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Abstract

We consider an SIR (Susceptible-Infective-Recovered) epidemic on
a configuration model network of contacts. To approximate the spread
of the disease, we use branching processes. The main objective is to
make inference about the final stages of the epidemic. We derive the
distribution of the ultimately susceptible individuals (those who es-
cape the epidemic) and calculate the fraction of their neighbors which
are also ultimately susceptible. The most important result is that,
under certain regularity conditions, the distribution of the time until
the epidemic is completely eradicated has an exponentially declining
tail. This will lead us to conclude that, even though a disease might
take off quickly, it will nevertheless persist for a much longer time.
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1 Introduction

The research interest in graph theory has over time shifted from questions regarding lo-
cal properties of small graphs/networks (starting with The Seven Bridges of Königsberg
problem, solved by Euler in 1735) to the properties of large graphs. The motivation
is that large data sets have recently emerged, like the World Wide Web and genomic
aberrations. As well as that, graphs are now normally used for modeling relations which
are inherently stochastic. In particular, we will consider applications to epidemiology,
where it is, for instance, sensible to assume that a contact causes infection with some
probability. On the other hand, we now have technological advances which were not
available in the 18.th century and which enable us to analyze such large data sets. Also,
the vast theory of probability mainly consists of asymptotic results, which has ultimately
given rise to this field of study. Accordingly, theory of random graphs is a fairly new
branch of mathematics, introduced in [10], in 1959.

In this work, we are interested in the time it takes until an epidemic is completely
eradicated. We estimate for how long control measures should be prolonged. For ex-
ample, if an animal disease is spreading within a country and there are transport bans
on meat, due to the economic loss and the safety of those who import, it is essential to
know when the country can safely export again. This is of particular interest when it
comes to lethal or otherwise severe diseases that spread quickly. We will prove that, even
though a disease might take off quickly, that is, cover most of the individuals infected
during the epidemic within a short period of time, the disease will nevertheless persist
for a much longer time.

We will study random graphs with certain social structure, in particular random graphs
with specified vertex degrees, which means that each individual has his or her fixed
number of acquaintances with whom they can interact. The neighboring vertices are
chosen at random (this will be discussed in more detail in Section 3). We then impose a
disease spreading along the network of contacts, which we approximate using a branch-
ing process. We assume that the disease propagates as an SIR (Susceptible - Infective
- Removed) epidemic. That is to say, an individual can only transit from S to I, or
from I to R state. There is a small number of the initially infective (in most of the
literature only one) and the rest of the population, say n individuals, are susceptible
to start with. At any time an infective can contact his or her neighbors according to
a Poisson process with per pair intensity β. These processes are independent of each
other. If the contacted vertex is still susceptible, it acquires the infection and instantly
becomes infectious (can further spread the disease). He or she can infect others for a
fixed or random time which we denote as I and call infectious period. We assume that
the infectious periods are random and identically distributed. These periods are also
assumed to be independent for different individuals and each I is independent of the
Poisson contact processes. When the infectious period is over, the individual either dies
or becomes permanently immune to the given disease, and can thus be shifted to the
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cohort Removed.

An additional simplifying assumption we make is that the population is closed - there are
no births, deaths or migration. Therefore, the removed stay in the system, but become
“ghosts”, as transferring infection to them is ignored. If we assume that the population
is large, then in the early stages of an epidemic outbreak the probability of infecting a
“ghost” will be very small. That justifies the branching process approximation, until the
number of ever infected individuals reaches a value that makes it highly probable for such
loops in transmission paths to occur. In Section 5.1 we prove that, for the number of the
infected of smaller order than

√
n, the probability of infecting a ghost is arbitrarily small.

However, our main goal is to make inference about the final stages of an epidemic,
if one occurs. We say that an epidemic, or a large outbreak, occurs if the number of
ultimately infected individuals is of the same order as the number of individuals in the
population, n. In this setup branching processes should be used with caution. We define
epidemic generated graph and susceptibility sets and study the epidemic on them. We
then derive the distribution of the ultimately susceptible individuals (those who escape
the epidemic) and calculate the fraction of their neighbors which are also ultimately
susceptible. The main question is to provide a distribution for how much time it takes
for an epidemic to cease. In order to do so, we make use of the standard branching
processes theory, in continuous time [14].

For an SIR epidemic in a randomly mixing population (in which every individual con-
tacts every other independently and with the same intensity), the following differential
equations are used to describe the deterministic approximation of the time dynamics of
the epidemic. If s(t) is the fraction of the susceptible at time t, i(t) the fraction of the
infected and r(t) the fraction of the recovered in a population, the equations are

ds(t)

dt
= −βs(t)i(t),

di(t)

dt
= βs(t)i(t)− γi(t),

dr(t)

dt
= γi(t).

Parameter β is the rate at which an infectious individual contacts the susceptible ones
and γ is the recovery rate of the infected individuals. Note that this means that per-pair
infectious contact rate equals β

n .

According to these equations, the curve corresponding to the number of infected in-
dividuals through time is shaped as in Figure 1 - it increases until it peaks and then
the number of infections declines until the end. It was proved in [7] that the above
introduced social structure (the configuration model) yields a very similar shape of the
epidemic curve.
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Figure 1: An example of time dynamics of an SIR epidemic in a closed population ob-
tained from the above differential equations. Red and emphasized - infected individuals,
blue - susceptible individuals, green - recovered individuals. The infection rate is β = 1,
the recovery rate is γ = 0.2.

The remainder of the thesis is organized as follows.
Section 2 introduces the notation.
Section 3 is about branching processes - discrete time (Galton Watson) and continuous
time (the general branching process).
In Section 4 we introduce the structure of the social network, on which a disease will be
imposed. In particular, the random graph of contacts is a configuration model. Here we
motivate and outline the assumptions that hold throughout the thesis. In Subsection 4.3
we outline the small world results for random graphs, which have motivated this work.
In Section 5 we prove that the branching approximation is valid until the number of
infections is of smaller order than n. We define the basic reproduction number and
calculate it for a configuration model. In the last two subsections, some results from
[22] are generalized so that they hold not only for a constant infectious period, but also
when the infectious period is random.
In Section 6 we obtain the distribution for the time until the epidemic dies out completely.
In order to do so, we first derive the degree distribution of the individuals that escape
the epidemic and the fraction of the neighbors of the escaping vertices that also escape
the epidemic.

4



2 Notation

An undirected graph is an ordered couple G = (V,E) of a set of vertices or nodes,
V = {vi} and a set of edges, E, whose elements are of the form {vi, vj}. If edges are
defined as ordered couples (vi, vj), then G is a directed graph. A graph is random if its
edges are chosen according to a certain random mechanism.

The asymptotic notations are defined as follows.

f(x) = O(g(x)), as x→ a if lim sup
x→a

|f(x)/g(x)| <∞,

f(x) = o(g(x)), as x→ a if lim
x→a

f(x)/g(x) = 0,

f(x) = θ(g(x)), as x→ a if 0 < lim inf
x→a

|f(x)/g(x)| < lim sup
x→a

|f(x)/g(x)| <∞,

f(x) ≈ g(x), as x→ a if lim
x→a

(f(x)− g(x)) = 0,

f(x) ∼ g(x), as x→ a if lim
x→a

f(x)

g(x)
= 1.

Further we define the convergence of a sequence of random variables (to a limiting
random variable). There are several types of stochastic convergence. Let X and Xn,
n = 1, 2, ... be random variables defined on a probability space (Ω,F , P ).

Let Fn and F be the distribution functions of the variables Xn and X, respectively.
A sequence X1, X2, ... converges in distribution, or weakly, or converges in law, if

lim
n→∞

Fn(x) = F (x),

for every x at which F is continuous. We write Xn
D→ X.

