauritzen (2001), and

likewise we implicitly assume suitable regularity conditions. Some response data y

are given, whose distribution depends on some x, and we introduce a distribution

for x, so as to be able to write the loglikelihood to be maximised as a conditional
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loglikelihood lx, in terms of a full loglikelihood l and a marginal loglikelihood lx:

lx(θ; y|x) = l(θ; x, y)− lx(θ; x).

The TM algorithm for maximising lx starts from some θ0 that is successively updated

by the following two-step procedure.

T-step. Given θn, calculate the tilted loglikelihood qn(θ) = l(θ) − θT l̇x(θn), where

l̇ with or without sub/superscripts is used like l to denote the corresponding

Fisher score functions, as in Edwards & Lauritzen (2001).

M-step. Maximise qn(θ) to find θn+1.

If this algorithm converges, it will be to a root θ̂ of the original likelihood equations,

since the derivative q̇n of qn at θn+1 = θn = θ satisfies

q̇n(θ) = l̇(θ; x, y)− l̇x(θ; x) = l̇x(θ; y|x),

which is zero precisely when θ = θ̂. The algorithm may be expressed in the form

θn+1 = g(θn), with the vector-valued composite function g = l̇−1 ◦ l̇x, and θ̂ is a

fixed point of g, i.e. θ̂ = g(θ̂). The speed of convergence of the algorithm close

to θ̂ depends on the function g as described in the so-called Ostrowski’s theorem

(Ostrowski, 1960, Ch. 18).

CRITERION (Ostrowski). For a fixed point θ̂ to be a point of attraction of the

algorithm θn+1 = g(θn), a sufficient condition is that the Jacobian matrix of g at

the point θ̂ has all its eigenvalues numerically less than 1, and a necessary condition

is that they are numerically at most 1. The geometric rate of convergence is the

numerically largest eigenvalue of this Jacobian.

The geometric interpretation is that the eigenvalues identify the rate of con-

vergence in the eigenvector directions, and the error in the direction of slowest
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convergence will dominate after some iterations. To apply this criterion, note that

the Jacobian matrix for the TM algorithm is J−1Jx = I − J−1Jx, where J denotes

the observed information matrix and I the identity matrix, and the matrices are

calculated in terms of the maximum likelihood estimate θ̂. The eigenvalues of this

Jacobian are all real. This follows from the fact that J and Jx can be simultaneously

diagonalised, as soon as Jx is positive definite at θ̂, and otherwise in combination

with the discussion in §2.3 below.

Provided Jx is positive definite at θ̂, it further follows that not only Jx but

also J will be positive definite at θ̂, and as a consequence that all eigenvalues of

J−1Jx = I − J−1Jx at θ̂ are less than +1. The positivity of J is seen as follows. In

each M-step of the algorithm, the function qn(θ) is maximised, and at the maximum

it will have a negative definite Hessian matrix. Since qn differs by only a linear term

from l(θ), the full model observed information J will be positive definite, not only

at θ̂ but in fact at each successive θn on the way to θ̂.

There are some analogies with the EM algorithm, for which the corresponding

Jacobian matrix is found in Sundberg (1976) and in Theorem 4 of Dempster et al.

(1977), and is seen to depend on marginal and conditional information matrices.

We have seen above that the rate of convergence of the TM algorithm is the

numerically largest eigenvalue of J−1Jx at θ̂, provided this value is less than 1. Under

regularity conditions, including the requirement that data contain information about

the whole of θ in the conditional model, we have also seen that all eigenvalues

are less than +1. In many applications there will be eigenvalues which are +1,

however, corresponding to parameters in the full model which are absent in the

conditional model. This case requires a more detailed discussion, found in §2.3

below. Before that, we investigate in §2.2 the theoretically simpler case when the

full and conditional models have the same parameters, in order to consider more in

detail when the convergence criterion will be satisfied.
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2.2 Case 1. The full model does not introduce additional

parameters.

