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Abstract

In this thesis, a closed-form solution for the price of options on
VIX futures is derived by developing a term-structure model for VIX
futures. We analyze the VIX futures by the Merton Jump Diffusion
model and allow for stochastic interest rates in the model. The per-
formance of the model is investigated based on the daily VIX futures
prices from the Chicago Board Option Exchange (CBOE) data. Also,
the model parameters are estimated and option prices are calculated
based on the estimated values. The results imply that this model is
appropriate for the analysis of VIX futures and is able to capture the
empirical features of the VIX futures returns such as positive skewness,
excess kurtosis and decreasing volatility for long-term expiration.
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1. Introduction 

          The Chicago Board Options Exchange (CBOE) introduced VIX futures and VIX options contracts 

for the first time in March 2004 and February 2006 respectively. Since 2004, the CBOE Futures 

Exchange has experienced a steady progress in trading VIX futures contracts. This growth is a 

consequence of accepting the volatility as a trading instrument and asset class by market participants. 

Currently, average daily volume for the VIX futures contracts is equivalent to the futures markets which 

have been around for decades. Since VIX futures and options are two derivatives having VIX as the 

underlying and the VIX index is also translated as the expected movement in the S&P 500 index over the 

next 30-day period, the price of VIX futures and options are based on the expected volatility of the S&P 

500 over the 30 day period. As a result, Lin and Chang (2009) stated that pricing options on VIX futures 

is more appropriate than on VIX itself. VIX futures and options are exchange-traded derivatives and 

provide the opportunity to the investors to trade the volatility. Furthermore, they are considered as a 

useful tool to hedge the portfolio against future movements in volatility.  

          The VIX options offer the ability to hedge an equity portfolio better than other index options, even 

products that trade based on a portfolio’s benchmark index directly. The VIX futures returns have some 

important empirical features such as excess kurtosis and positive skewness. Therefore, a proper model 

should be proposed to capture all these characteristics.   

            A large number of studies have been currently concentrated on VIX futures and options pricing. 

These studies can be divided into two different categories. In the first category, different models were 

developed for the VIX index in order to determine the price of VIX futures and options (Psychoyios, & 

Skiadopoulus, (2007); Dopoyet, Diagler, & Chen, (2011), Psychoyios, Dotsis, & Markellos, (2009 & 

2010)). Also, some studies derived the price of VIX futures and options based on the model for 

instantaneous variance of S&P 500 Index , evaluating the VIX futures from the S&P 500  price dynamics, 

(Lin, (2007, Lu, Zhu, (2010); Zhang, Shu, & Brenner, (2010); Zhang and Zhu, (2006); Zhu and Zhang, 

(2007); Sepp, (2008)). In the study by Psychoyios, Dotsis, & Markellos, (2009), the VIX index is 

modelled by the mean-reverting logarithmic diffusion model with jump. They evaluated the performance 

based on the empirical study and conclude that the behavior of VIX can be properly modelled.  Later on 

in 2010, they performed a comparison between the two continuous time diffusion and jump diffusion 

models and study the behavior of the models to capture the dynamics of implied volatility over time.  

Based on their empirical investigation, they concluded that adding jump is crucial to correctly capture the 

dynamics. As they expected, the model considering jump have a superior performance in predicting the 

price of the VIX futures.  

          In the second category, more efforts have been carried out to model the VIX futures considering 

their dynamics exogenously instead of focusing on the VIX itself (Huskaj and Nossman (2013), Lin 

(2013)). Huskaj and Nossman (2013) investigated the term-structure model for VIX futures. Their model 

was a one factor model where the VIX futures prices follow the Normal Inverse Gaussian process (NIG). 

They illustrated that this model leads to a better fit than by just assuming a Wiener process in the VIX 

futures dynamics.  

          In the present study, we develop a closed-form solution for the price of options on VIX futures by 

considering a term-structure model for VIX futures. We model the VIX futures by the Merton Jump 

http://www.worldscientific.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(huskaj%2C+b)
http://www.worldscientific.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(nossman%2C+m)
http://www.worldscientific.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(lin%2C+y)
http://www.worldscientific.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(huskaj%2C+b)
http://www.worldscientific.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(nossman%2C+m)
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Diffusion model and allow for stochastic interest rates in the model. The performance of the model is 

investigated based on the daily VIX futures prices from the Chicago Board Option Exchange (CBOE) for 

the period March 2004 to December 2010. Also, the model parameters are estimated and option prices are 

calculated based on the estimated values. The results imply that this model is appropriate for the analysis 

of VIX futures and is able to capture the empirical features of the VIX futures returns such as positive 

skewness, excess kurtosis and decreasing volatility for long-term expiration. In fact, the main purpose of 

this thesis is to find an analytic formula for option price. Moreover, to investigate the influence of adding 

jump to the diffusion model to capture the empirical characteristics of VIX futures returns. Indeed, we 

modeled the VIX futures instead of VIX itself as in previous literatures.   

          The rest of the thesis is organized as follows: in section 2, some of the concepts and theorems in 

finance and probability theory are provided. In section 3, the model and its assumptions are described. 

Also, the Heath-Jarrow-Morton drift condition is derived. In section 4, the theoretical results for option 

pricing are provided for both having stochastic and constant interest rate in the model. Finally in section 5 

and 6 the empirical results and conclusion will be expressed respectively. 

 

2. Concepts in Finance and Probability Theory 

In this section, some of the definitions and theorems related to this thesis that will be used in the 

following sections are presented in their general forms.  

 

 

VIX Index:  
VIX is a symbol for the CBOE Market Volatility Index and is a measure for the volatility of S&P 500 

index option. It represents the market’s expectation of the movements in the S&P 500 over the next 30-

day period. It is stated that there is an inverse relationship between the movement direction of the SPX 

index and the VIX index. VIX can be calculated theoretically by using a formula provided by the CBOE. 

𝑉𝐼𝑋𝑡
2 =

2

𝜏
 ∑

△ 𝐾𝑖

𝐾𝑖
2

𝑖

 𝑄(𝐾𝑖) −
1

𝜏
 (

𝐹𝑡(𝑡 + 𝜏)

𝐾0
− 1)

2

 

Where,  

𝜏 = 30
365⁄  , 𝑄(𝐾𝑖) is the price of the out-the-money S&P 500 index option with strike price 𝐾𝑖. 𝐾0 

stands for the highest exercise price less than the index forward price 𝐹𝑡(𝑡 + 𝜏). 

It should be noticed that VIX index is quoted as percentage rather than a dollar amount. [9] 

 

 

VIX options: 
A VIX option is an option using the CBOE Volatility as the underlying asset. This is the first exchange-

traded option giving individual investors the ability to trade market volatility. [14] 
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Futures Contracts: 
A futures contract with expiration date T, on VIX as underlying is a financial derivative with the 

following properties: [1] 

 

(1) At every point of time t 0≤ 𝑡 ≤ 𝑇, there exists a quoted price 𝐹(𝑡; 𝑇, 𝑉𝐼𝑋) in the market, known as the 

futures price at t, for delivery at T. 

