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Abstract

We describe the evolution of applied exponential family models,
starting from 1972, the year of publication of the seminal papers on
generalized linear models and on Cox regression, and leading up to
multivariate (i) marginal models and inference based on estimating
equations and (ii) random effects models and Bayesian simulation
based posterior inference. By referring to recent work in genetic epi-
demiology, on semiparametric methods for linkage analysis and on
transmission/disequilibrim tests for haplotype transmission we illus-
trate the potential for the recent advances in applied probability and
statistics to contribute to new and unified tools for statistical genetics.
We finally emphasise that there is need for well defined post graduate
education paths in medical statistics in the year 2000 and thereafter.
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1 Introduction

This article, written more as a narrative than as a comprehensive review,
reflects some of my views and experiences as a medical statistician at the
door of the new millennium. Although I acknowledge the set of references
to be incomplete, it should be comprehensive enough to allow the interested
reader to trace the facts and to challenge the arguments.

The advances in molecular biology coupled with modern computer sophistica-
tion have fundamentally changed the way in which basic biomedical sciences
as well as clinical and epidemiological research approach their art. Old and
new data need to be merged, organised and better understood. If one de-
fines medical statistics as ’the scientific contribution to the development and
application of tools for the design, analysis and interpretation of empirical
studies’, then it is clear that our profession should be heavily involved when
the new biology and biomedical research practices unfold. Most areas of
biomedical research undergo a challenging adaptation process which involves
not only the research per se, but also the organisation of research groups and
the restructuring of undergraduate and postgraduate education programs. In
order for medical statistics to be a serious player on this scene our profession
should critically assess its scientific role and clarify the routes to achieve its
missions.

The aim of this article is to illustrate the type of challenges that medical
statistics are facing. Section 2 describes recent evolution of exponential
family models, a branch of statistical science which is central to the field
of biomedicine. Section 3 exemplifies the use of exponential family models
in modern statistical genetics, the examples involving genetic epidemiology,
semiparametric methods for linkage analysis and transmission/disequilibrim
tests for haplotype transmission. In section 4 I will briefly return to the
issues of education and identity for medical statistics.

2 Exponential family models

Already twenty years ago I found the generalized linear model [1] a useful
conceptual framework for communicating the spirit of statistical modelling to
biomedical researchers. It provides a unified maximum likelihood framework
for regression models with responses from the exponential family. Linear
regression for measurements with normally distributed errors, logistic re-
gression for binary responses and Poisson regression for counts are all special
cases of the model. The quantitatively inclined applied researcher seems to
appreciate the generality of the modelling philosophy and the flexibility of
the model specification. The theoretically inclined statistician in turn is of-
ten captured by the richness of applied problems that can be handle within
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this conceptually simple and unified framework.

Cox’s semi-parametric regression models for censored failure time data [2],
incidentally published in the same year as the Nelder and Wedderburn paper,
has had an equally profound influence on the statistical methodology used
in medical research. Cox extends the comparison of life-tables to a general
regression setting. Focus is on relative risk parameters and the baseline
hazard is treated non-parametrically.

Since the early 70’s there has been an escalating effort to deepen the un-
derstanding of the properties of these new and practically useful families of
non-normal non-linear models. Design issues such as group randomization,
litter based toxicology studies, longitudinal studies and family studies have
pushed for the need to extend the generalized linear model and the hazard
regression model to allow for dependencies within clusters of observations. It
was clear at the outset that much of the theory appropriate for multivariate
normal linear models could not be extended easily. Instead the normal linear
model was to be seen as a special case of an emerging more general statistical
modelling framework.

When the models increase in complexity the traditional analytic and nu-
merical methods for model fitting and inference are often inadequate and
computationally intractable. The Bayesian model formulation coupled with
simulation based inference techniques offer new approaches for model build-
ing and evaluation. While computational methods in the form of algorithms
and computer programs have always driven the way in which statistical the-
ory has been used in practice, the role of the new simulation based inference
tools is fundamentally different. Traditionally the computational tools have
evaluated well defined analytic problems, possibly in an iterative fashion.
In contrast, the simulation based procedures contribute to the theoretical
basis for the model building process and they have added a genuine third
leg to the traditional interplay between mathematical theory and real world
applications [3]. They do, however, require a new level of computational
sophistication on the part of the applied statistician.

The rest of this section elaborates on some of the milestones described above,
with the aim to provide a statistical science angle to the methods used in
section 3.