The argumentation in the previous section showed that, only provided data contain

information about the whole of θ in the conditional model, all eigenvalues of J−1Jx =

I − J−1Jx at θ̂ are strictly less than +1. If the observed information matrices

were replaced by their expected values at the same parameter point, namely the

Fisher information matrices, we could even conclude that all eigenvalues would be

nonnegative, and convergence of the algorithm would follow. It would be nice if

we could argue that the observed information matrices were similar to the expected

versions, as is usual with large datasets. However, in the present situation the

marginal model need not have any connection with the reality behind data, and

then this need not at all be true. Hence, the following condition can be crucial: the

data (x, y) should reasonably fit not only the conditional, but also the full model.

Note that the model of interest is the conditional model, and the full model can

be, and often will be, an artificial construct, just for the sake of making the algorithm

applicable. If data do not fit the full model there is no guarantee that Jx(θ̂) will

be positive semidefinite, or even that the eigenvalues of J−1Jx will exceed −1. Not

even if data are in effect generated from the full model is there any guarantee that

the algorithm will converge. This is illustrated in the following toy example, which

has only two parameters and allows an explicit solution.

Example 1. Proportional regression. Let yi be independent and distributed as

N(λxi, σ
2), for fixed xi. In order to apply the algorithm, artificially imagine the

xi to be sampled from a N(0, σ2) distribution, with the same σ. Elementary calcu-

lations show that, with θ = (λ, σ2),

J(θ̂) = n

 Sxx/σ
2 0

0 Sxx/σ
6

 , Jx(θ̂) = n

 Sxx/σ
2 0

0 0.5/σ4

 ,
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where Sxx =
∑
x2
i /n. The marginal Jx is the difference J−Jx, so its last element is

the only nonzero element, n(Sxx− 0.5σ2)/σ6. Hence, the eigenvalues of J−1Jx are 0

and 1− 0.5σ̂2/Sxx. The zero eigenvalue reflects the fact that the algorithm will find

λ̂ already in the first iteration. If the full model is reasonable we should expect that

Sxx l σ̂2, and consequently the other eigenvalue to be about 1 − 0.5 = 0.5. This

means that the deviation from σ̂2 will be halved for each iteration if we are close to

σ̂2. However, if the full model is inadequate for describing data, in such a way that

Sxx << σ̂2, the nonzero eigenvalue may be less than −1, and the algorithm will then

diverge from σ̂2, even if we start close to this value. A line search along the line

from θn to θn+1, as devised by Edwards & Lauritzen (2001), would be successful,

however, since the error at θn is alternating.

Apart from the fact that no iterative algorithm is really needed in this example,

an intuitively more natural choice of a full model might seem to be one in which

var(xi) is allowed be a new, free parameter, τ 2 say. This brings us into Case 2, which

is the topic of the next section.

2.3 Case 2. The full model introduces additional parame-

ters.

In most applications of interest the full model will involve more parameters than

the conditional model. Let θ = (α, β), where α is the parameter of the conditional

model, so that

l(θ; x, y) = lx(α; y|x) + lx(α, β; x).

The algorithm can be expressed in the form

l̇(θn+1) = l̇(θn)− l̇x(θn).

Here l̇x is the gradient with respect to the full θ, but, since lx does not depend on

β, the β-component of l̇x is zero. This means that the β-component l̇β of l̇ remains
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constant under the algorithm. In other words, the algorithm moves on a surface

l̇β = constant. If the algorithm is started from a point for which l̇β = 0, e.g. from

the maximum likelihood estimate of the full model, then the constant will be zero.

Thus, βn will be the profile maximum likelihood estimate in the full model when

α = αn. This restricted maximisation will be seen in J−1Jx as a unit eigenvalue of

multiplicity dim(β). The interpretation is that the convergence rate of the algorithm

is the numerically largest eigenvalue of J−1Jx after removal of an eigenvalue 1 of

multiplicity dim(β). The corresponding eigenvectors span the β-space with zero

coefficients for α. This is seen by noting that the dim(β) last columns of J−1Jx are

zero. The other eigenvalues of J−1Jx are in effect the same as the eigenvalues of the

α-corner of J−1Jx. Hence, if we let subscript (.)αα denote the α-corner of a matrix,

the convergence rate can be expressed as the numerically largest eigenvalue of

Iαα − (J−1)αα(Jx)αα. (1)