(2) During any arbitrary time interval (s, t] the holder of the contract receives the amount 𝐹(𝑡; 𝑇, 𝑉𝐼𝑋) −

𝐹(𝑠; 𝑇, 𝑉𝐼𝑋) 

(3) At any point of time t prior to delivery, the spot price of the futures contract is equal to zero. 

 

Also, by a proposition presented in [1], if market prices are obtained from the fixed risk neutral 

martingale measure ℚ. Then, the futures price process is given by: 

 

𝐹(𝑡; 𝑇, 𝑉𝐼𝑋) = 𝐸𝑡
𝑄

[𝑉𝐼𝑋𝑇] 

Note, futures prices are ℚ-martingales.  

 

 

The Likelihood Process: 
The following definition can be found in [1].  

Consider a filtered probability space (Ω, 𝔽, ℙ, 𝔽) on a compact interval [0, T]. Suppose now 𝐿𝑇 is some 

nonnegative integrable random variable in ℱ𝑇 . Define a new measure ℚ on ℱ𝑇 by setting 

                                        

                                                                  𝑑ℚ = 𝐿𝑇 𝑑ℙ        𝑜𝑛 ℱ𝑇   

And if                                   

                                                                    𝐸𝑃[𝐿𝑇] = 1    

 

the new measure will also be a probability measure. The likelihood process {Lt: 0 ≤ t ≤ T} for the 

measure transformation from ℙ to the new probability measure ℚ is defined as: 

                                                         

                                                                   𝐿𝑡 =
𝑑𝑄

𝑑𝑃
, on ℱ𝑡                                                                 

Where  

𝐿𝑡 is a ℙ-martingale and ℚ ≪ ℙ. 

 

Girsanov Theorem in the jump diffusion model:  

The following theorem is stated in [3], Consider the filtered probability space (Ω, 𝔽, ℙ, 𝔽) and assume 

that 𝑁1, … … . 𝑁𝑘 are optional counting process with predictable intensities 𝜆1, … … . 𝜆𝑘. Assume 



  

7 
 

furthermore that 𝑊1, … … . . 𝑊𝑑 are standard independent ℙ-Wiener processes. Let ℎ1, … … . ℎ𝑘 be 

predictable process with  

ℎ𝑡
𝑖 < −1,    𝑖 = 1, … … 𝑘, 𝑃 − 𝑎. 𝑠, 

And let 𝑔1, … … 𝑔𝑑 be optional processes. The likelihood process 𝐿𝑡 is defined as: 

      {
𝑑𝐿𝑡 = 𝐿𝑡  ∑ 𝑔𝑡

𝑖  𝑑𝑊𝑡
𝑖 + 𝐿𝑡−  ∑ ℎ𝑡{𝑑𝑁𝑡

𝑖 − 𝜆𝑡
𝑖 𝑑𝑡}𝑘

𝑗=1
𝑑
𝑖=1

𝐿0 = 1
}       (1) 

Then, 

                                     𝑑𝑊𝑡
𝑖 = 𝑔𝑡

𝑖𝑑𝑡 + 𝑑𝑊𝑡
𝑄,𝑖

,    𝑖 = 1, … . . 𝑑                                                 (2) 

                                     𝜆𝑡
𝑄,𝑖

= 𝜆𝑡
𝑖 (1 + ℎ𝑡

𝑖 ),            𝑖 = 1, … … . 𝑘                                               (3) 

Where 𝑊𝑄,1, … … … 𝑊𝑄,𝑑 are ℚ -wiener processes and 𝜆𝑡
𝑄,𝑖

 is the ℚ-intensity of 𝑁𝑖. 

 

3. VIX Futures Model 

In the present section, first the VIX futures model is presented and it is followed by deriving the Heath-

Jarrow-Morton drift condition. 

 

3.1. VIX Futures Model  

Consider a filtered probability space (Ω, 𝔽, ℙ, 𝔽) that carries a 2-multidimensional standard Wiener 

process 𝑊𝑡 consisting of two independent scalar Wiener process, and a Poisson process 𝑁𝑡 (with constant 

intensity 𝜆𝑃). The compensated Poisson process under ℙ,  𝑁�̃� is defined as �̃�𝑡 = 𝑁𝑡 − 𝜆𝑃𝑡 and is a P-

martingale. Also, it is assumed, the model has stochastic interest rate.  

The futures contracts are written on VIX with different maturities. The price of VIX futures at time t with 

maturity T is denoted by 𝐹(𝑡, 𝑇). Short rate is presented by 𝑟(𝑡)= 𝑓(𝑡, 𝑡), where 𝑓(𝑡, 𝑇) is forward rate. 

Furthermore, the bond market is considered and we denote the price at time t of a zero coupon bond with 

expiration date T by 𝑃(𝑡, 𝑇). The relationship between forward rate and T-bond is defined as: 

                                                           𝑓(𝑡, 𝑇)= −
∂

∂T
lnP(𝑡, 𝑇) 

The money account is also expressed as 𝐵(𝑡)= exp (∫ 𝑟𝑠𝑑𝑠
𝑡

0
). It is assumed that the market is free of 

arbitrage and for the money account as numeraire, the probability measure ℚ is a martingale measure. 

The dynamics of a VIX futures contract with maturity T under the physical probability measure ℙ is 

assumed to be: 

                      
𝑑𝐹(𝑡,𝑇)

𝐹(𝑡−,𝑇)
= α(t, T)𝑑𝑡+𝜎(𝑡, 𝑇)𝑑𝑊𝑡 + (𝑦𝑡 − 1)𝑑𝑁𝑡                                           (4) 
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Which can also be written as: 

                                
𝑑𝐹(𝑡,𝑇)

𝐹(𝑡−,𝑇)
= (α(t, T) + 𝑚𝜆𝑃)𝑑𝑡+𝜎(𝑡, 𝑇)𝑑𝑊𝑡 + (𝑦𝑡 − 1)𝑑�̃�𝑡   (5) 

Where 

𝑚 = 𝐸[(𝑦𝑡 − 1)] is mean of relative jump size. In fact, (𝑦𝑡 − 1) is relative price jump size which is a log-

normally distributed random variable. 

(𝑦𝑡 − 1) ∼ 𝑖. 𝑖. 𝑑. 𝑙𝑜𝑔 − 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚, 𝑒2𝜇+𝛿2
(𝑒𝛿2

− 1)) 

Also, 𝜎(𝑡, 𝑇) is a 2-dimentional vector known to be a deterministic volatility of futures prices. α(t, T) is 

interpreted as deterministic mean rate of return of futures prices between jumps and (α(t, T) + 𝑚𝜆𝑃) is 

mean rate of return including jumps. Also, 𝑁𝑡 , 𝑊𝑡  , 𝑦𝑡 are independent in the model. 