2.1 The generalized linear model

The generalized linear model (GLM) is specified through (i) the random
variation, i.e. the probability distribution for the observations, and (ii) the
systematic variation, i.e. the link function relating the means of the obser-
vations to expressions involving the regression paramaters and functions of
the covariates. Conditionally on the mean structure the observations are as-
sumed statistically independent. The standard linear regression model is a
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GLM with normal distribution and identity link. The log linear model for
count data is a GLM with Poisson distribution and log link. The logistic
regression model is a GLM with binomial distribution and logit link. These
three special cases are useful standard GLM’s with attractive theoretical
properties [4].

A number of interesting features are connected to maximum likelihood es-
timation of the regression parameters in a GLM model. Although a full
distribution is specified for the observations only the relation between the
mean and the variance enters into the score equations for the regression pa-
rameters. The score equations are solved by repeatedly solving a set of linear
weighted least squares equations. For the normal linear model the algorithm
converges in one step. The linear steps of this iteratively reweighted least
squares (IRLS) algorithm further suggest that methods appropriate for the
normal linear models may be used as approximate tools to evaluate the model
fit of the GLM models.

2.2 Cox’s partial likelihood regression

Censored failure time data arise naturally in many areas of biomedical re-
search. Early methodology was confined to descriptive life table techniques
and to the mathematical formulation of the survival experience over time.
Cox’s partial likelihood changes the focus to parametric modelling of the
survival experience as a function of covariate values, while the baseline time
dynamics are treated as a secondary feature and modelled non-parametrically
[2],[5]. Central to the model formulation is an assumption of ignorable right
censoring, implying that conditionally on covariate values the censored indi-
vidual is assumed to follow the mean survival experience of those still alive
and at risk at the time of censoring.

The partial likelihood ignores the exact time points when failures or censor-
ings occur. Instead, the partial likelihood contribution at each time point
when a failure occurs constitutes the conditional probability of observing the
failing individual’s covariate vector, given all other covariate vectors in the
risk set of individuals that could potentially have failed. The properties of
the partial likelihood were later formally justified by counting process and
martingale theory [6], and light was shed on the formal connection between
the partial likelihood, the Mantel-Haenszel test and estimation procedures
used in matched case-control analyses and the conditional logistic likelihood
based on the hypergeometric distribution [7]. Partial likelihood regression
may be viewed as a stratified analysis in which time is controlled for by
matching on the risk set at each time point when a failure occurs.

A related argument leads to the relation between the Cox partial likelihood
regression and Poisson regression. If a parametric exponential failure time
distribution is assumed, then the failure time likelihood is identical to the
likelihood formed by treating the failure indicator in a small time interval as
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a Poisson variate with the inverse of the hazard as its mean. Allowing the
hazard to change between failure times in a piecewise constant fashion results
in the Cox partial likelihood and the Poisson likelihood being identical and
producing similar inferences for the regression parameters [8].

2.3 Multivariate responses

Logistic regression, Poisson regression and the Cox partial likelihood regres-
sion can all be viewed as probability models for a series of binary events
[9]. They all share the property that conditional on measured exposures and
covariates the responses are assumed independent. Incomplete covariate in-
formation, however, induces a need to account for overdispersion as well as
residual dependencies. When the sources of heterogeneity are unknown then
the additional component of variation may be captured in one single overdis-
persion parameter [10], [11], [12]. When the data involve identified clusters,
e.g. repeated measurements on the same individual or clusters of individu-
als in families, then a structured model for the within-cluster dependence is
called for.

Multivariate normal linear models have been part of the applied statistician’s
toolbox since the 1930’s, but although multivariate binary data, multivariate
count data and multivariate censored failure time data arise in many im-
portant practical situations, it was not until the late 1980’s that Liang and
Zeger proposed a general procedure for multivariate generalized linear [13].
An important reason for this slow development is the analytic intractability
of non-normal multivariate probability distributions. Further complications
arise when covariate effects are linked to the marginal means in a nonlinear
fashion, as for the generalized linear model. The beauty of the multivariate
normal linear model stems from the fact that the marginal and conditional
distributions of a multivariate normal distribution also have normal shape,
and when the covariate effects are linked to the marginal means linearly,
then the estimation of the regression parameters is independent of the co-
variance structure. This simplicity is destroyed for multivariate generalized
linear models.