The sequence of random variables (Xn) converges in probability towards X if for all
ε > 0

lim
n→∞

P (|Xn −X| > ε) = 0.

We write Xn
P→ X.

The sequence (Xn) converges almost surely, or strongly, or with probability 1 if

P
(
ω ∈ Ω| lim

n→∞
Xn(ω) = X

)
= 1.

We write Xn
a.s.→ X.
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Assume r > 0. The sequence (Xn) converges in r.th mean or in Lr norm if the r.th
absolute moments of Xn and X exist and

lim
n→∞

E(|Xn −X|r) = 0,

where E denotes expectation. We denote the Lr convergence by Xn
Lr→ X.

One can find more details on the topic of stochastic convergence in Chapter 7 of [11],
for example.

We will also need a part of d’Alembert’s ratio test for series convergence and we prove
it here (see Section 9.2 in [1]).

Theorem 2.1. Let ak be positive for k = 1, 2, ...
1. If there exists k0 such that for all k > k0 we have

ak+1

ak
≤ l < 1, then

∑
ak <∞.

2. If limk→∞
ak+1

ak
= l < 1, then

∑
ak <∞.

Proof. 1. For all k > k0 it holds that ak+1 ≤ l · ak. This implies that ak+m ≤ lmak, for
k > k0. Therefore, the tail of the series

∑
k ak is bounded by the tail of a convergent

series ak0
∑

k l
k and we may infer that

∑
k ak <∞.

2. We pick an ε > 0 such that l + ε < 1. Since limk→∞
ak+1

ak
= l, there exists a k1

such that for all k > k1 it holds that
ak+1

ak
< l + ε. The result follows from 1.
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3 Branching processes

The results presented in this chapter are already well known. We follow the approach
of [12], [3] and [14] and one can consult these for the detailed proofs.

The theory of branching processes was first introduced with Galton-Watson branch-
ing processes, in order to solve the following problem ([12]):

Let p0, p1, p2, ... be the probabilities that a man has 0, 1, 2... sons respectively, and let
each son have the same probability for sons of his own, and so on. What is the proba-
bility that a male line goes extinct after r generations, and more generally, what is the
probability for any given number of descendants in the male line in any given generation?

The early stages of an infectious disease propagating through a large population can
be approximated by a branching process. We assume that there are a large number of
susceptibles and a very small number of infectives in the beginning of an outbreak. The
argument that makes the approximation valid is that given such assumptions, the proba-
bility of infecting a person who has already been infected is very small at the early stages.

At first we only keep track of the generation process, that is without concerning ourselves
with the time of birth, or in our case time of infecting a neighbor. This background is
enough when we try to answer the questions about the distribution of the ultimately
susceptible and the fraction of neighbors of an ultimately susceptible which are also
ultimately susceptible - as these questions do not depend on the real time of infection
occurrences. In other words, we first consider the Galton-Watson branching process.

In order to estimate the time needed for the epidemic to die out, we use the general
branching process.

3.1 The Galton-Watson branching process

We assume that all the individuals are of the same type and that they spread the in-
fection independently of how many other infectives there are at that point of time. We
denote by Z0, Z1, Z2... the number of individuals in the 0.th, first... generation. Assume
that Z0 = 1. The sequence is defined as a Markov chain, or in other words, the number
of infecteds in (i+1).st generation only depends on the number of i.th generation infect-
eds and not on generations preceding i. Transition probabilities do not change over time.

We denote P (Z1 = k) = pk, the probability that a person infected in generation i
infects k people in generation (i+ 1). Distribution (pk) is independent of i.

Given that individuals of the same generation spread the infection independently, if
there are k people in generation i, then Zi+1 will be the sum of k independent random
variables distributed as Z1. If Zi = 0, then Zj = 0 for every j > i (so, 0 is an absorbing
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state).

3.1.1 Generating functions of the generation sizes

Branching processes can be analyzed using the properties of a generating function,
G(z) =

∑∞
k=0 pkz

k, |z| ≤ 1. We will always assume p0 + p1 < 1, so the generating
function is strictly convex. Also, we assume the first and second moment of (pk) to be
finite.

Iterates will be denoted with a subscript, G0(z) = z, Gi+1(z) = G(Gi(z)). It can
be proved by induction that also Gi+j(z) = Gi(Gj(z)) and in particular, Gi+1(z) =
Gi(G(z)). We denote the generating function of Zi by G(i)(z). As we will see in the
following theorem, G(i) = Gi.

Note that the generating function of the sum of two independent random variables is
the product of the generating functions of those random variables. Again, using induc-
tion one can infer that the generating function of a sum of independent discrete random
variables is the product of the generating functions of the summands.

Theorem 3.1. The generating function of the size of the i.th generation, Zi is the i.th
iterate Gi(z).

Proof. Note that, if there are k infectives in generation i, the generating function of Zi+1

is (G(z))k, for k = 0, 1, ... Therefore,

G(i+1)(z) =
∞∑
k=0

P (Zi = k)(G(z))k = G(i)(G(z)).

By definition we have that G(0)(z) = G0(z), and by induction G(i)(z) = Gi(z).

We now have the distribution of the i.th generation size and can calculate the moments.
Define µ = EZ1, σ

2 = V ar(Z1) = EZ2
1 − µ2. Note that µ = G′(1) and σ2 = G′′(1) −

µ2 + µ. Differentiating the iterates, we get

G′i+1(1) = G′(Gi(1))G′i(1) = G′(1)G′i(1).

Again induction yields G′i(1) = µi. If G′′(1) <∞,

G′′i+1(1) = G′(1)G′′i (1) +G′′(1)
(
G′i(1)

)2
. (1)

Repeating 1, V ar(Zi) can be calculated. Namely, the following theorem holds.

Theorem 3.2. The expected value of i.th generation number of infectives is EZi = µi.
If V ar(Z1) <∞, then

V ar(Zi) = EZ2
i − (EZi)

2 =

{
σ2µi(µi−1)

µ2−µ if µ 6= 1,

nσ2 if µ = 1.

8



3.1.2 The extinction probability

Extinction of a branching process is the event that all but finitely many Zi values are 0.
Since P (Zi+1 = 0|Zi = 0) = 1, we have

q := P (Zi → 0) = P (∃i, Zi = 0)

= P [(Z1 = 0) ∪ (Z2 = 0)...]

= lim
i→∞

P [(Z1 = 0) ∪ ... ∪ (Zi = 0)]

= lim
i→∞

P (Zi = 0) = lim
i→∞

Gi(0).

Since limi→∞Gi(0) = limi→∞Gi+1(0) and G is continuous, the extinction probability q
satisfies q = G(q).
This has an interpretation that, in order for the process to go extinct, it is necessary
and sufficient that all the families of the first generation vertices go extinct. Moreover,
the following holds.

Theorem 3.3. If µ ≤ 1, the extinction probability q equals 1. If µ > 1, the extinction
probability is the unique solution in [0, 1) of the equation

s = G(s).

For a detailed proof, we refer to Chapter 1 in [12].

Another important property is the instability of the process.

Theorem 3.4. Regardless of the mean value µ, every state k = 1, 2, ... of the process
(Zi) is transient, or limi→∞ P (Zi = k) = 0. Moreover, Zi → ∞ with probability 1 − q
and Zi → 0 with probability q.

This behavior is not in line with most biological systems, that tend to reach (quasi) equi-
librium after a certain time. Nevertheless, branching processes work well for describing
the first stages of many biological processes.

If µ < 1, we call the branching process subcritical, if µ = 1 critical and if µ > 1 super-
critical. The last will be of interest in this thesis, as it corresponds to the case when
an epidemic takes off and affects a major fraction of the population. Also, subcritical
branching processes will be used in Section 6.3.