Moreover, the dynamics of the short rate and the dynamics of the T-bond under the assumption of 

existing and non-existing jump in their ℙ-dynamics are assumed to be: 

                                   𝑑𝑟(𝑡) = 𝛼𝑟(𝑡)𝑑𝑡 + 𝜎𝑟(𝑡)𝑑𝑊𝑡      (6) 

                                   𝑑𝑟𝑡 = 𝛼𝑟(𝑡)𝑑𝑡 + 𝜎𝑟(𝑡)𝑑𝑊𝑡 + (𝑔𝑡 − 1 )𝑑�̃�𝑡    (7) 

          𝑃(𝑡, 𝑇) = 𝛼𝑝(𝑡, 𝑇)𝑃(𝑡, 𝑇)𝑑𝑡 + 𝜎𝑝(𝑡, 𝑇)𝑃(𝑡, 𝑇)𝑑𝑊𝑡    (8) 

                                  𝑃(𝑡, 𝑇) = 𝛼𝑝(𝑡, 𝑇)𝑃(𝑡, 𝑇)𝑑𝑡 + 𝜎𝑝(𝑡, 𝑇)𝑃(𝑡, 𝑇)𝑑𝑊𝑡 + (𝐻𝑡 − 1)𝑃(𝑡−, 𝑇)𝑑�̃�𝑡 (9) 

Where 

(𝑔𝑡 − 1) and (𝐻𝑡 − 1) are relative price jump size for the short rate and T-bonds respectively. Also, 

𝛼𝑟(𝑡) in (6) and (7) is the drift term and 𝜎𝑟(𝑡) is a 2-dimentional deterministic volatility vector of the 

short rate. 𝛼𝑝(𝑡, 𝑇) and 𝜎𝑝(𝑡, 𝑇) in the equation (8) are deterministic mean rate of return of T-bond prices 

and the 2-dimentional volatility vector of T-bond prices respectively. 𝛼𝑝(𝑡, 𝑇) in (9) is deterministic total 

mean rate of return of T-bond prices.  

 

3.2. Heath-Jarrow-Morton Drift Condition 

In order to derive the HJM drift condition, transformation from the probability measure ℙ to ℚ is 

performed. By inserting equation (2) into (4), compensating the Poisson process N under probability 

measure ℚ and using (3), the ℚ dynamics of the VIX futures price is defined as: 

 
𝑑𝐹(𝑡,𝑇)

𝐹(𝑡−,𝑇)
= [α(t, T) + 𝜎(𝑡, 𝑇) ⋅ 𝑔𝑡]𝑑𝑡 + 𝜎(𝑡, 𝑇)𝑑𝑊𝑡

𝑄 + (𝑦𝑡 − 1)(𝑑𝑁𝑡 − (1 + ℎ𝑡)𝜆𝑃𝑑𝑡) + (𝑦𝑡 − 1)(1 +

ℎ𝑡)𝜆𝑃𝑑𝑡 = [α(t, T) + 𝜎(𝑡, 𝑇) ⋅ 𝑔𝑡 + 𝑚(1 + ℎ𝑡)𝜆𝑃]𝑑𝑡 + 𝜎(𝑡, 𝑇)𝑑𝑊𝑡
𝑄 + (𝑦𝑡 − 1)𝑑�̃�𝑡

𝑄 

Where 𝑑�̃�𝑡
𝑄

 is Martingale increment under ℚ, 𝑔𝑡 is 2-dimensional Girsanov Kernel and ( ⋅ ) is a symbol 

for the scalar product of the two vectors. 
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Since the futures price is a ℚ-martingale, the drift term has to be equal to zero. 

[α(t, T) + 𝜎(𝑡, 𝑇) ⋅ 𝑔𝑡 + 𝑚(1 + ℎ𝑡)𝜆𝑃] = 0  

α(t, T) + 𝑚𝜆𝑃 = −𝜎(𝑡, 𝑇) ⋅ 𝑔𝑡 − 𝑚ℎ𝑡𝜆𝑃  

α(t, T) + 𝑚𝜆𝑃 = 𝜎(𝑡, 𝑇) ⋅ 𝜑𝑡 + 𝑚𝛾𝑡  

Where 𝜑𝑡 denotes the 2-dimentional vector of market price of diffusion risk and 𝛾𝑡 denotes the market 

price of jump risk. Market price of diffusion risk and market price of jump risk are related to their 

Girsanov kernel 𝑔𝑡 and ℎ𝑡 [3] as follows  

𝑔𝑡 = −𝜑𝑡  

ℎ𝑡 = −
𝛾𝑡

𝜆𝑃  

Hence, The HJM drift condition is: 

                                   α(t, T) + 𝑚𝜆𝑃 = 𝜎(𝑡, 𝑇) ⋅ 𝜑𝑡 + 𝑚𝛾𝑡  

 

Therefore: 

The ℚ -dynamics of a VIX futures contract with expiration T is: 

  
𝑑𝐹(𝑡,𝑇)

𝐹(𝑡−,𝑇)
= 𝜎(𝑡, 𝑇)𝑑𝑊𝑡

𝑄 + (𝑦𝑡 − 1)𝑑�̃�𝑡
𝑄        (10) 

Which based on the definition of 𝑑�̃�𝑡
𝑄

, it can also be written as: 

  
𝑑𝐹(𝑡,𝑇)

𝐹(𝑡−,𝑇)
= − 𝜆𝑄𝑚 𝑑𝑡 + 𝜎(𝑡, 𝑇)𝑑𝑊𝑡

𝑄 + (𝑦𝑡 − 1)𝑑𝑁𝑡      (11) 

  Where 𝑚 = 𝐸[(𝑦𝑡 − 1)] = 𝑒𝜇+
𝛿2

2 − 1 . 

 

 

4. Option Pricing  

In this section, the option price formula is derived for three cases. First, pricing options under the 

assumption of having stochastic interest rate without existing jump in its dynamics, second, stochastic 

interest rate with jump and the last case is pricing formula with constant interest rate.  
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4.1. Stochastic Interest Rate without Jump 

Since the short rate is stochastic in the model; the T-forward measure is used to derive the option price 

formula. In fact, by changing the numeraire from the money account in the probability measure ℚ to the 

T-bond in ℚ𝕋, the ℚ𝕋 dynamics of VIX futures price is obtained. In order to have the  ℚ𝕋 dynamics of 

VIX futures prices, the likelihood process is defined as:  

                                                        𝐿𝑡
𝑇 =

𝑃(𝑡,𝑇)

𝑃(0,𝑇)𝐵(𝑇)
 ,    

                                                         𝐿𝑡
𝑇 =

𝑑ℚ𝕋

𝑑ℚ
, on ℱ𝑡 

The 𝐿𝑡
𝑇-dynamic is obtained by applying the Ito formula to 𝐿𝑡

𝑇 and based on the assumption of not having 

jump in the short rate, the value of ℎ𝑡 in the equation (1) is equal to zero.  