During the 1990’s joint modelling of the mean and dependence structures
for responses measured on a wide variety of scales have been the focus of in-
tense methodological research. The theoretical framework which is emerging
essentially follows two main routes: (i) the marginal models and general-
ized estimating equations and (ii) the random effects models and posterior
inference.
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2.4 Marginal models and generalized estimating equa-

tions

The marginal models focus on the mean structure, and more specifically
on the regression parameters linked to the means. The within-cluster de-
pendence is treated as a nuisance, which needs to be accounted for since
it affects the power of tests and the precision of the regression estimates.
Liang and Zeger [13] constructed generalized estimating equations for the
regression parameters by modifying the score equations of a standard gen-
eralized linear model. For a generalized linear model based on independent
observations the weight matrix in the score equations is diagonal. Liang
and Zeger showed that if the mean structure is correctly specified and if the
off-diagonal elements in the weight matrix are estimated from the data, then
the regression estimates from solving these modified estimating equations are
still consistent and normally distributed, with a precision matrix that can be
consistently estimated by a robust so called ’sandwich estimator’.

Use of the Liang and Zeger generalized estimating equations for handling
residual within cluster dependence does not assume that the ’true’ depen-
dence structure is known. One may use a parametrized working weight ma-
trix, the parameters of which are estimated from the residuals at each step
in the iteratively reweighted least squares procedure. The closer the spec-
ification in the weight matrix is to the ’true’ form for the dependence, the
more efficient the procedure.

Zhao and Prentice [14] extend the Liang and Zeger procedure for estimating
the dependence parameters. They set up two sets of generalized estimating
equations jointly, one for the mean parameters and one for the dependence
parameters. The first set is based on the observations and involves only the
mean parameters, whereas the second set is based on the first order cross
products of the observations and involves both the mean and dependence
parameters. Since the mean parameters enter both sets of equations these
are not independent, implying that the Zhao and Prentice procedure results
in different estimates for the regression parameters than the Liang and Zeger
procedure. The Liang and Zeger procedure is denoted GEE1, while the Zhao
and Prentice extension is denoted GEE2.

Zhao and Prentice further show that the two joint sets of estimating equa-
tions constitute the score equations from a quadratic exponential likelihood
specified in terms of first and second order dependencies. They term this
a pseudo-likelihood since the higher order dependencies are ignored. It is
instructive to note that just as the score equations for a generalized lin-
ear model based on independent observations only use the relation between
the mean and the variance in computing maximum likelhood estimates, the
score equations from the Zhao and Prentice multivariate quadratic pseudo-
likelihood only uses the first four moments to compute the pseudo-likelihood
estimates.
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Fitzmaurice and Laird [15] extend the Prentice and Zhao pseudo-likelihood
procedure to a full likelihood approach for dependent binary data. They
parametrize the joint multinomial likelihood for the multivariate binary ob-
servations in terms of the marginal means and the conditional cross-product
ratios. This corresponds to a so called ’mixed’ parametrisation for an ex-
ponential family distribution. In order to solve the resulting set of score
equations an inner loop is needed in the iteratively reweighted least squares
algorithm in order to express the multinomial cell probabilities in terms of
the mean and the dependence parameters. Although there is an one-to-one
relationship between these two sets of parameters, no analytic transforma-
tion exists. Fitzmaurice and Laird use the iterative proportional scaling
(IPS) algorithm for this inner loop. An appealing property of the mixed
parametrisation for the exponential family is that the mean and the disper-
sion parameters are orthogonal to each other, in the sense that the joint
covariance matrix for the two sets of parameters is block-diagonal. Param-
eter orthogonality here implies that inferences for the regression parameters
are robust to the properties of the estimated dispersion structure [16].

The various generalized estimating equations desribed above, spanning from
the GEE1 via the GEE2 to the score equations for a full multivariate like-
lihood raise important questions concerning the trade off between bias and
precision. If the parametrisation of the full multivariate likelihood holds,
then likelihood inference offers asymptotically unbiased and fully efficient
estimation for the regression parameters. If, however, the distributional as-
sumptions do not hold, then misspecification could result in biased regression
parameter estimates. Note that if the mixed parametrisation does not hold,
then the robustness properties induced by parameter orthogonality would be
lost. In contrast, if little is known about the multivariate distribution, then
the Liang and Zeger GEE1 approach at least provides consistent, albeit less
efficient, estimates for the regression parameters. The GEE1 procedure is,
however, of no practical use for estimating parameters in the dependence
structure. If both the mean and the first order dependencies are of interest,
then the GEE2 are preferrable to the GEE1, although the robustness of the
mean parameters to misspecification of the dependence structure is partially
lost.