3.1.3 Scaling of the generation sizes

For Galton-Watson processes it holds that E(Zi) = E(Z0)µ
i. Therefore, if the pro-

cess is supercritical, the expected generation size grows exponentially. In the case of a
generation size itself, Zi, the following holds. Let Wi = Zi/µ

i.

Theorem 3.5. If E(Z1 log(Z1)) <∞ the martingale Wi converges almost surely and in
L1 norm to a non-degenerate random variable W which is 0 if and only if Zi → 0.
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3.2 The general branching process

The theory of Galton-Watson processes deals with the number of infections in a gen-
eration. However, it is possible that an infective individual infects one of his or her
neighbors, and continues to be infective for some time longer. In other words, we may
have two individuals of different generations being infective at the same time point. Fur-
thermore, it is not possible to observe the number of individuals infected in a generation.
We would rather be able to obtain the number of the infected individuals at a point of
time. Therefore, we need a more refined model to deal with the questions regarding time
and for that purpose we consider the general process, as it was done in Chapter 6 of [14].

We will assume that there is only one ancestor, denoted by 0. An individual x who
is the jk.th child of the jk−1.th child of... of the j1.st child of the ancestor will be
denoted by x = (0, j1, ...jk). The set of all possible individuals is

J =

{
0 ∪

∞⋃
k=1

{(0, x)|x ∈ Nk}

}
.

Note that J is countable. However, not every possible individual is necessarily real-
ized. For example, if the ancestor has one child, there are no individuals of the form
(0, 2, j2, ..., jk).

The realized individuals that belong to
{

(0, x)|x ∈ Nk
}

constitute the k.th generation
of the embedded Galton-Watson process [14]. Note that the general process dies out if
and only if the embedded Galton-Watson process does.

In this thesis only the subcritical general branching processes will be considered.

3.2.1 The subcritical case

We introduce the following notation. We also comment on Malthusian parameter and
calculate it for our model.

L is the distribution function of the life time l.
ϕ is the reproduction process of an arbitrary individual.
µ is E(ϕ(·)), the reproduction function.

α is the Malthusian parameter, that is, the unique solution, if one exists, of the fol-
lowing integral equation ∫ ∞

0
e−αtµ(dt) = 1. (2)

The parameter α can be interpreted as the exponential growth rate. If the infectious
rate is constant, say β, during the infectious period, then the mean number of infections
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during the interval [t, t+ dt) equals

µ(dt) = βP (l > t)dt.

Assume that L(0) = 0. Then, by partial integration we obtain∫ ∞
0

e−αtµ(dt) =
β

α

(
1−

∫ ∞
0

e−αtL(dt)

)
and the Malthusian parameter is the solution of the equation

β

β − α

∫ ∞
0

e−αtL(dt) = 1. (3)

If a solution exists, it must be unique [12]. This is because the integral is monotone, as
a function of α. In supercritical case, α exists and it is positive. In subcritical case, α
may not exist and if it does, then it must be negative [14] [12]. If α < 0, the integral
diverges if the rate at which the tail of the life time density L′ declines is slower than
exponential, roughly speaking. If it diverges, the Malthusian parameter does not exist.

Example. We will calculate the Malthusian parameter under the following assumptions.
Let an individual make infectious contacts according to a Poisson process with per pair
intensity β. We will denote the mean number of neighbors by ν. Let the infectious pe-
riod I be exponentially distributed, with parameter λ. The mean number of infections
in the interval [t, t+ dt) equals

µ(dt) = (ν − 1)βP (l > t)dt,

as an individual can infect all of his or her neighbors, apart from the one that infected
him or her. Then (2) becomes

(ν − 1)β

∫ ∞
0

e−αtP (l > t)dt = 1,

which yields

α = (ν − 1)β − λ. (4)

ϕ̂ is the Laplace-Stiltjes transform of ϕ. For example,

ϕ̂(α) =

∫ ∞
0

e−αtϕ(dt).

zt or z∞t denotes the number of individuals alive and younger than ∞ at time t.
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Theorem 3.6. Consider a subcritical non-lattice process with Malthusian parameter α.
Assume that the following two conditions hold.∫ ∞

0
te−αtL(dt) <∞

and ∫ ∞
0

te−αtµ(dt) <∞.

Then

lim
t→∞

e−αtP (zt > 0)

exists. The limit is strictly positive if

E(ϕ̂(α) log(ϕ(∞))) <∞.

12



4 Configuration model

4.1 The random graph

Although it is certain that a model is wrong, we would nevertheless like to make ours
useful. One of the first characteristics of a real world network that we would like the
model to replicate is the degree distribution. The degree of a vertex v (sometimes also
called the valence) is the number of edges incident to v. For a very detailed and math-
ematically rigorous overview of the terminology in graph theory, we refer to the first
chapter of [8].

One of the most simple and best studied models in the field of random graphs is that
of Erdős and Rényi. The most common version of this graph assumes that there are
n vertices, and between any two of them an edge is present with probability p, inde-
pendently of the existence of the other edges. This means that the degree of v will be
equal to k with probability pk =

(
n−1
k

)
pk(1 − p)n−1−k, for k = 0, 1, 2, ... If we assume

p = λ/(n − 1), the probability pk approaches λke−λ

k! as n → ∞. Therefore, the degree
distribution in an Erdős and Rényi graph is binomial, or asymptotically Poisson, as we
want p to decrease with n increasing, in order for the mean degree of an arbitrary vertex
to be fixed. However, in many real-world networks the degree distribution is not Poisson
and they are better fitted with a power law degree distribution, which means pk ≈ Ck−β,
for large n and k [20]. In order to circumvent the problem, random graphs with given
degree sequence, or configuration models, have been studied (Figure 2).

The configuration model is constructed as follows. First we draw degrees for the vertices
di (i = 1, ..., n) from the distribution of a random variable D. We denote pi = P (D = i).
Even though drawn as independent numbers from the distribution of D, the degrees
are not strictly mutually independent. Apparently, ln =

∑n
i=1 di must be even for the

sequence to lead to a proper graph when n is finite (Handshaking lemma, Euler 1736).
In particular, 2m =

∑n
i=1 di, where m is the number of edges. Therefore, we would have

to condition on this event. If di is even with probability p ∈ (0, 1), then the sum is even
with a probability that approaches 1/2, as n→∞ [13].

However, that will not make much difference. We could, for example add a half-edge
to the vertex labeled as n, if ln is odd. That way instead of D, we consider the se-
quence of degrees drawn from the distribution of the new variable, M = D+I{lnodd,i=n}.
Nevertheless, if we pick a vertex uniformly at random,

P (D = M) = P (I{lnodd,i=n} = 0) = 1− 1

2n
→ 1, n→∞,

and M converges to D in probability. In a similar manner we could prove that, given
ED < ∞ and ED2 < ∞, EM → ED and EM2 → ED2, respectively. Therefore, we
omit conditioning.
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A multigraph with given degree sequence can be constructed as follows (a multigraph
is defined in the following paragraph). Once (d1, ..., dn) is specified, vertex i is assigned
di half edges emerging from i. Further, in each step, if not already occupied, two of the
half edges are paired and labeled as occupied. The procedure is terminated when there
are no more unoccupied half edges. As every half-edge can be paired with each of the
remaining half-edges, self loops and multiple edges can occur. (Figure 2)

A self-loop is an edge with the same starting and ending vertex, which we can inter-
pret as a vertex being in contact with itself. Multiple edges are edges that share both
end-vertices, and we can interpret that the existence of multiple edges between a couple
of vertices means increased probability of contact. If a graph does not contain self-loops
or multiple edges, it is called simple. If both are permitted, we call it a multigraph. In
this work we allow for both self loops and multiple edges, since under mild conditions,
there will “not be many” of either. Namely, the following theorem holds.