                                                     𝑑𝐿𝑡
𝑇 = 𝜎𝑝(𝑡, 𝑇)𝐿𝑡

𝑇𝑑𝑊𝑡
𝑄

   

                                                     𝑑𝑊𝑡
𝑄

= 𝜎𝑝(𝑡, 𝑇)𝑑𝑡 + 𝑑𝑊𝑡
𝑇 

Therefore, by transforming from ℚ to ℚ𝕋 the intensity does not change ( 𝜆𝑇 = 𝜆𝑄(1 + ℎ𝑡) = 𝜆𝑄) and by 

applying the Girsanov theorem to the equation (11): 

𝑑𝐹(𝑡, 𝑇)

𝐹(𝑡−, 𝑇)
= 𝜎(𝑡, 𝑇) ⋅ (𝜎𝑝(𝑡, 𝑇)𝑑𝑡 + 𝑑𝑊𝑡

𝑇) − 𝜆𝑄𝑚𝑑𝑡 + (𝑦𝑡 − 1)𝑑𝑁𝑡 = 

(− 𝜆𝑄𝑚 + 𝜎(𝑡, 𝑇) ⋅ 𝜎𝑝(𝑡, 𝑇))𝑑𝑡 + 𝜎(𝑡, 𝑇)𝑑𝑊𝑡
𝑇 + (𝑦𝑡 − 1)𝑑𝑁𝑡 

For simplicity in derivation, define the scalar product 𝜎(𝑡, 𝑇) ⋅ 𝜎𝑝(𝑡, 𝑇) = 𝛼𝐹(𝑡, 𝑇) and the intensity 𝜆𝑄 =

𝜆𝑇 = 𝜆.  

Hence, the ℚ𝕋-dynamics of VIX futures price and its price formula are: 

                                
𝑑𝐹(𝑡,𝑇)

𝐹(𝑡−,𝑇)
= (− 𝜆𝑚 + 𝛼𝐹(𝑡, 𝑇) )𝑑𝑡 + 𝜎(𝑡, 𝑇)𝑑𝑊𝑡

𝑇 + (𝑦𝑡 − 1)𝑑𝑁𝑡  (12) 

𝐹(𝑇, 𝑇) = 𝐹(𝑡, 𝑇)𝑒𝑥𝑝 [(−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
) + ∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠

𝑇𝑇

𝑡
+ ∑ 𝑌𝑘

𝑁𝜏
𝑘=0 ] 

            (13) 

Where 

𝑌𝑘 = 𝑙𝑜𝑔(𝑦𝑡) ∼ 𝑖. 𝑖. 𝑑. 𝑁(𝜇, 𝛿2)  and  𝜏 = 𝑇 − 𝑡. 

The detailed derivation of the formula (13) is presented in the Appendix.  

Theorem: The price at time t of a European call option with maturity date T and strike price K, written 

on the terminal futures price of futures contract 𝐹(𝑇, 𝑇) following jump diffusion model, at any time t≤ 𝑇 

is given by: 
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𝑪(𝒕, 𝑻) =  𝑷(𝒕, 𝑻) ∑
𝒆−𝝀𝝉(𝝀𝝉)𝒋

𝒋!
 [𝑭(𝒕, 𝑻) 𝒆𝒙𝒑 (−𝝀𝒎𝝉 + ∫ 𝜶𝑭(𝒔, 𝑻)𝒅𝒔

𝑻

𝒕

+ 𝒋𝝁 + 𝒋 
𝜹𝟐

𝟐
)  𝚽(𝒅𝟏) − 𝑲𝚽(𝒅𝟐)]

𝒋≥𝟎

 

Where 

Φ(. ) is the cumulative distribution function of the standard normal distribution and 

𝑑2 =
ln(

𝐹(𝑡,𝑇)

𝐾
) +[−𝜆𝑚𝜏+∫ 𝛼𝐹(𝑠,𝑇)𝑑𝑠

𝑇

𝑡
−1

2⁄ ∫ ∥𝜎(𝑠,𝑇)∥2𝑑𝑠
𝑇

𝑡
]+𝑗𝜇

√∫ ∥𝜎(𝑠,𝑇)∥2𝑑𝑠
𝑇

𝑡
+𝑗𝛿2

  

𝑑1 = 𝑑2 + √∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
+ 𝑗𝛿2  

 

Proof                         

An arbitrage-free price of a European call option with maturity T, written on the terminal futures price of 

a futures contract F (T,T) and strike price K at any time  t≤ 𝑇 with information ℱ𝑡 is given by: 

                                     𝐶(𝑡, 𝑇) = 𝑃(𝑡, 𝑇)𝐸𝑇[max(F (T , T) − K , 0)| ℱ𝑡  )]    (14) 

By inserting the equation (13) into (14) and condition on the number of jumps as: 

𝑁𝜏 = 𝑗   ,    𝑗 = 0,1,2, … 

The equation (14) is expressed as: 

𝐶(𝑡, 𝑇) = 𝑃(𝑡, 𝑇) 𝐸𝑇[max(F (T , T) − K , 0)| ℱ𝑡  )] = 𝑃(𝑡, 𝑇)𝐸𝑇 [(𝐹(𝑇, 𝑇) − 𝐾) 𝐼𝐹(𝑇,𝑇)>𝐾
|ℱ𝑡] =

𝑃(𝑡, 𝑇) ∑ 𝑄𝑇(𝑁𝜏 = 𝑗)𝑗≥0 {𝐸𝑇 [𝐹(𝑡, 𝑇)𝑒𝑥𝑝 [(−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)
𝑇

𝑡
𝑑𝑠 − 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
) +

∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠
𝑇𝑇

𝑡
+ ∑ 𝑌𝑘

𝑗
𝑘=1 ] 𝐼𝐹(𝑇,𝑇)>𝐾

| ℱ𝑡  , 𝑁𝜏 = 𝑗 ] − 𝐸𝑇 [𝐾𝐼𝐹(𝑇,𝑇)>𝐾
 | ℱ𝑡  , 𝑁𝜏 = 𝑗]}  (15) 

 

Notice, ∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠
𝑇𝑇

𝑡
 is normally distributed with zero mean and variance ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠

𝑇

𝑡
 and 

∑ 𝑌𝑘
𝑗
𝑘=0 ~𝑖. 𝑖. 𝑑. 𝑁(𝑗𝜇, 𝑗𝛿2). Hence, 

X=∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠
𝑇𝑇

𝑡
+ ∑ 𝑌𝑘

𝑗
𝑘=0 ~𝑁(𝑗𝜇, 𝛽 + 𝑗𝛿2) where 𝛽 = ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠

𝑇

𝑡
. 

Random variable X can also be presented as: 

X≡
d

𝑗𝜇 + √𝛽 + 𝑗𝛿2𝑍  where Z is standard normal distributed. (Z~𝑁(0,1))  

In order to calculate the equation (15), each part of it, is computed separately. The first expectation in (15) 

is obtained as: 
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𝐸𝑇 [𝐹(𝑡, 𝑇)𝑒𝑥𝑝 [(−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
) + ∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠

𝑇𝑇

𝑡
+

∑ 𝑌𝑘
𝑗
𝑘=0 ] 𝐼𝐹(𝑇,𝑇)>𝐾

|ℱ𝑡 , 𝑁𝜏 = 𝑗] = 𝐸𝑇 [𝐹(𝑡, 𝑇)𝑒𝑥𝑝 [(−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
) +