In a situation when the statistic x induces a cut, completely separating the pa-

rameters of the conditional and the marginal likelihoods, (Jx)αα will be identically

zero, or equivalently (Jx)αα = (J)αα, and the eigenvalues of (1) will all be exactly

zero. In connection with graphical chain models, a cut would signal a desirable

simplification. From another perspective, however, if the full model has been con-

structed just because we did not want to solve the conditional model likelihood

equations directly, a cut would be unfortunate, because it would lead us back to the

original equations in the M-step. As an example, if, in Example 1, var(xi) had been

allowed to be a new, free parameter, the statistic x would have induced a cut, and

the M-step would have demanded us to solve the original likelihood equation.

Example 2. Logistic regression. Edwards & Lauritzen (2001) illustrate the conver-

gence of the TM algorithm in a simple logistic regression of y on x, for some data

with clearly controlled x-values. An artificial distribution for x is obtained by pre-
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tending that, for each given outcome 0 or 1 of the y-variable, the x-variables are

normally distributed, with different mean values but the same variance. This means

that the marginal distribution for x is taken to be a mixture of the two normal dis-

tributions. This increases the parameter dimension from 2 to 4. The TM algorithm

is seen in their Table 1 to converge at a rate of about −1/4; that is the error is

alternating and reduced by a factor of 1/4 at each iteration. Numerical calculation

of J−1Jx at the point θ̂ showed that the eigenvalues for the two-dimensional logistic

parameter were −0.26 and +0.06. At the starting point θ0 the corresponding values

were −0.29 and +0.09, so the starting point gave a good indication of the conver-

gence rate at θ̂. There were also the two eigenvalues of +1 for the two additional

parameters of the full model, but as explained above they are of no relevance for

the desired convergence. The negative eigenvalue can be taken as reflecting the fact

that the normal distribution for x given y was not a reasonable model.

2.4 Aspects of line search

As we have seen above, the matrix J−1Jx at θ̂ can have eigenvalue(s) less than

−1, and then the TM algorithm will not converge. Edwards & Lauritzen (2001)

show for this case that a line search along the line connecting θn and θn+1 ensures

convergence. Let then the algorithm modified with line search be

θn+1 = (1− λ) θn + λg(θn) (2)

for a fixed λ, 0 < λ ≤ 1, where g is the same function as before, defining the pure

TM algorithm. It is seen that the new Jacobian matrix is a λ-weighted average of

the previous one and the identity matrix. Hence the eigenvalues controlling the rate

of convergence are moved towards the value +1, for λ small enough all eigenvalues

will exceed−1, and the line search will make the algorithm converge, if it starts close

enough to θ̂. The locally optimal λ-value in (2) will depend on the two outermost
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eigenvalues of J−1Jx at θ̂, ηmin and ηmax say, and is

λopt = 1/{1− (ηmin + ηmax)/2},

with a corresponding rate of convergence λopt(ηmax − ηmin)/2. Note how the line

search benefits from the fact that the algorithm is alternating if it is divergent, that

is if ηmin ≤ −1. Note also that there is not much need to change a satisfactory λ-

value from one iteration to the next, at least not in a vicinity of θ̂, whereas Edwards

& Lauritzen have in mind a λ varying with n.

3 Explicit formulae for exponential families

It is instructive to see how the rate of convergence can be expressed when the con-

ditional distribution of Y given X is an exponential family which is embedded in a

wider exponential family for (X, Y ). Note that the corresponding marginal distri-

bution of X need not be of exponential type. We use the canonical parametrisation,

and similarly to Edwards & Lauritzen (2001) we write the canonical statistic for the

full model as T = (U, V ), where U = u(X, Y ) and V = v(X). Here U is the canon-

ical statistic in the conditional model. As an example consider logistic regression,

as in Example 2 above. The norming constant of the logistic conditional model for

each observation y, given x, is Cx(α1, α2) = 1 + exp(α1 +α2x), where α1 and α2 are

the regression parameters. If we choose as marginal distribution for x for example

a mixture of two exponentials or, as Edwards & Lauritzen (2001) do, a mixture of

two Gaussian distributions with common variance, a three- or four-parametric joint

distribution for (x, y) is created where the conditional norming constant Cx fits into

the exponential part of the full model.