Wei, Lin and Weissfeld [17] consider a semiparametric regression model for
multivariate right censored failure time data by modelling marginal distri-
butions. They discuss the situation in which two or more distinct failure
times are recorded on each individual and the situation in which repetitions
of the same kind of event are observed. Each marginal failure time is mod-
elled by a semiparametric Cox model and no specific structure is imposed
on the dependence. The regression parameters are estimated by maximizing
the failure specific partial likelihoods, resulting in asymptotically consistent
normally distributed estimators with a covariance matrix of the ’sandwich
type’, which may be consistently estimated from the data. The Wei, Lin
and Weissfeld marginal model is a multivariate failure time analogue to the
GEE1 model for multivariate binary and multivariate count data.
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2.5 Random effects models

While the marginal models focus on inference for the fixed regression pa-
rameters, the random effects models aim at describing simultaneously both
the fixed and the random components of variation. The generalized linear
mixed models [18], [19] extend the generalized linear models by adding a set
of random terms to the linear predictor. Since no mathematically conveni-
ant conjugate distribution is availabe for terms in the linear predictor, the
multivariate normal distribution for the random effects is often used as a
pragmatic choice. The resulting likelihood is obtained by integrating out the
unobserved and often high dimensional vector of random effects. Since the
integration cannot be performed analytically a number of approximations
have been suggested. Note that the marginal likelihood for the observations
is a function of the fixed regression parameters as well as the variance compo-
nents for the random effects. The individual random effects may be viewed
as a set of latent observations and thus the model may be characterized as an
incomplete data model. Besides making inferences about the regression pa-
rameters and the variance components the purpose of the modelling is often
also to make predictions for the individual random effects.

Stiratelli, Laird and Ware [20] elegantly extend to the multivariate binary
setting the Laird and Ware [21] random effects model for normally distributed
repeated measures. Maximum likelihood estimation is used for the fixed
effects and empirical Bayes estimation for the random effects. Since exact
solutions are intractable they use an approximation based on the mode of
the posterior and they implement the procedure via the EM algorithm. The
rationale behind the EM algorithm for likelihood inference for incomplete
data was laid out in the seminal paper by Dempster et al [22] and it is briefly
described in the next subsection of this paper. By reverting to the mode
rather than the mean of the posterior, the E-step and the M-step of the EM
algorithm may be merged. Note further that the estimation procedure is
doubly iterative and inferences for the fixed and random effects are obtained
from the inner loop conditionally on given values for the variance components.
The variance components in turn are updated in the outer loop for given fixed
and random effects.

Breslow and Clayton [18] derive a penalized partial likelihood solution us-
ing Laplace’s method for integral approximation to the likelihood. In the
multivariate binary setting this procedure, although differently motivated,
arrives at the same estimating equations for the fixed and the random effects
as those of Stiratelli, Laird and Ware. A third route to similar equations is
via an extension of the Henderson best linear unbiased prediction (BLUP)
model originally derived for the normal linear random effects model [19],[23].

For right censored failure time data random effects models are referred to as
frailty models. Since the Cox partial likelihood regression treats the base-
line hazard non-parametrically, there is no intercept in the linear predictor
and the notion of overdispersion or heterogeneity in individual risk is in-
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trinsically aliased with the baseline hazard itself. Nevertheless, there is a
rather extensive literature on so called shared frailty models [24], [25], [26] in
which a gamma distributed frailty term acts multiplicatively on the hazard.
For clustered failure time data the multiplicative gamma-distributed frailty
model has been used, where frailties are divided into additive independent
gamma-distributed components [27], [28]. This model, however, results in a
complicated likelihood. An altenative is to follow the penalized likelihood
approach of Breslow and Clayton [18] and use a multivariate normal distri-
bution for the frailties [29], [30], [31].

The random effects models described above rely on (i) an approximate large
sample likelihood solution (ii) computation by an algorithm which has re-
verted awkward integration to high dimensional matrix inversion (iii) failure
to account for undertainty in the estimated variance components when as-
sessing the precision for the estimated fixed and random effects. In a nor-
mal linear mixed model the estimates of the regression parameters and the
variance components are asymptotically orthogonal. For exponential family
mixed models this orthogonality property does not hold, and the uncertainty
in the one set of parameters should be incorporated in the estimated preci-
sion for the other set. The Bayesian model formulation and simulation based
posterior inference constitute an alternative to the large sample iterative
procedures.

2.6 Bayesian simulation based inference

Random effects models are appropriate for many real world problems, but
they are difficult to fit using traditional statistical tools. New simulation
based techniques to draw inferences from these models can be viewed as ex-
tensions to the EM algorithm for maximum likelihood estimation of incom-
pletely observed data, or they can be derived from a Bayesian perspective.
Here the incompleteness refers to the unobserved random effects. Other ad-
ditional incomplete features of the data may naturally be incorporated into
the model.