𝑋] 𝐼𝐹(𝑇,𝑇)>𝐾
|ℱ𝑡 , 𝑁𝜏 = 𝑗] =

𝐸𝑇 [𝐹(𝑡, 𝑇) exp [−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
+ 𝑗𝜇 + √𝛽 + 𝑗𝛿2𝑍] 𝐼𝐹(𝑇,𝑇)>𝐾

|ℱ𝑡 , 𝑁𝜏 = 𝑗] =

𝐹(𝑡, 𝑇) exp [−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
+ 𝑗𝜇] 𝐸𝑇 [exp(√𝛽 + 𝑗𝛿2𝑍) 𝐼𝐹(𝑇,𝑇)>𝐾

 | ℱ𝑡 ,

𝑁𝜏 = 𝑗] = 𝐹(𝑡, 𝑇) exp [−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
+ 𝑗𝜇] ∫ (𝑒√𝛽+𝑗𝛿2𝑧 𝑓(𝑧)

∞

−𝑑2
𝑑𝑧 =

𝐹(𝑡, 𝑇) exp [−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
+ 𝑗𝜇] ∫ (𝑒√𝛽+𝑗𝛿2𝑧 

1

√2𝜋
𝑒

−𝑧2

2⁄∞

−𝑑2
)𝑑𝑧. (16) 

Where 𝑓(𝑧) =
1

√2𝜋
𝑒

−𝑧2

2⁄  is the density function of a standard normally distributed variable Z. Also, in 

order to find the integration interval, the indicator function 𝐼𝐹(𝑇,𝑇)>𝐾
 implies that we need to find the area 

that 𝐹(𝑇, 𝑇) > 𝐾. 

[𝐹(𝑇, 𝑇)|𝑁𝜏 = 𝑗 ] > 𝐾  Implies: 

√𝛽 + 𝑗𝛿2𝑍 > ln (
𝐾

𝐹(𝑡,𝑇)
) − [−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠

𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
+ 𝑗𝜇]  

 

𝑍 >
ln(

𝐾

F(t,T)
)− [−𝜆𝑚𝜏+∫ 𝛼𝐹(𝑠,𝑇)

𝑇

𝑡
−1

2⁄ ∫ ∥𝜎(𝑠,𝑇)∥2𝑑𝑠
𝑇

𝑡
+𝑗𝜇]

√𝛽+𝑗𝛿2
= −𝑑2  

Therefore 𝑍 > −𝑑2   where 

𝑑2 =
ln(

𝐹(𝑡,𝑇)

𝐾
) +[−𝜆𝑚𝜏+∫ 𝛼𝐹(𝑠,𝑇)𝑑𝑠

𝑇

𝑡
−1

2⁄ ∫ ∥𝜎(𝑠,𝑇)∥2𝑑𝑠
𝑇

𝑡
]+𝑗𝜇

√𝛽+𝑗𝛿2
  

The integral in the formula (16) is obtained as: 

∫ (𝑒√𝛽+𝑗𝛿2𝑧
1

√2𝜋
𝑒

−𝑧2

2⁄
∞

−𝑑2

)𝑑𝑧 =
1

√2𝜋
 ∫ 𝑒√𝛽+𝑗𝛿2𝑧−

𝑧2

2  𝑑𝑧
∞

−𝑑2

=
1

√2𝜋
 ∫ 𝑒

−1
2

[𝑧2−2√𝛽+𝑗𝛿2𝑧 ] 𝑑𝑧
∞

−𝑑2

=
1

√2𝜋
 ∫ 𝑒

−1
2

[(𝑧−√𝛽+𝑗𝛿2)2−(𝛽+𝑗𝛿2)] 𝑑𝑧
∞

−𝑑2

=
1

√2𝜋
𝑒

1
2⁄ (𝛽+𝑗𝛿2) ∫ 𝑒

−1
2

[𝑧−√𝛽+𝑗𝛿2]
2∞

−𝑑2

 𝑑𝑧

= 𝑒
1

2⁄ (𝛽+𝑗𝛿2)[1 − Φ (−𝑑2 − √𝛽 + 𝑗𝛿2)] = 𝑒
1

2⁄ (𝛽+𝑗𝛿2)Φ(𝑑1) 

Where Φ(. ) is the cumulative distribution function of the standard normal random variable and  

𝑑1 = 𝑑2 + √𝛽 + 𝑗𝛿2 =
ln(

𝐹(𝑡,𝑇)

𝐾
) +[−𝜆𝑚𝜏+∫ 𝛼𝐹(𝑠,𝑇)𝑑𝑠

𝑇

𝑡
+1

2⁄ ∫ ∥𝜎(𝑠,𝑇)∥2𝑑𝑠
𝑇

𝑡
]+𝑗𝜇+𝑗𝛿2

√𝛽+𝑗𝛿2
  

Consequently, the equation (16) equals: 
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𝐹(𝑡, 𝑇) exp [−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡

− 1
2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠

𝑇

𝑡

+ 𝑗𝜇] 𝑒
1

2⁄ (𝛽+𝑗𝛿2)Φ(𝑑1) 

 

Also, the second expectation in (15) is computed as: 

𝐾𝐸𝑇 [𝐼𝐹(𝑇,𝑇)>𝐾
 | ℱ𝑡 , 𝑁𝜏 = 𝑗 ] = 𝐾 ∫

1

√2𝜋
𝑒

−𝑧2

2⁄∞

−𝑑2
𝑑𝑧= 𝐾Φ(𝑑2) 

Thus, the equation (15) is written as: 

𝐶(𝑡, 𝑇) = 𝑃(𝑡, 𝑇) ∑
𝑒−𝜆𝜏(𝜆𝜏)𝑗

𝑗!𝑗≥0 {𝐸𝑇 [𝐹(𝑡, 𝑇)𝑒𝑥𝑝 [(−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
) +

∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠
𝑇𝑇

𝑡
+ ∑ 𝑌𝑘

𝑗
𝑘=0 ] 𝐼𝐹(𝑇,𝑇)>𝐾

|ℱ𝑡  , 𝑁𝜏 = 𝑗 ] − 𝐸𝑇 [𝐾𝐼𝐹(𝑇,𝑇)>𝐾
| ℱ𝑡  , 𝑁𝜏 = 𝑗 ]} =

 𝑃(𝑡, 𝑇) ∑
𝑒−𝜆𝜏(𝜆𝜏)𝑗

𝑗!𝑗≥0   [𝐹(𝑡, 𝑇) exp [−𝜆𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
+

𝑗𝜇] 𝑒
1

2⁄ (𝛽+𝑗𝛿2)Φ(𝑑1)] − 𝑃(𝑡, 𝑇) ∑
𝑒−𝜆𝜏(𝜆𝜏)𝑗

𝑗!𝑗≥0 𝐾Φ(𝑑2) 

 

Therefore, the option price formula is: 

 

𝑪(𝒕, 𝑻) =  𝑷(𝒕, 𝑻) ∑
𝒆−𝝀𝝉(𝝀𝝉)𝒋

𝒋!
 [𝑭(𝒕, 𝑻) 𝒆𝒙𝒑 (−𝝀𝒎𝝉 + ∫ 𝜶𝑭(𝒔, 𝑻)𝒅𝒔

𝑻

𝒕

+ 𝒋𝝁 + 𝒋
𝜹𝟐

𝟐
)  𝚽(𝒅𝟏) − 𝑲𝚽(𝒅𝟐)]