Standard theory for exponential families implies that l̇ = T−Eθ(T ), and l̇x = U−

Eθ(U |X) augmented by dim(β) zero components. It follows that the TM algorithm
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can be written in the form

Eθn+1 (U) = Eθn(U) + u− Eθn(U |x), (3)

Eθn+1 (V ) = Eθn(V ) = v.

If this is expressed in the full-model mean value parametrisation for U , τ = Eθ(U),

this looks even simpler, and is given in this form in Edwards & Lauritzen (2001,

§3): τn+1 = τn + u− Eθn(U |x).

Further standard exponential family theory gives that, for any θ, J = var(T )

and the α-corner of Jx equals var(U |x). From well-known expressions for inverted

matrices, or alternatively by transformation to a mixed parametrisation, with α

and E(V ) as orthogonal parameters, it follows that the rate-determining part of the

matrix J−1Jx, as given more generally in (1), can be expressed as

Iαα − {var(U) − cov(U, V )var(V )−1cov(V, U)}−1var(U |x), (4)

where Iαα is the unit matrix of dimension dim(α). Here we may first conclude that

the eigenvalues of (4) are necessarily upper-bounded by +1, so if the algorithm per se

does not converge, a line search from a good starting point will be successful. The

inverse in front of var(U |x) approximates the inverse of the conditional variance

var(U |V ), if a normal approximation of (U, V ) is reasonable. Since var(U |V ) =

E{var(U |X)|V } + var{E(U |X)|V } we have some reason to expect the eigenvalues

of (4) to be nonnegative. However, this argument of course does not even guarantee

that all eigenvalues exceed −1, in particular not when the full model yields an

inadequate description of the data.

Remark. If we cannot observe y completely but only have some incomplete data

z, which can be regarded as a function z = f(y), then we may simply substitute

Eθn(U |z, x) for u in (3), as suggested by Edwards & Lauritzen (2001), to form a

hybrid of the TM and EM algorithms. Since the derivative of E(U |z, x) is var(U |z, x)

10



(Sundberg, 1974), the rate-determining matrix of the hybrid algorithm is changed

from (4) for the pure TM algorithm to

Iαα − {var(U)− cov(U, V )var(V )−1cov(V, U)}−1{var(U |x)− var(U |z, x)}.

The last factor, var(U |x)− var(U |z, x), is necessarily nonnegative at the maximum

point, being the observed information in the conditional model. Note that, if the

eigenvalues of (4) are all nonnegative, they will be closer to 1 under incomplete data,

so the algorithm will be slower.

4 Concluding discussion

We have seen in this paper how the rate of convergence of the TM algorithm can

be calculated as the numerically largest eigenvalue of a matrix specified. It is not

so important to be able to calculate this rate of convergence when the data are

already available and the algorithm can be tried without the effort of calculating

the information matrices. Also, in principle, we should know the point θ̂ where the

rate should be calculated, so we would have to run the algorithm and would then

see its rate of convergence empirically. However, calculating the rate at the starting

point might give a good indication of the rate at the point θ̂, as in Example 2 above.

A more important role for the rate of convergence results concerns the possibility

of comparing different devices. There may be several different candidates for the full

model, with more or less restricted parametrisations, and they could be compared

theoretically. The rate of convergence will differ with x, in particular depending on

how well the full model is able to fit the given (x, y), as in Example 1 above. In the

example of their §4.2, Edwards & Lauritzen (2001) touch on the choice between two

augmented models inducing the same CG-regression model for y given x; only one

of them was found to require line search. For such studies the results can be useful,
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perhaps by explicit theoretical calculations in very simple cases, but more likely by

extensive computer investigations.

Finally the above results contribute to our general understanding of when the

TM algorithm will converge, and when it will not. In particular, we saw that it can

be crucial that the constructed full model fits the data reasonably.
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