Heuristically the EM algorithm works by first filling in the missing data, then
estimating the parameters from the completed data and then re-estimating
the missing data using the updated parameter values. Formally the EM
algorithm maximizes the observed data likelihood by iteratively maximizing
the complete data likelihood [22]. Each iteration consists of two steps. The
E step computes the expectation of the complete data log likelihood over the
predictive distribution for the missing data, given the observed data and the
current parameter estimates. The M step maximizes the ensuing conditional
expected complete data log likelihood using the same maximum likelihood
routine as would be used for a complete data likelihood. The EM algorithm
is easy to monitor but the convergence may be slow, the rate of convergence
being proportional to the fraction of observed data relative to the complete
data [32]. The E step is often itself intractable, as is the case for the random
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effects models with a non-conjugate distribution, for which the E step involves
the same intractable integral as the observed data likelihood.

One method to avoid the intractable E step is to evaluate the mode rather
than the mean. This was discussed in the previous subsection. Another
approach involves drawing samples from the predictive distribution of the
missing data given the observed data and the current parameter values and
to calculate the Monte Carlo mean. This Monte Carlo EM method maximizes
the observed data likelihood, and is thus a large sample iterative technique.

A conceptually different solution involves replacing both the E step and the
M step by successive draws from respectively the predictive distribution for
the missing data given the observed data and current parameter value, and
from the distribution for the model parameters given the completed data.
Since this data augmentation approach [33] assumes that all model param-
eters, including the regression parameters and the variance components are
random, it has a Bayesian flavour and is conceptually different from a large
sample iterative EM solution for maximizing the observed likelihood. Given
certain regularity conditions the successive draws in this data augmenta-
tion procedure will eventually converge to the joint posterior distribution
for the missing values and the parameters. Simulated marginal posterior
distributions are thus available for the regression parameters, the random
effects parameters and the variance components, respectively. If priors with
very large variances are used for the regression parameters and the variance
components, then the posterior means for the regression parameters closely
correspond the the maximum likelihood estimates. Note, however, that that
posterior credible intervals for the regression parameters and the random
effects incorporate the uncertainty in the estimated variance components.
This resolves the problem inherent in the large sample iterative approach,
in which the inferences for the regression parameters and the random effects
are made conditional on the variance components being fixed.

Iterative simulation techniques date back at least to Metropolis et al [34] in
the physical sciences. Tanner and Wong [33] were influential in introducing
these methods and related theory and examples to statistical science. The
Gibbs sampler is a useful special case of the Metropolis algorithm in which the
missing values and the model parameters are partitioned into sets, and in one
iteration of the Gibbs sampler all full conditional distributions are sampled
in turn. The Gibbs sampler is useful when the conditional distributions are
easy to sample from.

The several recent books on Bayesian computation indicates that this new
methodology for statistical inference is here to stay [35], [36], [37], [38]. The
simulation based algorithms provide an attractive, coherent and flexible in-
ference framework for a large set of models that could not be handled by
traditional tools. The models naturally incorporate incomplete data struc-
tures as well as prior information from external sources. The fitting pro-
cedure is, however, computationally intensive, the convergence properties of
the different samplers are difficult to assess, and the sensitivity to the various
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model assumption are not transparent. More experience of these methods is
needed.

Rubin [32] gives a lucid overview of computational aspects of analysing ran-
dom effects models and Zeger and Karim [39] provide a full Bayesian posterior
analysis of a Poisson log linear random effects model.

3 Statistical genetics

Due to the enormous amount of information provided by today’s genome
projects the field of genetics is experiencing an outburst of empirical explo-
ration of its theoretical roots: the actual identification of the chromosomal
loci underlying phenotypic variation. The practical implications of this de-
velopment for medical practices is likely to be enormous.

There is a growing literature with statistical orientation on the topics of
segregation ratios, population frequencies, genetic linkage, allelic associa-
tion and continuous and quasi-continuous traits scattered in numerous books
and periodicals devoted to the various overlapping branches of genetics such
as medical genetics, population genetics, quantitative genetics, behavioural
genetics, molecular genetics and genetic epidemiology. The flow of recent
books on statistical genetics reflect attempts at structuring and unifying the
methodological issues in the field [40], [41], [42], [43], [44], [45], [46].

Below we first give a brief account of the early controversy between Mendelian
and quantitative genetics, resolved by a unified view on the laws of segrega-
tion for traits measured on different scales. We emphasise the methodologi-
cal implications from reverting interest from single gene disorders to complex
diseases, and finally claim through examples involving genetic epidemiology,
multipoint linkage and linkage disequilibrium methods that the emerging
multivariate statistical modelling framework described in section 2 has the
potential to contribute new and unified tools for genetic outcomes measured
on a wide variety of scales.