Figure 2: a) Sequence of degrees. b) A graph with corresponding degree sequence.
Vertex 1 contains a self loop. There are multiple edges connecting vertices 1 and 2.

Theorem 4.1. Assume that distribution (pi) of the random variable D has finite sec-

ond moment and denote ν = E(D(D−1))
ED . When n → ∞, the number of self-loops Sn

and the number of multiple edges Mn are asymptotically independent Poisson(ν/2) and
Poisson((ν/2)2) random variables.

The proof can be found in Chapter 7 of [13]. An outline of the same proof is also
available in Chapter 3 in [9]. Theorem 4.1 has an important corollary. The notation is
the same as above.

Theorem 4.2. The probability that a configuration with degree sequence (di) gives a
simple graph is asymptotically equal e−ν/2−ν

2/4.

Proof. Follows from theorem 4.1, as a graph is simple if and only if Sn = Mn = 0. The
probability of that event converges to the probability that S = M = 0, which equals
e−ν/2−ν

2/4.

One can also construct a random graph with sequence of degrees (di) in the following
way. First, make ln vertex copies, di of which are identified with vertex i. Pick a starting
vertex copy and then pick its pair uniformly from the rest of the vertex copies. Take the
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following unpaired copy and take its pair uniformly at random from the vertex copies
that have not been matched yet. The procedure ends when there are no more copies to
match. Each graph obtained in that way (with ln vertices, each of degree 1) is called a
configuration, and hence the same name for the initial model.

Note that such configuration corresponds to an instance of a random graph with the
same degrees and that each configuration is equally probable. From the construction it
follows that there are (ln − 1)!! configurations with the same number of half-edges, ln.
(Recall that x!! denotes the product of all the odd natural numbers smaller or equal than
x, if x is odd and the product of all the even natural numbers smaller or equal than x,
if x is even.)

Denote by gij the number of edges connecting vertices i and j. This also means gii
is the number of self-loops of the vertex i. Then it holds di = gii +

∑
j gij . Thus, a self

loop adds 2 to the degree of a vertex that contains one. As it has been proven in [13],
the probability of a multigraph that has edges determined by the values gij is then given
by

1

(ln − 1)!!

∏
i di!∏

i 2gii
∏

1≤i≤j≤n gij !
. (5)

To see that this holds, recall that each configuration has probability 1
(ln−1)!! . Note that

if the edges incident to the same vertex are permuted, the graph does not change. How-
ever, the configuration will change, unless we permute the multiple edges. We can also
permute the self-loops and this will not change the configuration either. Therefore, we
divide with

∏
1≤i≤j≤n gij !. Additionally, if we have a self-loop, the configuration does

not change if the vertices at the ends of the same edge change places, which explains the
term 1∏

i 2
gii

. To sum up, in order to obtain the probability of a multigraph, we add the

probabilities of the different configurations that give rise to that multigraph.

Note that the formula above yields that all the simple graphs are equally probable,
since for a graph to be simple, it is necessary and sufficient that the following two con-
ditions hold: gij ∈ {0, 1} and gii = 0, for i, j = 1, 2, ...

Therefore, by the above procedure, for the given sequence of degrees, we pick one of
the equally probable configurations, and emphasize that not all multigraphs are equally
probable. In fact, from (5) we see that among the graphs with the given degree sequence
(di), the most probable are the simple ones. Compare this to the result of the Theorem
4.2, that the asymptotic probability of a graph with given degree sequence to be simple
is positive (namely, equal to e−ν/2−ν

2/4), in the case of finite ν.

4.2 Phase transition

A giant component of an undirected graph is a connected component which contains the
number of vertices of order O(n), as n→∞. Otherwise a component is small.
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There exists a threshold value above which a graph has a (single) giant component
and below which it only contains small components ([18], [13]). Let | · | denote the num-
ber of vertices of a graph or a component, vk(·) the number of vertices of degree k and
E(·) the number of edges of a graph or a component. In Chapter 10 of [13] the following
was proved. Note that the theorem also states that, if there is a giant component, it
must be unique.

Theorem 4.3. Suppose E(D) < ∞ and consider the random graph on n vertices with
degrees distributed as the random variable D. Let n tend to ∞. Let Cmax be the largest
and C(2) the second largest component. Then the following holds.

1. If ν = E[D(D−1)]
E(D) > 1, then there exist ξ ∈ [0, 1) and ς ∈ (0, 1] such that

|Cmax|/n
P→ ς,

vk(Cmax)/n
P→ pk(1− ξk), for every k > 0,

E(Cmax)/n
P→ 1

2
E(D)(1− ξ2),

while |C(2)|/n
P→ 0 and E(C(2))/n

P→ 0.

2. If ν = E[D(D−1)]
E(D) ≤ 1, then |Cmax|/n

P→ 0 and E(Cmax)/n→ 0.

4.2.1 Branching process interpretation

We consider the following branching process (Zn). The first generation vertices have
degree distribution (pi), the same as the random variable D, and the mean value will be
denoted by µ. Such graphs with finite mean degree are called sparse. Here we will also
assume that the second moment of the distribution (pi) is finite. Most of this subsection
is explained in [13].

If a vertex is chosen as a neighbor, it is more likely to be of higher degree. Recall
the definition of a branching process from Section 3, where the ancestor cannot be the
offspring as well. Therefore we ignore the fact that a new infected can send the infection
back to the one who infected him or her. That being said, a vertex must be of de-
gree (k + 1) in order to have k ”descendants”, so the second and subsequent generation
vertices have the degree distribution

p̃k =
(k + 1)pk+1∑

kpk
.

We denote the new mean ν =
∑∞

k=0 kp̃k =
∑∞

k=1 k(k − 1)pk/µ. Therefore, we actually
consider a two-phase branching process.
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One problem that arises with this approximation is that in reality the distribution of
the offspring will change because the number of half-edges to connect to is decreasing
and thus vertices with smaller degree become more probable. However, at least o(n)
half-edges can be connected before the distribution changes: let Nk denote the number
of k degree vertices. After we have connected o(n) half-edges, the number of unexposed
vertices of degree k is in the interval [Nk − o(n), Nk + o(n)] and we have

Nk − o(n)

n− o(n)
→ Nk

n
and

Nk + o(n)

n− o(n)
→ Nk

n
,

so the new fraction of k degree vertices is the same as the old one, in the limit of large
n. Compare this to the result in Section 5.1.
The generating functions of (pi) and (p̃j) are related. Let G0(z) =

∑
k pkz

k and G1(z) =∑
k p̃kz

k, then

G
′
0(z)

µ
=

∞∑
k=1

kpk
µ
zk−1 =

∞∑
k=1

p̃k−1z
k−1 = G1(z). (6)

The total progeny has the following expectation.

E

( ∞∑
k=0

Zk

)
= 1 +

∞∑
k=1

µνk−1 =

{
1 + µ

1−ν if ν < 1,

∞ if ν ≥ 1.

Note that ν =
∑

k k(k − 1)pk/µ and the threshold value are the same as in Theorem 4.3.

Let ξ be the smallest fixed point of the function G1 in [0, 1]. Thus defined ξ is the
extinction probability of the homogenous branching process with offspring distribution
(p̃n). The two phase branching process will go extinct if and only if all the families of a
first generation vertex go extinct. The probability of that event is

∑∞
k=0 pkξ

k = G0(ξ).
Therefore, the two phase branching process survives with probability 1 − G0(ξ). This
corresponds to ς in Theorem 4.3.