𝒋≥𝟎

 

Where 

Φ(. ) is the cumulative distribution function of the standard normal distribution and 

𝑑2 =
ln(

𝐹(𝑡,𝑇)

𝐾
) +[−𝜆𝑚𝜏+∫ 𝛼𝐹(𝑠,𝑇)𝑑𝑠

𝑇

𝑡
−1

2⁄ ∫ ∥𝜎(𝑠,𝑇)∥2𝑑𝑠
𝑇

𝑡
]+𝑗𝜇

√∫ ∥𝜎(𝑠,𝑇)∥2𝑑𝑠
𝑇

𝑡
+𝑗𝛿2

  

𝑑1 = 𝑑2 + √∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
+ 𝑗𝛿2         ∎ 
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4.2. Stochastic Interest Rate with Jump 

In the case that jump exists in the bond market, the ℚ dynamics of a futures contracts maturing at T is 

defined as:                       

                                      
𝑑𝐹(𝑡,𝑇)

𝐹(𝑡−,𝑇)
= −𝜆𝑄𝑚𝑑𝑡 + 𝜎(𝑡, 𝑇)𝑑𝑊𝑡

𝑄 + (𝑦𝑡 − 1)𝑑𝑁𝑡                               (17)         

It is assumed that both bond and VIX futures markets follow the same Poisson process with the same 

intensity. The likelihood process and its dynamic are obtained as: 

                                                          𝐿𝑡
𝑇 =

𝑃(𝑡,𝑇)

𝑃(0,𝑇)𝐵(𝑇)
 ,    

                                                        𝐿𝑡
𝑇 =

𝑑𝑄𝑇

𝑑𝑄
, on ℱ𝑡 

𝑑𝐿𝑡
𝑇 = 𝜎𝑝(𝑡, 𝑇)𝐿𝑡

𝑇𝑑𝑊𝑡
𝑄 + (𝐻𝑡 − 1)𝐿𝑡−𝑑�̃�𝑡

𝑄
 

In this case ℎ𝑡 in the formula (3) equals ℎ𝑡 = (𝐻𝑡 − 1) and the intensity of the Poisson process under ℚ𝕋 

is 𝜆𝑇 = 𝐻𝑡𝜆𝑄. By inserting the equation (2) into (17) and compensating for the Poisson process N under 

ℚ𝕋, the ℚ𝕋 dynamics of VIX futures is presented as: 

𝑑𝐹(𝑡, 𝑇)

𝐹(𝑡−, 𝑇)
= [𝜎(𝑡, 𝑇) ⋅ 𝜎𝑝(𝑡, 𝑇) − 𝜆𝑄𝑚]𝑑𝑡 + 𝜎(𝑡, 𝑇)𝑑𝑊𝑡

𝑇 + (𝑦𝑡 − 1)𝑑𝑁𝑡 

 

Where 𝑁𝑡 is Poisson process with intensity 𝜆𝑇 = 𝐻𝑡𝜆𝑄 and for simplicity [𝜎(𝑡, 𝑇) ⋅ 𝜎𝑝(𝑡, 𝑇)] is defined as 

𝛼𝐹(𝑡, 𝑇). Although the method of derivation is the same as the previous case, the solution is different. In 

particular, the ℚ𝕋 −intensity is used when we calculate the ℚ𝕋 probability for 𝑁𝜏 = 𝑗.  

𝐶(𝑡, 𝑇) = 𝑃(𝑡, 𝑇) 𝐸𝑇[max(F (T , T) − K , 0)| ℱ𝑡  )] = 𝑃(𝑡, 𝑇)𝐸𝑇 [(𝐹(𝑇, 𝑇) − 𝐾) 𝐼𝐹(𝑇,𝑇)>𝐾
|ℱ𝑡] =

𝑃(𝑡, 𝑇) ∑ 𝑄𝑇(𝑁𝜏 = 𝑗)𝑗≥0 {𝐸𝑇 [𝐹(𝑡, 𝑇)𝑒𝑥𝑝 [(−𝜆𝑄𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
) +

∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠
𝑇𝑇

𝑡
+ ∑ 𝑌𝑘

𝑗
𝑘=0 ] 𝐼𝐹(𝑇,𝑇)>𝐾

|ℱ𝑡  , 𝑁𝜏 = 𝑗] − 𝐸𝑇 [𝐾 𝐼𝐹(𝑇,𝑇)>𝐾
  | ℱ𝑡  , 𝑁𝜏 = 𝑗]} =

𝑃(𝑡, 𝑇) ∑
𝒆−𝜆𝑇𝝉(𝜆𝑇𝝉)𝒋

𝒋!𝑗≥0  {𝐸𝑇 [𝐹(𝑡, 𝑇)𝑒𝑥𝑝 [(−𝜆𝑄𝑚𝜏 + ∫ 𝛼𝐹(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
− 1

2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
) +

∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠
𝑇𝑇

𝑡
+ ∑ 𝑌𝑘

𝑗
𝑘=0 ] 𝐼𝐹(𝑇,𝑇)>𝐾

|ℱ𝑡  , 𝑁𝜏 = 𝑗] − 𝐸𝑇 [𝐾 𝐼𝐹(𝑇,𝑇)>𝐾
 | ℱ𝑡  , 𝑁𝜏 = 𝑗]}. 

 

Hence, by computing the above expectations, the price of a European call option at time t, with expiration 

date T is defined as: 

𝑪(𝒕, 𝑻) =  𝑷(𝒕, 𝑻) ∑
𝒆−𝝀𝑻𝝉(𝝀𝑻𝝉)𝒋

𝒋!
 [𝑭(𝒕, 𝑻) 𝒆𝒙𝒑 (−𝝀𝑸𝒎𝝉 + ∫ 𝜶𝑭(𝒔, 𝑻)𝒅𝒔

𝑻

𝒕

+ 𝒋𝝁 + 𝒋
𝜹𝟐

𝟐
)  𝚽(𝒅𝟏) − 𝑲𝚽(𝒅𝟐)]

𝒋≥𝟎
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Where 

Φ(. ) is the cumulative distribution function of the standard normal distribution and 

𝑑2 =
ln(

𝐹(𝑡,𝑇)

𝐾
) +[−𝜆𝑚𝜏+∫ 𝛼𝐹(𝑠,𝑇)𝑑𝑠

𝑇

𝑡
−1

2⁄ ∫ ∥𝜎(𝑠,𝑇)∥2𝑑𝑠
𝑇

𝑡
]+𝑗𝜇

√∫ ∥𝜎(𝑠,𝑇)∥2𝑑𝑠
𝑇

𝑡
+𝑗𝛿2

  

𝑑1 = 𝑑2 + √∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
+ 𝑗𝛿2         ∎ 

           

4.3. Constant Interest rate 

In case of having constant interest rate, the option price is obtained under the risk neutral probability 

measure ℚ and having the bank account as numeraire: 

 
𝑑𝐹(𝑡,𝑇)

𝐹(𝑡−,𝑇)
= 𝜎(𝑡, 𝑇)𝑑𝑊𝑡

𝑄 + (𝑦𝑡 − 1)𝑑�̃�𝑡
𝑄 = − 𝜆𝑄𝑚 𝑑𝑡 + 𝜎(𝑡, 𝑇)𝑑𝑊𝑡

𝑄 + (𝑦𝑡 − 1)𝑑𝑁𝑡 

In this case the 𝛼𝐹(𝑡, 𝑇) = 0 in the formula (12). 