3.1 Theoretical roots

Mendelian genetics in 1900 was concerned with inheritance of discrete char-
acters such as purple vs white flower color, blood-group, eye-color, wrinkled
vs smooth seeds. The mechanism of inheritance can be observed through the
’Mendelian ratios’ only when a gene difference at a single locus gives rise to
a readily detectable discrete trait difference.

The Mendelian theory appeared to be in sharp contrast to an independent
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branch of empirical genetics begun earlier by Francis Galton [47] who con-
centrated on continuously varying characters. A series of debates ensued
between the Mendelians led by William Bateson and the Biometricians led
by Karl Pearson. The major issues were whether discrete characters have the
same hereditary and evolutionary properties as continuously varying charac-
ters. The Mendelians view evolution as arising from genetic mutations with
large effects while the Biometricians viewed evolution as the result of natural
selection acting on continuously distributed traits [45].

Mendel himself had suggested an explanation for how variation in continuous
characters could be maintained by the independent segregation of multiple
factors. The British mathematician Udny Yule gave formal proof for this idea
in 1902 [48]. Unfortunately, at that point in time the only thing that the
Biometric and the Mendelian schools could publicly agree on was the incom-
patibility of Mendelian genetics and the inheritance of continuous characters.
It was Ronald Fisher who in 1918 wrote the classic paper entitled ’The corre-
lation between relatives on the supposition of Mendelian inheritance’, which
reconciled the two schools [49]. The standard model for inheritance of quan-
titative trait values assumes a large number of loci that act independently
and additively, each with a small effect on the trait, and each following the
laws of Mendelian transmission.

The importance of statistics in human genetics has a long history. Karl
Pearson and Ronald Fisher, two of the pioneers of statistics in the early
20th century, were both involved in genetics at some point in their career.
Francis Galton provided the empirical motivation for Karl Pearson’s formal
development of the theory of regression and correlation [50]. Fisher’s 1918
paper introduced the concept of variance-component partitioning and Wright
introduced path analysis in 1921 [51].

3.2 Complex diseases

The Human Genome Project and the DNA-sequencing of many other or-
ganisms have reveiled a modular structure of the genome, building up from
nucleotides to codons to gene families and other higher order structures. It
is the duplication of whole genes or clusters of genes with subsequent modi-
fication which provides the material for inherited phenotypic variation.

Early work in modern genetics has been dominated - with much success -
by the study of single gene disorders. This typically involves identification
of large multiply affected pedigrees, estimation of penetrances and modes
of transmission by segregation analysis and ’parametric’ linkage analysis. A
chromosomal region is thus identified in which the causative gene must lie.
Subsequent more refined analysis narrows down the region to a size small
enough for exhaustive search with molecular biological techniques.

Recent interest has turned to diseases of more complex aetiology, such as
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diabetes, multiple sclerosis, rehrumatoid arthritis, cardiovascular disease,
asthma, hypertension and psychiatric illnesses, which are assumed to involve
more than one causative gene. The complex transmission reflecting the ac-
tions and interactions of multiple genetic and environmental factors requires
development of new methodology. Studies based on large numbers of simple
pedigrees ascertained from population-based samping frames are becoming
commonplace, and established methods for linkage analysis are giving way
to methods based on affected pairs of siblings and to the study of linkage
disequilibrium using population and family-based cases and controls.

It is of interest to note that recent identification of quantitative trait loci
(QTL) from DNA-level data suggests that the influence on quantitative trait
variation could stem from one or two alleles with strong effect, and many
alleles with minor effect at the same locus. The number of QTL’s may thus
be small, or at least finite. This suggests a unified way in which discrete
and quantitative traits are produced at the gene level, and is changing the
perspective on the mechanism of quantitative trait inheritance [52].

Trait variation, which may be measured on a continuous, binary or censored
age-at-onset scale is thus determined by observed and unobserved variation
in multiple genetic and environmental factors. Power to map new disease
genes is increased if chromosomal regions and environmental factors already
identified as linked to the disease are accounted for. One cannot, however,
assume that all genetic and environmental factors affecting disease suscepti-
bility have been identified. Strong residual dependence between phenotypes
of family members often remains [53], which on one hand renders invalid
the traditional within-family assumption of conditional independence for the
trait given the genotype, and on the other hand may contain important in-
formation on the magnitude and character of as yet unidentified sources of
variation.

The multivariate exponential family models are useful for modelling residual
variation in a variety of settings, including within family dependence and
dependence in marker expression and in recombination counts along chro-
mosomal segments. We present recent contributions to genetic epidemiology,
multipoint linkage analysis and linkage disequilibrium testing in which the
methods described in section 2 are utilized.