We pick a vertex of degree k. The families of its neighbors all go extinct with probabil-
ity ξk. The probability that the branching process starting in that vertex will survive
is equal pk(1 − ξk), corresponding to the fraction of vertices in the large component,
vk(Cmax)

n .

Pick an arbitrary edge. It will belong to a surviving branching process if and only
if at least one of its end vertices is a starting point of a surviving branching process.
That happens with probability (1 − ξ2). The overall number of edges is ln

2 ≈
nµ
2 . The

chosen edge is part of a surviving process with probability 1
2µ(1− ξ2), equal to the prob-

ability that it belongs to the giant component, given in Theorem 4.3.

To sum up, ς can be interpreted as survival probability, ξ as extinction probability
of the homogenous branching process with offspring distribution (p̃k).
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4.3 Small world results

The distance between two vertices in a graph is the length of the shortest path between
them. The diameter is the longest distance in the graph. The following definitions are
taken from [13]. We denote by Hn the distance between two uniformly chosen connected
vertices (which belong to the same component). We call Hn the typical distance of the
graph.

The limiting random graph is a small world if there exists a constant K such that

lim
n→∞

P (Hn ≤ K log n) = 1.

The following results are about typical and longest distances between vertices in a con-
figuration model. They are proved in [13], in Chapter 10. We cover the small world
results for both finite and infinite variance. The following theorem provides the limiting
distribution of typical distances in a configuration model with finite variance.

Theorem 4.4. Assume that in a configuration model on n vertices both µ and ν are
finite and assume that ν > 1. Let Hn be the typical distance between two vertices in the
model. Conditionally on Hn <∞, the following holds

Hn

log n

P→ 1

log ν
. (7)

The typical distance in the case of finite mean and infinite variance of the distribution
(pk) is given in the following theorem. First we define the cumulative distribution func-
tion Fn(x) of (pk), as the proportion of vertices having degree at most x. We assume
that there exists a τ ∈ (2, 3) and that for all δ > 0 exist c1 = c1(δ) and c2 = c2(δ) such
that

c1x
−(τ−1+δ) ≤ [1− Fn](x) ≤ c2x−(τ−1−δ), (8)

where the upper bound is required to hold for every x ≥ 1 and the lower bound only for
1 ≤ x ≤ nα, for some α > 1

2 . The following theorem holds.

Theorem 4.5. Assume that in a configuration model on n vertices the mean µ is finite.
Conditionally on Hn <∞, the following holds

Hn

log logn

P→ 2

|τ − 2|
. (9)

Recall that ξ is the extinction probability of the homogenous branching process with
offspring distribution (p̃k). Further we define

η = G
′
1(ξ) =

∞∑
k=0

p̃kkξ
k−1.
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For the diameter of a configuration model on n vertices the following holds, for both
finite and infinite variance case.

Theorem 4.6. Assume that in a configuration model on n vertices the mean µ is finite.
Let p1 and p2 denote the proportion of degree one and degree two vertices in the graph,
respectively. Then,

diam(G)

log n

P→ 1

log ν
+

2− I{p1=0} − I{p2=0}

| log η|
.

Remark. Theorem 2.1 implies that, if ξ < 1, then the series
∑
kξk−1 converges and

therefore also η < ∞. We will prove later that with ξ < 1 it must hold that η < 1 (see
the proof of Theorem 6.3, where η corresponds to Rend0 in the case ψ = 1). If ξ = 1,
then η = ν. However, we are only interested in the case ξ < 1, when a large epidemic
outbreak is possible.

From the results listed in this section, it is of interest to note that in the case of fi-
nite mean and infinite variance of (pk), even though the typical distances are of order
O(log log n), the diameter is of order O(log n). In the infectious disease spread termi-
nology, even though most get infected within the first O(log log n) generations, the time
required for the infection to completely die out is O(log n). It is such distributions (more
precisely, the distributions satisfying the condition (8)) that have shown to be the best
fit for real world networks, according to the simulations presented in [20]. The condi-
tion that the variance is infinite corresponds to the presence of enough vertices with
high degrees (so called hubs), that will acquire the infection in the early stages and fur-
ther spread it relatively quickly. The presence of enough hubs results in a lower typical
distance, but it does not have much impact on the diameter.
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5 SIR epidemic

We consider a population that consists of n individuals and assume that they are con-
nected according to a configuration model contact network. An SIR epidemic spreads
along the network, starting with a very small number of initially infective, compared to
n. A person can only go from the state Susceptible to Infected and from Infected to
Recovered. If one is recovered, he or she plays no further role in the epidemic spread.
Suppose we have a large outbreak, that is the size of the epidemic is of order O(n).
The number of susceptibles is initially large and it decreases throughout the epidemic.
The number of infected individuals is initially small, then it grows until it peaks and
starts to decline. At the end it becomes zero, when all the individuals that have ever
acquired the disease recover (Figure 1). The number of recovered individuals is initially
zero and it increases throughout the epidemic. The number of the ultimately recovered
is the size of the epidemic. At the beginning and at the end of the epidemic, while the
number of infected individuals is small (of order o(

√
n), see Section 5.1), we approximate

the spread by a branching process. While the number of infected and the number of
susceptible individuals are both large, differential equations are used in order to describe
the time dynamics of the process. The beginning and the middle part, until we reach
the generations of size O(εn) in the declining part of the epidemic, have already been
well studied (for instance in [7], [17] and [24], the last two references focusing on the
differential equations approximation).

In this section we prove that in a configuration model a branching process is a sensible
approximation for an epidemic until the number of infections reaches o(

√
n), n → ∞.

Then, we introduce R0 and calculate it for a configuration model. R0 has the same role
as the mean degree in a Galton-Watson branching process. It thus yields a criterion for
determining when an outbreak must be small. In Section 5.4 we provide the same crite-
rion, in yet another way. In Section 5.3 we calculate the probability of a large outbreak.
Also, we emphasize a mistake that might occur should one not take into account the
dependence of the number of infecetds by a fixed infective individual on the duration
of his or her infectious period, in the case of a random infections period (this will be
explained in detail later).

5.1 Branching process approximation

In this section we prove that if the number of infectious contacts N is of order o(
√
n),

then the probability of a repeated person in transmission of the disease can be made
arbitrarily small, for n large enough.

We obtain this result in a similar manner as we would solve the Birthday problem,
which is the following: There are N people in a room. What is the probability that no
two people have the same birthday? We assume that all the days of the year are equally

20



probable to be a birthday. If N ≤ 365, the probability we want is

1 ·
(

1− 1

365

)
· ... ·

(
1− N − 1

365

)
.

We now precede to the problem of loops in a branching process. Let Xi be the number
of neighbors of the i.th exposed individual. Recall that µ denotes the mean degree of the
first generation vertex and ν the mean degree of the second and subsequent generation
vertices in a branching process and that we assume both µ and ν to be finite. In each
step we try to avoid the already infected persons, or the half edges with the already
infected as their end vertices. Note that in order to have a branching process we need
to allow for choosing a half-edge more than once, as otherwise dependencies appear. We
show that choosing an already connected half-edge happens only late in the process.
The probability of no loops is

N∏
i=1

(
1−

∑i
k=1Xk

nµ

)

≥
N∏
i=1

e−∑i
k=1Xk
nµ −

(∑i
k=1Xk

nµ

)2


≈
N∏
i=1

e
−

∑i
k=1Xi
nµ −

N∑
i=1

(∑i
k=1Xk

nµ

)2

e
−

∑N
j=1

∑j
k=1

Xk
nµ

+
∑i
k=1

Xk
nµ

≥ e−
∑N
k=1 (N−k+1)Xk

nµ −
N∑
i=1

(∑N
k=1Xk

nµ

)2

e
−

∑N
k=1 (N−k+1)Xk

nµ
+
∑i
k=1

Xk
nµ

= e
−

∑N
k=1 (N−k+1)Xk

nµ −

(∑N
k=1Xk

nµ

)2

e
−

∑N
k=1 (N−k+1)Xk

nµ

N∑
i=1

e
∑i
k=1

Xk
nµ

≥ e−
∑N
k=1 (N−k+1)Xk

nµ −

(
N 1

N

∑N
k=1Xk

nµ

)2

e
−

∑N
k=1 (N−k+1)Xk

nµ N · e
N 1
N

∑N
k=1Xk
nµ

= e
−

∑N
k=1 (N−k+1)Xk

nµ

1−

(
N 1

N

∑N
k=1Xk

nµ

)2

N · e
N 1
N

∑N
k=1Xk
nµ


=: P.