 

𝑪(𝒕, 𝑻) = 𝒆−𝒓(𝑻−𝒕) ∑
𝒆−𝝀𝑸𝝉(𝝀𝑸𝝉)𝒋

𝒋!
  [𝑭(𝒕, 𝑻) 𝒆𝒙𝒑 (−𝝀𝑸𝒎𝝉 + 𝒋𝝁 + 𝒋

𝜹𝟐

𝟐
)  𝚽(𝒅𝟏) − 𝑲𝚽(𝒅𝟐)]

𝒋≥𝟎

∎ 

 Where 

Φ(. ) is the cumulative distribution function of a standard normal random variable. 

  

𝑑2 =
ln(

𝐹(𝑡,𝑇)

𝐾
) +[−𝜆𝑄𝑚𝜏−1

2⁄ ∫ ∥𝜎(𝑠,𝑇)∥2𝑑𝑠
𝑇

𝑡
]+𝑗𝜇

√∫ ∥𝜎(𝑠,𝑇)∥2𝑑𝑠
𝑇

𝑡
+𝑗𝛿2

      ,    𝑑1 = 𝑑2 + √∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠
𝑇

𝑡
+ 𝑗𝛿2 

 

 

 

 

 



  

16 
 

5. Empirical Discussion and Results 

5.1. Data 

The daily settlement prices of VIX futures with expiration up to six months over the period March 2004 

to December 2010 were gathered from the CBOE website. We only considered contracts with maturity up 

to six months since longer contracts are less liquid. This resulted in a total of 7121 observations. The VIX 

Special Opening Quote prices were multiplying by ten prior to March 26, 2007 in order to determine its 

final settlement value. Since that date, the final settlement values for VIX futures have been based on the 

actual underlying index level instead of ten times the underlying index level. Hence, we divided the 

settlement prices from 2004 to March 26, 2007 by ten to be able to work with prices for the whole period. 

The opening hours of the VIX futures markets are on business days from 7:20 A.M. to 13:15 P.M. while 

the majority of futures markets are open almost 24 hours a day. 

 

5.2. Empirical Properties of VIX Futures 

As I mentioned in the introduction, the VIX futures returns have some important characteristics such as 

positive skewness, excess kurtosis and a decreasing volatility term structure for long term expirations. 

These characteristics are illustrated in table 1 where the four moments of the VIX futures logarithmic 

returns (mean, standard deviation, skewness and kurtosis) for all sample data and three expiration 

categories are calculated. Positive and significant values of skewness and kurtosis admit the existence of 

these features. Therefore, it is stated that the VIX futures return are not normally distributed and a more 

appropriate and flexible term-structure model is needed to capture these features of VIX futures returns. 

Also, it is observed that volatility of VIX futures return decreases as there is more time left to maturity. 

Furthermore, from the values in the table, it is clear that mean returns of VIX futures are positive for 

long-term and negative for short-term VIX futures contracts.  

                                                                    Table I 

                                     Descriptive Statistics for the VIX Futures Returns  

Time-to 

Maturity 

        All   1-2 months    3-4 months    5-6 months 

Mean  -0.0226 -0.37 -0.0282 0.11 

Standard 

deviation 
0.3663 0.29516 0.2681 0.251 

Skewness 0.4322 0.0025 0.0079 0.5851 

Kurtosis 9.775 5.33456 5.18602 4.89958 

*In this table the descriptive statistics for the logarithmic returns of VIX futures obtained from their settlement prices is provided. 

The Settlement prices are from the period March 26, 2004 to December 1, 2010 and the number of data for the whole period is 

7121. The standard deviation is annualized by a factor √252 and average return is on daily based and multiplied by 100. It is 

observed in the table, the value of skewness and kurtosis are significantly high and positive and there is the least volatility for 

long-term expiration. 
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The desired candidate model for VIX futures returns is jump diffusion model. The Kernel density of VIX 

futures returns for the data and the model with normal distribution are provided in Figure 1. In figure 2, 

the Kernel estimate of the logarithmic VIX futures returns together with the MJD model are observed. 

From the figure 2, it is clear that the jump diffusion model provides a god fit for the sample and has a 

better performance compared to a case without jump.  

 

 

 

 

 

 

FIGURE 1  

Kernel Estimate of VIX Futures returns and Normal 

FIGURE 2 

Kernel Estimate of Logarithmic VIX Futures returns and MJD 
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5.3. Parameters Estimation 

There exist different methods for the purpose of parameter estimation. Although Maximum Likelihood 

Estimation is one of the most popular methods, in the case of jump diffusion model, it does not work well 

and it is not a careful numerical optimization. The reason is that the maximum likelihood is very sensitive 

to the initial values and by really small changes in those values, the likelihood function cannot be 

converges easily2. Therefore, to estimate the parameters of the model, the Non-Linear Least Square 

(NLS) method is used and they are estimated under the assumption that the model has constant interest 

rate and one dimensional Wiener process. Also, it is assumed that the Girsanov Kernel ℎ𝑡 (in the equation 

(3)) is equal to zero. Therefore, based on the relationship between the market price of jump risk and its 

Kernel, the market price of jump risk is zero in our estimation. During the process of estimation by NLS, 

it was observed that by changing the initial values, the model converges to different estimated values. 

Consequently, it was clear, there are more than one local minimum that minimize the error between the 

data and the model. In fact, the global minimum should be considered to estimate the parameters. 

The Merton Jump Diffusion model is the mixture of N normally distributed terms and the mean, variance 

and weight of j’th stochastic variable in the mixture are  

𝑚𝑗 = (𝛼 −
𝜎2

2
) 𝜏 + 𝑗𝜇, 𝑠𝑗

2 = 𝜎2𝜏 + 𝑗𝛿2 and 𝑤𝑗 =
𝑒−𝜆𝜏(𝜆𝜏)𝑗

𝑗!
  respectively. The sufficiently large N is 

chosen and it should be noted that the selected N depends on 𝜆. The numerical studies using daily 

observations demonstrate that there is no significant difference in estimates from N=20. For this study the 

number of jumps is considered to be N=140.The volatility in the model in the equation (4) is specified as 

𝜎(𝑡, 𝑇) = 𝜎1𝑒−𝜎2(𝑇−𝑡) where 𝜎1 and 𝜎2 are nonnegative3. Also, the market price of risk is assumed to be 

constant not time dependent. In table 2, the estimated values of the six parameters 𝜎1, 𝜎2 ,𝜇, 𝛿, 𝜆 and 𝜑 of 

the model are observed where  𝜇 and 𝛿 are the mean and standard deviation of logarithmic jump size, 𝜆 is 

the P-intensity and 𝜑 is market price of diffusion risk. 