3.3 Genetic epidemiology

Historically, epidemiology and genetics have been different in their outlook.
Epidemiology has focussed on effects of environmental factors including age
and gender. The environmental exposures have been observable, although
possibly measured with error. The focus of genetic studies on the other hand
has been on factors such as the Huntington disease gene or breast cancer
genes, and traditionally the putative disease genes have been latent and not
directly observable in individuals. These differences have resulted in different
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conceptual orientations in defining risk factors, in choosing study designs and
in the statistical methods used to extract information. Still, epidemiology
and genetics are intrinsically connected in that both share the same mission
of trying to understand the aetiology of human diseases, whether genetic or
environmental. With molecular data the differences in outlook are beginning
to disappear. Contemporary epidemiologic studies often use biological mark-
ers, including candidate genes if available, and genetic studies increasingly
consider influences of environmental factors in their penetrance functions.

Burton et al [54] use a Bayesian model and Gibbs sampling to fit a gener-
alized linear mixed model to binary phenotypes in nuclear families. They
illustrate their model on a study of the genetics of atopic disease. Some two
hundred families consisting of two parents and at least two children were
sampled from the population of eligible families in the town of Busselton in
Western Australia. Individuals were defined as atopic if they satisfied any
one of a series of standard criteria. A generalized linear mixed model was
specified with atopy as the binary response, a logit link function, fixed effect
terms representing each of eight age-gender groups and three random effect
terms representing an additive polygenic effect, an effect of common family
environment and an effect of common sibling environment. The model was
further extended to look for linkage disequilibrium with alleles 3 and 4 of
a microsatellite marker located on chromosomal region 11q13. Assumptions
of Hardy-Weinberg equilibrium, random mating and random ascertainment
underly the model specification. The results described in the paper pro-
vide moderately strong evidence for an additive genetic variance component.
Although the microsatellite marker in question has shown linkage to quan-
titative phenotypes related to atopy, no evidence of linkage disequilibrium
with the binary phenotype ’atopy’ was shown in this study.

3.4 Semiparametric methods for multipoint linkage

Zhao et al [55], [56] propose a semiparametric model for two-point and mul-
tipoint linkage analysis and they use the method on breast cancer family
data. They emphasise that the approach handles binary, continous, or cen-
sored failure time phenotypes in a unified fashion, and that it is applicable
to different family structures including extended pedigrees, nuclear families,
sib pairs, affected relative pairs or mixtures of these family structures.

The two-point model estimates the recombination fraction between the pu-
tative disease locus and one marker at a time. The multipoint model uses
multiple marker loci simultaneously and is expected to be more efficient than
the two-point analysis. Multipoint linkage is of interest particularly as the
Human Genome Map is being constructed, offering many genetic markers for
the mapping of complex traits.

For each family member data is available on the phenotype, on covariates
including candidate genes and environmental factors and on markers at a
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number of loci. Besides the observed data a latent putative disease genotype
is specified, with alleles at the putative disease locus of the mutant or wild
type.

The parametric component of the proposed semiparametric model assumes
known form for the penetrance function and specified allele frequency for
the putative disease genotype. In addition Hardy-Weinberg equilibrium and
Mendelian transmission is assumed for the putative disease gene. Residual
dependence is acknowledged for phenotypes of members within a family, but
no distributional form is assumed for the joint phenotype distribution. An
estimating equation approach is used to estimate recombination fractions
and to make inferences about the position of putatitve disease genes. Depen-
dencies between the counts of recombinants for given counts of informative
meiosis on different chromosomal segments are built into the model. The
dependencies may reflect interference and uncertain marker order. Paternal
and maternal meiosis may be accounted for separately. Here the segments
constitute windows which are set to move over the chromosome and an es-
timate of the average recombination fraction is obtained. The possibility to
account for dependencies between marker segments explains the increased
power for the multipoint model relative to the two-point model. Zhao et al
[56] discuss in detail the assumptions concerning higher order dependencies
as well as the pros and cons of using the GEE1 and GEE2 approaches.

3.5 Transmission/disequilibrium tests for haplotype trans-
mission

Traditional linkage studies explore the fact that genetic markers near to the
disease susceptibility gene tend to be inherited together with the disease
susceptibility gene itself. The observation of recombination events identifies
if the disease gene lies on a particular part of a chromosome or not. Usually
linkage studies will only be able to locate genes to an accuracy of a few
cM, which leaves a very large region of DNA to be sequenced. Even with
the increased power from multipoint linkage studies a very large number of
multiply affected families would be needed to narrow the region.