Note that ∑N
k=1 (N − k + 1)Xk

nµ
=
N(N − 1) 1

N(N−1)
∑N

k=1 (N − k + 1)Xk

nµ

≤
N(N − 1) 1

N−1
∑N

k=1Xk

nµ
.
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The last inequality holds because

N∑
k=1

(N − k + 1)Xk ≤
N∑
k=1

NXk

implies

1

N(N − 1)

N∑
k=1

(N − k + 1)Xk ≤
1

N − 1

N∑
k=1

Xk.

Therefore,

P ≥ e−
N(N−1) 1

N−1

∑N
k=1Xk

nµ

1−

(
N 1

N

∑N
k=1Xk

nµ

)2

N · e
N 1
N

∑N
k=1Xk
nµ

 .

According to the Law of Large Numbers, the expression 1
N−1

∑N
k=1Xk = N

N−1
1
N

∑N
k=1Xk

tends to ν, as n tends to infinity. Therefore, if N is o(
√
n), the probability of no loops

will approach 1 in the limit of large n.

The first inequality of the above calculations holds as e−x ≤ 1 − x + x2, according
to the Taylor polynomial approximation of e−x in the neighborhood of x0 = 0. We also
remark that the approximation in the third line holds with the assumption that N is
o(n), and that it means that the difference of the expressions on the right and left hand
side approaches 0, in the limit on large n (see Section 2).

5.2 Basic reproduction number

The basic reproduction number R0 can be defined in more than one way. We define it
as the average number of secondary infections caused by an infected in the early stages
of an epidemic (but not the initial case). This definition corresponds to the branching
process definition of ν. The approximating branching process survives with positive
probability if and only if R0 > 1. Note that R0 is not unique in having the property.
Indeed, the same holds if we consider f(R0) instead, where f is an increasing function
such that f(1) = 1 [23], [2]. We consider a second generation vertex, as in the early
stages most vertices spread the infection following that distribution. Let

ψ =

∫ ∞
0

(1− e−βt)fI(t)dt (10)

be the probability of disease transmission between a susceptible-infected pair, during the
infectious period of the infected. The basic reproduction number is defined as

R0 =ψ
∞∑
k=1

(k − 1) · kpk∑∞
k′=1 k

′pk′

=ψν.
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In other words,

R0 = ψ

(
E(D) +

V ar(D)− E(D)

E(D)

)
.

Note that it is possible for R0 to be large due to a large variance and even though the
mean of the degree distribution is rather small. Compare this to the final remark in
Section 4.3.

Example. We will calculate R0 as a function of β instead of ψ in the following case.
Let the infectious period be exponentially distributed with parameter λ. As we have
assumed so far, the infectious contacts are made according to a Poisson process with per
pair intensity β. Then,

R0 = ν

(
1− λ

∫ ∞
0

e−βte−λtdt

)
=

βν

β + λ
.

Compare this result to the Malthusian parameter in (4). Note that R0 < 1 if and only
if α < 0.

5.3 Probability of a large outbreak

Recall that β is per pair intensity of the Poisson contact process and I is random in-
fectious period, with density fI . The generating function of the number of neighbors
infected by one fixed infective is

Ĝ(z) =
∞∑
j=0

∫ ∞
0

∞∑
k=j

rk

(
k

j

)
(1− e−βt)je−βt(k−j)fI(t)dt

 zj , (11)

where (rj) is either sequence (pj) or (p̃j). Newman in [22] does not take into account
the assumption of random infectious period, since he treats all per contact infections as
independent. However, infections of a fixed infective person are in this case dependent
via the infectious period: being known that he or she has already infected someone, the
infective is more likely to infect the next one of the neighbors, as his or her infectious
period is likely to be longer [16]. We show in the same manner as Durrett did in [9] that
Newman’s large outbreak probability is larger than the correct outbreak probability.
In (11) the first sum and the integral change places (Lebesgue’s monotone convergence
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theorem, also known as Levi’s theorem) and we obtain

Ĝ(z) =

∫ ∞
0

 ∞∑
k=0

rk

k∑
j=0

(
k

j

)
(1− e−βt)je−βt(k−j)zj

 fI(t)dt

=

∫ ∞
0

( ∞∑
k=0

rk(z(1− e−βt) + e−βt)kfI(t)

)
dt

= EG(z(1− e−βI) + e−βI)

≥ G(zE(1− e−βI) + Ee−βI)

= G(zψ + (1− ψ)) = G̃(z),

where the inequality holds with the assumption that p0 + p1 < 1 (because then G
is convex), according to Jensen’s inequality. Recall that the value ψ, transmissibility
T in Newman’s notation, is the overall probability of transmission between two fixed
individuals,

1− ψ =

∫ ∞
0

e−βtfI(t)dt.

Thus,

Ĝ0(z) > G̃0(z) and Ĝ1(z) > G̃1(z),

where Ĝ0(z) and Ĝ1(z) correspond to the expression in (11), with the sequence (rj)
equal to (pj) and (p̃j), respectively. Recall that if ξ is the smallest fixed point of G1 in
[0, 1], it corresponds to the extinction probability of homogenous process with offspring
distribution (p̃i). As all the branching processes starting form a first generation infective
have to go extinct, we infer that extinction probability of the two phase process is∑∞

k=0 pkξ
k = G0(ξ). As we now have Ĝ0(ξ̂) > G̃0(ξ̃), Newman’s probability of a large

outbreak, equal to 1− G̃0(ξ̃), is greater than the correct outbreak probability.

5.4 Epidemic phase transition

In this section we first provide the implicit form of the generating function for the size
of branching approximations of the small epidemic outbreaks. Then we calculate the
mean of those approximations of outbreak sizes explicitly and infer the epidemic phase
transition value for the probability ψ. We will see the connection with R0. The calcu-
lations are derived using the correct generating functions. Nevertheless, the mean and
the transition value are in line with Newman’s results.

Let H0(x;β) denote the generating function of the outbreak size in the two-phased
process and H1(x;β) the generating function of the outbreak size in the homogenous
branching process where the underlying graph has degree distribution p̃k.
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Recall that the generating function of a sum of independent discrete random variables
is the product of the generating functions of the summands (see Section 3.1.1). If
there are k offspring in the first generation, then the size of the outbreak is the sum
Y = 1 +Y1 +Y2 + ...+Yk, where Yi’s represent the total offspring of the ancestor’s child
i and Y represents the total progeny. The variables Yi are independent and identically
distributed [9]. If the process is homogenous, Yi’s have the same distribution as the
outbreak size Y . For a homogenous process, the following holds

H1(x;β) = x
∞∑
j=0

∫ ∞
0

∞∑
k=j

p̃k

(
k

j

)
(1− e−βt)je−βt(k−j)fI(t)dt

H1(x;β)j ,

where
∫∞
0

∑∞
k=j p̃k

(
k
j

)
(1− e−βt)je−βt(k−j)fI(t)dt is the probability of j infections in the

first generation. If there are j infections, the number of neighbors k must be k ≥ j. We
multiply by x, as that is the generating function of a random variable equal to 1 with
probability 1.