                                                                          

                                                                          Table 𝚰𝚰 

                                    Estimation Results for the VIX Futures Models  

Models 𝜎1̂ 𝜎2̂ �̂� 𝛿 �̂� �̂� 

Merton 

Jump 

Diffusion 

0.1836 0.033 0.0003 0.0285 252.0681 -3.3139 

Normal 

case 
0.3561 0.1257 - - - -2.1312 

*The models parameters are estimated using daily logarithmic returns of VIX futures prices with maturity up to six months over 

the period March 26, 2004 to December 2010. The number of data is 7121.                                                                                                                                                                                                                                                                                                                                                                                                                                            

                                                           
2 Some empirical researches have applied method other than Maximum Likelihood Estimation. Duncan and Randal (2009) is one 

of the studies used EM algorithm for estimation. 

3 This volatility function was suggested by Hilliard-Reise (1998) 



  

19 
 

Since the intensity is the expected number of jumps, its larger value results in occurring jump more 

frequently. Moreover, the sign of �̂� (the mean of logarithmic jump size) determines if returns are positive 

or negative skewed. From the table, it is observed that �̂� is positive for our data which admits the positive 

skewness feature of the VIX futures returns. Table illustrates that market price of risk has a negative sign 

for both MJD model and Normal model which is consistent with the results in the study by Nossman & 

Wilhelmsson (2008). 

Figure 3 illustrates the changes in the call option values in both the MJD model and the standard model 

without jump for different time to maturities. The following assumptions are considered, namely interest 

rate, r =0.075 and current VIX futures price, F=30  

 

 

 

 

 

 

 

 

3 Months to Maturity 

   1 Month to Maturity    1 Week to Maturity 

5 Months to Maturity 

                                   Figure 3 

           MJD Call Price vs. Normal Call Price 

 



  

20 
 

The changes in the price of call options with respect to the strike price are illustrated for both 

models in figure 3. The figures demonstrate that the MJD call prices have greater values than the 

standard model for both in-the-money and out-the-money options. Also, it is observed, by 

increasing maturity these results still hold. This conclusion is consistent with the results in the 

research by Matsuda (2004) who compared the price of stock call options in the MJD model and 

the Black-Scholes model. Moreover, figures illustrate that by increasing expiration time the price 

difference between the MJD call price and the Black call price increases.  

 

 6. Conclusion 

It is around a decade that VIX futures and options have been presented to the market and are trading in a 

large volume today. The literatures on VIX futures and options are growing speedily. A large number of 

researches have been done to reveal different characteristics of VIX futures. Some of the researches focus 

on modeling the VIX index and try to find an appropriate distribution for VIX futures returns while other 

researchers specified the VIX futures dynamics exogenously in their studies. In this thesis, in the theory 

part, the VIX futures were modeled by the Merton jump diffusion model and a closed-form solution for 

the price of options on VIX futures was derived for both stochastic and constant interest rate cases in the 

model. In the empirical part, by using the historical VIX futures prices from the CBOE data, the behaviors 

of the VIX futures returns were investigated and the model parameters were estimated. The descriptive 

statistics of the data illustrated that the VIX futures returns are positive skewed and have excess kurtosis. 

Therefore, it is clear that the VIX futures returns are not normally distributed. Also, we calculated the 

price of the VIX call options for both the MJD model and the standards model using the estimated 

parameters. The results implied that the MJD lead to greater values than the other model for both in-the-

money and out-the-money options. Hence, it is concluded that adding jump to the diffusion process is 

crucial to capture the features of the data. In fact, the jump diffusion model is well approximated and 

presents better performance compared to the standard case.  

In order to extend this study, the performance of the model can be assessed by using the market VIX 

options. Also, by applying different models to the VIX futures and investigating the performance of that 

model in future researches, the most appropriate and fit model can be revealed.  
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Appendix  

 

A.1. Futures Price Formula 

 

It was stated in section three that the model has the following ℙ-dynamics: 

 

𝑑𝐹(𝑡, 𝑇)

𝐹(𝑡−, 𝑇)
= α(t, T)𝑑𝑡 + 𝜎(𝑡, 𝑇)𝑑𝑊𝑡 + (𝑦𝑡 − 1)𝑑𝑁𝑡 

 

Define function 𝑔(𝑡, 𝑇) = ln (𝐹(𝑡, 𝑇)) and by applying the Ito formula to this function: 

 

 𝑑𝑔(𝑡, 𝑇) =
1

𝐹(𝑡,𝑇)
𝑑𝐹(𝑡, 𝑇) −

1

𝐹2(𝑡,𝑇)
(𝐹(𝑡, 𝑇))2 + 𝑑𝑁𝑡[ln(𝐹(𝑡−, 𝑇) + 𝐹(𝑡−, 𝑇)(𝑦𝑡 − 1)) −

ln(𝐹(𝑡−, 𝑇))] = (α(t, T) − 1
2⁄ ∥ 𝜎(𝑠, 𝑇) ∥2

) 𝑑𝑡 + 𝜎(𝑡, 𝑇)𝑑𝑊𝑡 + ln(𝑦𝑡) 𝑑𝑁𝑡 = (α(t, T) − 1
2⁄ ∥

𝜎(𝑠, 𝑇) ∥2
) 𝑑𝑡 + 𝜎(𝑡, 𝑇)𝑑𝑊𝑡 + 𝑌𝑡𝑑𝑁𝑡 

 

Where 𝑌𝑘 = ln (𝑦𝑘) 

 

By integrating over the interval [t, T]:  

 

 𝑔(𝑇, 𝑇) = ln(𝐹(𝑇, 𝑇)) = 𝑔(𝑡, 𝑇) + ∫ (α(s, T) − 1
2⁄ ∥ 𝜎(𝑠, 𝑇) ∥2

)
𝑇

𝑡
𝑑𝑠 + ∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠

𝑇

𝑡
+ ∑ 𝑌𝑡

𝑁𝑇−𝑡
𝑘=0   

 

Hence, 

 

𝐹(𝑇, 𝑇) = 𝐹(𝑡, 𝑇) exp [∫ α(s, T)𝑑𝑠 − 1
2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠

𝑇

𝑡

𝑇

𝑡
+ ∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠

𝑇

𝑡
+ ∑ 𝑌𝑘

𝑁𝑇−𝑡
𝑘=0 ] =

𝐹(𝑡, 𝑇) exp [∫ α(s, T)𝑑𝑠 − 1
2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠

𝑇

𝑡

𝑇

𝑡
+ ∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠

𝑇

𝑡
∗ ∏ 𝑦𝑘

𝑁𝑇−𝑡
𝑘=0 ]  

 

Therefore, the price of futures contract with expiration T at time t is calculated by the following formula: 

𝐹(𝑇, 𝑇) = 𝐹(𝑡, 𝑇) exp [∫ α(s, T)𝑑𝑠 − 1
2⁄ ∫ ∥ 𝜎(𝑠, 𝑇) ∥2 𝑑𝑠

𝑇

𝑡

𝑇

𝑡

+ ∫ 𝜎(𝑠, 𝑇)𝑑𝑊𝑠

𝑇

𝑡

+ ∑ 𝑌𝑘

𝑁𝑇−𝑡

𝑘=0
] 

 

 

 

 

 

 

 

 