As an alternative to traditional linkage studies the mapping of disease suscep-
tible genes to smaller chromosomal regions may be possible by considering ’a
very large’ family, i.e. the population. Population based studies comparing
allele frequencies in cases and controls have, however, been criticized as prone
to false positive findings due to population admixture, i.e. unidentified pop-
ulation heterogeneity involving varying allele frequency and varying disease
risk in the latent subgroups. To overcome the confounding problem induced
by population admixture family based case-control study designs are used.
These are based on genotyping of cases and both their parents and use the
non-transmitted alleles as family based controls [57], [58].
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Clayton and Jones [59], [60] develop a formal statistical framework for trans-
mission/disequilibrium tests (TDT) to detect association between polymor-
phic markers and categorical or quantitative traits. Emphasis is on marker
haplotypes formed by several adjacent loci and the methodology is targeted
for fine mapping using a set of diallelic SNP-markers in an identified candi-
date region.

First a general haplotype relative risk model is defined, in which the rela-
tive risk of a heterozygote genotype is defined to be intermediate between
the two homozygote genotypes, the exact position being determined by the
particular form of a monotone increasing link function. The TDT test can
be derived as a score test for the hypothesis that the haplotype relative risk
parameters are all unity. This is equivalent to a score test based on the
hypergeometric distribution in a matched case-control study. As implied by
the relationships between models discussed in section 2.2 the full toolbox for
conditional logistic regression is available [7], [61]. Information on individual
specific and family specific environmental factors may be incorporated into
the analysis. Clayton and Jones emphasize that also for quantitative traits it
is useful to condition on the offspring trait value and the parental genotype
and to treat transmission as the random response. A conditional likelihood
is formed which is parametrized in terms genotype specific deviations in av-
erage trait value from the overall trait mean. The likelihood contribution is
defined as the probability that conditional on the offspring phenotype value
the genotype of the affected offspring is transmitted rather than any other
of the possible genotypes.

With increasing number of loci the marker haplotype polymorphism increases
rapidly as well as the number of haplotype relative risk parameters under the
alternative. If the model under the alternative is left unspecified a global test
will lack power. For binary or discrete traits, the log linear model provides
a useful conceptual framework for defining disease-marker associations [62].
The practice of using first order marker associations is simple, but it is ques-
tionable in that the most informative marker is not necessarily the one that
is physically closest to the disease susceptibility locus. It is worth noting
that the closer one is to the time of the disease mutation the higher the order
of expected haplotype association. If one is close in time to the mutation a
test of the null hypothesis against a very-high-order alternative is powerful.
With increasing distance in time from the mutation the high-order effect is
rapidly diluted by recombination. As an alternative to searching the hier-
archy of tests, which would ultimately lead to a multiple testing problem,
Clayton and Jones propose a random effects alternative. This is based on as-
suming the haplotype relative risks parameters to be random and generated
by a multivariate normal model with a covariance matrix specified in terms
of measurable haplotype similarity and a single hyperparameter determining
the extent of the association. Haplotype similarity is defined by the location
and length of the longest contiguous chromosomal segment in the candidate
region over which there is identity by state.

The general TDT model is further extended to account for incomplete trans-
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mission information. This may arise if parents are unavailable for typing, or
if the information content in the SNP’s does not allow phase determination.
Restricting attention to cases where parental genotypes may be inferred from
additional offspring genotypes has been shown to be prone to bias [63]. In-
stead Clayton describes how standard statistical models for incomplete data
[22], [64] may be used for model specification and to obtain a modified score
and information for the incompletely observed data. The authors point out
that a hierarchical Bayes model and simulation based posterior inference are
well suited for estimation and model assessment in this general haplotype
relative risk model.

4 Medical statistics 2000

While computer science and bioinformatics provide methods for storage, or-
ganisation and retrieval of the accumulating molecular information together
with algorithms for pattern recognition and prediction, statistical science is
concerned with the quantification of sources of variation and uncertainty, and
with the assessment of power and robustness for methods used in the design,
analysis and interpretation of empirical studies.

The aim of this paper has been to illustrate from one specific angle how the
frontier in applied probability and statistics may contribute important new
research tools to empirical biomedicine. A somewhat fragmented glimpse
is provided of a scenario which is still in its infancy. It should, however,
be clear that the development of new statistical tools for empirical research
stands on three legs: (i) innovative use of mathematics, probability theory
and statistical inference theory, (ii) good understanding of the often complex
biological phenomena and (iii) understanding of modern rather sophisticated
computational tools.

In order for medical statistics to fulfil its role as a scientific player on the
emerging scene for empirical biomedicine, new post graduate education paths
need to be developed, based on mathematics and theoretical statistics and
firmly integrated with biology, medicine and computer science. A challenge
for the year 2000 and the years to follow!
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