Therefore, the generating functions H0 and H1 are the solution of the following equa-
tions.

H1(x, β) = xĜ1(H1(x, β);β),

H0(x, β) = xĜ0(H1(x, β);β).

where the generating functions Ĝ0 and Ĝ1 correspond to (11), with (rj) equal to (pj)
and (p̃j), respectively.

Now we can calculate the mean of the approximated small outbreak sizes, as the deriva-
tive in 1 of the appropriate generating function, H

′
0(1;β). Differentiating the equations

above, we obtain

H
′
0(1;β) =1 + Ĝ

′
0(1;β)H

′
1(1;β),

H
′
1(1;β) =1 + Ĝ

′
1(1;β)H

′
1(1;β),

since H1(1;β) = 1 and Ĝ0(1;β) = 1. Therefore,

H
′
0(1;β) =1 + Ĝ

′
0(1;β)H

′
1(1;β),

H
′
1(1;β) =

1

1− Ĝ′1(1;β)
.

The last two equations imply that the mean size we are looking for equals

H
′
0(1;β) = 1 +

Ĝ
′
0(1;β)

1− Ĝ′1(1;β)
. (12)
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We differentiate the generating functions (11) after applying the monotone convergence
theorem and obtain

Ĝ
′
0(z;β) =

∫ ∞
0

( ∞∑
k=0

kpk(z(1− e−βt) + e−βt)k−1(1− e−βt)fI(t)

)
dt

and similarly for Ĝ
′
1, which then yields

Ĝ
′
0(1;β) =

∫ ∞
0

( ∞∑
k=0

kpk(1− e−βt)fI(t)

)
dt

=

∞∑
k=0

kpk

(∫ ∞
0

(1− e−βt)fI(t)dt
)

=µψ.

Similarly we would derive

Ĝ
′
1(1;β) = νψ.

Now the equation (12) implies that the mean size of the small outbreak branching ap-
proximations equals

H
′
0(1;β) = 1 +

µψ

1− νψ
. (13)

This yields the same phase transition as that suggested by R0 (see Section 5.2). The
critical value for per-pair transmission probability is ψ = 1

ν . If ψ is greater than the

critical value, a large outbreak will occur with positive probability equal to 1− Ĝ(ξ̂), as
calculated in Section 5.3. If ψ is smaller than 1

ν , only the small outbreaks are possible,
and their (approximate) mean size equals to the expression in (13).
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6 End of the epidemic

First we construct the epidemic generated graph as in [23] or [6]. In the random graph
of contacts G we replace all the undirected edges by two directed ones, pointing at
opposite directions. Every vertex is assigned a value xi from the distribution of I, a
realized value of its (possible) infectious period, in case the vertex gets infected. Since
infectious contacts are made according to the Poisson process with per pair intensity
β, to get the epidemic graph, we thin G by deleting independently the edge emanating
from vertex i with probability e−βxi . If the edge from i to j is deleted, that means that
if i gets infected, we know it will not pass the infection on to vertex j. The vertices of
the directed graph that we can reach starting from the initially infectious correspond to
the ultimately recovered ones.

The susceptibility set of vertex v is the set of all vertices such that if they were ini-
tially infected then v would be ultimately recovered [4]. This set can be approximated
by the backward branching process, which we construct using the epidemic generated
graph in the following way. The first generation of the process comprises the vertices w
such that there is a directed edge in the epidemic graph, leading from w to v. Repeating
this for the first generation vertices instead of v, we obtain the second generation of the
backward process, and so on.

We pick a starting vertex v at random, for the forward branching process we approximate
the epidemic with. Also at random, pick a vertex u different form v, whose susceptibility
set will be of interest. If the forward process survives, the epidemic reaches size θ(n) and
the susceptibility set of u will merge with this large component with high probability if
it reaches the size of order θ(log n) (with probability that approaches 1 as n→∞). If its
susceptibility set is smaller, the probability that it will merge with the forward process
goes to 0. In other words, u will almost surely be ultimately recovered in the given
large outbreak only if its susceptibility set reaches the size of order θ(log n). Namely,
the following theorem holds.

Let <(n) be the number of ultimately recovered individuals and let ρ and ρb represent
survival probabilities of the forward and backward branching processes, respectively.

Theorem 6.1. For every 0 < ε < ρb the following holds

lim
n→∞

P

(∣∣∣∣∣ |<(n)|
n
− ρb

∣∣∣∣∣ < ε

)
= ρ.

A proof for random intersection graphs (a related case) can be found in [6]. It would
be derived in the context of this thesis in a similar manner, but rigorous derivations are
beyond the scope of this work.

As the theorem suggests, in the event of a large outbreak, the fraction of the infected
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population can be approximated by the probability of survival of the backward branch-
ing process and the fraction of those who escape the epidemic by the probability of
extinction of the backward branching process. In the following section, we explore the
susceptibility set of a vertex in order to obtain the probability that the vertex escapes
the epidemic.

6.1 Degree distribution of the ultimately susceptible

Note that, in a backward branching process even when infectious periods are random,
the probability of a vertex being ultimately recovered or susceptible does not depend on
its infectious period. We use this to derive the probability of a vertex being ultimately
susceptible and of degree k (as in [2]), which then yields the degree distribution of the
ultimately susceptible.

Assume the epidemic takes off (which occurs with the same probability as the sur-
vival of the approximating forward branching process). Let a be the fixed number of the
initially infective individuals (not growing with n). As we take n to be large, we have
that a/n ≈ 0, so a vertex is initially susceptible with probability approximately equal to
1. Then the probability that an arbitrary vertex v escapes the epidemic is

ξ =
∞∑
k=0

ξkpk,

where ξk is probability that a vertex of degree k does not acquire the infection until
the end of the epidemic. I is the random infectious period with density fI and per pair
transmission probability ψ (defined in (10)). Then, for a fixed susceptible - infected pair,
the probability of escaping infection is 1− ψ. In other words, if the starting vertex gets
infected, it will pass the infection to its susceptible neighbor with probability ψ. We
denote by w a neighbor of the initially fixed vertex v. Let s be the probability that w
escapes the epidemic (s will be determined later). We have

ξk =

k∑
l=0

(1− ψ)l
(
k

l

)
sk−l(1− s)l = (1− ψ + ψs)k . (14)

It follows

ξ = G0 (1− ψ + ψs) , (15)

where G0 is the generating function of degree distribution (pi).
Similarly, we have

s =
∞∑
k=0

ξ̃kp̃k,
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where p̃k = kpk/ (
∑∞

k′=0 k
′pk′) and

ξ̃k =

k−1∑
l=0

(1− ψ)l
(
k − 1

l

)
sk−1−l(1− s)l = (1− ψ + ψs)k−1 .

We consider only k − 1 of the k neighbors of w because we are exploring the second
generation of the susceptibility set of v, and the possibility that v infects w is not taken
into account. The last three equations yield

s =
G′0 (1− ψ + ψs)

G′0(1)
. (16)

Remark. Note that, if per pair transmission probability is ψ = 1, then ξ̃k = sk−1 and,
due to the connection between G0 and G1 given in (6),

s =
G′0(s)

G′0(1)
= G1(s). (17)

Therefore, if ψ = 1, then s equals the extinction probability of the homogenous branch-
ing process with offspring distribution p̃k = kpk/ (

∑∞
k′=0 k

′pk′).

With s implicitly given as the smallest solution of (16), from (15) we get the proba-
bility of escaping the epidemic. Also, from (14), we get the probability of escape for a
vertex of degree k. This yields the probability of degree k, given that the individual is
ultimately susceptible, which equals

uk =
ξkpk
ξ

=
(1− ψ + ψs)k

G0(1− ψ + ψs)
· pk. (18)

Here ξ is the normalizing constant. The degree distribution of the ultimately susceptible
is thus generated by

U(z) =
∞∑
k=1

ukz
k =

G0(z(1− ψ + ψs))

G0(1− ψ + ψs)
.

Lemma 6.2. All moments of the degree distribution of ultimately susceptible vertices
(uk) are finite, regardless of the moments of the distribution (pk).

Proof. To prove this, we use tests for series convergence. Namely, the l.th moment of
the distribution (uk) is

∞∑
k=1

kl · uk =
∞∑
k=1

kl · (1− ψ + ψs)kpk
G0(1− ψ + ψs)

=
1

G0(1− ψ + ψs)

∞∑
k=1

kl · (1− ψ + ψs)kpk.
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It holds that

lim
k→∞

(k + 1)l(1− ψ + ψs)k+1

kl(1− ψ + ψs)k
= 1− ψ + ψs

= 1− ψ(1− s) < 1,

for s < 1 and according to the ratio test (see Theorem 2.1), the sum
∑∞

k=1 k
l · (1− ψ + ψs)k

converges. Since kl · (1− ψ + ψs)kpk < kl · (1− ψ + ψs)k, we have

∞∑
k=1

kl · uk =
1

G0(1− ψ + ψs)

∞∑
k=1

kl · (1− ψ + ψs)kpk <∞.

If s = 1, then (15) implies that the probability of an arbitrary vertex escaping the
epidemic equals ξ = G0(1) = 1. However, this case is not of interest to us, as then a
large outbreak cannot occur.

Note that, in order to derive this, we have not used any information about the moments
of (pk). So, the mean of the second generation vertex degrees ν =

∑∞
k=1 k(k − 1)pk/µ

can be infinite. In that case, R0 = νψ =∞.

6.2 Fraction of ultimately susceptible neighbors of the ultimately sus-
ceptible

Let v be an arbitrary vertex of degree k and w one of its neighbors. The fraction of
neighbors of the ultimately susceptible which are also ultimately susceptible is calculated
as the following conditional probability.

P (w is ultimately susceptible | v is ultimately susceptible)

=
P (v and w are ultimately susceptible)

P (v is ultimately susceptible)

=
s · ξ̃k
ξk

=
s

1− ψ + ψs
. (19)

Note that s is the probability that the initially susceptible neighbor w escapes the in-
fection from all its neighboring vertices, apart from perhaps v. ξk is the conditional
probability that vertex v does not acquire the infection until the end of the epidemic,
given that its degree is k. Therefore ξk also equals the probability that a k-degree vertex
is ultimately susceptible, since a vertex is initially susceptible with probability 1. In
particular, this is the probability that v is ultimately susceptible. ξ̃k is the probability
that a k-degree vertex does not acquire the infection until the end of the epidemic, from
a fixed group of size (k− 1) of its neighboring vertices (in other words, all but one of its
neighbors).

In (19), in order to calculate the probability for the neighbors v and w to both be
ultimately susceptible, we consider them as a pair and calculate the probability that
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both are initially susceptible (this probability equals 1) and that both escape the infec-
tion from the rest of their neighbors. Note that the result does not depend on the degree
k of the vertex v.

6.3 Time until the end of the epidemic

In the final stages of the epidemic, when there are o(n) ultimately recovered vertices yet
to be infected, that is, the difference between the number already infected and ultimately
removed is o(n), the degree distribution of the vertices that are still susceptible must be
the same as the degree distribution of the ultimately susceptible. This is because from
that point of time until the end of the epidemic the proportion of susceptible k-degree
vertices remains unchanged, for every k = 1, 2, 3...

We pick an arbitrary vertex v in the final stages of the epidemic when there are o(n) ver-
tices yet to be infected and approximate the (final) part of the epidemic which originates
from v by a branching process. Now we can calculate the exact Rend0 of such process and
infer that it is subcritical.

Theorem 6.3. Rend0 , the offspring mean of the final stages branching process approxi-
mation, starting from an ultimately recovered vertex v defined above is given by

Rend0 =
d

dx

∞∑
k=0

p̃k(1− ψ + ψx)k−1|x=s,

where (p̃k) is the second generation vertex degree distribution of the vertices in the be-
ginning of the outbreak. Also,

Rend0 < 1.

Proof. Recall that the probability of a neighbor of an ultimately susceptible being ulti-
mately susceptible as well equals s

1−ψ+ψs . Similarly, the probability that a neighbor of v
is not yet infected in the generation when v acquires the disease is also equal to s

1−ψ+ψs .
Denote this neighbor of v by w. If w is of degree k, then it is k times more probable to
be chosen as v’s neighbor than a vertex of degree 1 is. Therefore, in the new branching
process approximation, second degree vertices have the size-biased distribution given
with

ũk =
k · uk∑
lul
.

The neighbor w will get infected via the edge which connects it to v with probability ψ.
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Therefore, the Rend0 is given by

Rend0 = ψ

∞∑
k=0

ũk(k − 1)
s

1− ψ + ψs

= ψ

∞∑
k=0

kpk(1− ψ + ψs)k∑∞
l=0 lpl(1− ψ + ψs)l

(k − 1)
s

1− ψ + ψs

= ψ

∑∞
k=0 (k − 1)kpk(1− ψ + ψs)k−2s∑∞

l=0 lpl(1− ψ + ψs)l−1

= ψ

∑∞
k=0

(k−1)kpk
µ (1− ψ + ψs)k−2s∑∞

l=0
lpl
µ (1− ψ + ψs)l−1

= ψ

∑∞
k=0

(k−1)kpk
µ (1− ψ + ψs)k−2s∑∞

l=0 p̃l(1− ψ + ψs)l−1

Recall from Section 6.1 that s =
∑∞

l=0 p̃kξ̃k =
∑∞

l=0 p̃k(1− ψ + ψs)k−1, which is the
denominator of the above expression. As before, p̃k is the size biased distribution of the
second and subsequent degree vertices at the beginning of the epidemic, p̃k = kpk∑

lpl
, and

µ denotes the mean of the starting degree distribution, µ =
∑
kpk. Therefore,

Rend0 =
∞∑
k=0

(k − 1)kpk
µ

ψ(1− ψ + ψs)k−2

=
∞∑
k=0

(k − 1)p̃kψ(1− ψ + ψs)k−2

=
d

dx

∞∑
k=0

p̃k(1− ψ + ψx)k−1|x=s

To see that Rend0 must be smaller than one, note that

∞∑
k=0

p̃k(1− ψ + ψx)k−1

=

∞∑
k=0

kpk(1− ψ + ψx)k−1

µ

=
G′0(1− ψ + ψx)

G′0(1)
,

where by G′0(z) we denote the derivative in z. Since all the derivatives of a generating

function are positive, then
G′0(1−ψ+ψx)

G′0(1)
is convex. Note that s, as calculated in (16)

equals

s =
G′0(1− ψ + ψs)

G′0(1)
.
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This means that
G′0(1−ψ+ψx)

G′0(1)
intersects y = x in the point x = s, which is less than 1.

Thus the derivative d
dx

∑∞
k=0 p̃k(1− ψ + ψx)k−1 is smaller than the derivative of y = x,

which equals 1, for all x ∈ [0, s]. Therefore, Rend0 = d
dx

∑∞
k=0 p̃k(1− ψ + ψx)k−1|x=s < 1

(see Figure 3).

Recall from (17) and the corresponding remark that, in the case ψ = 1, s equals to
the extinction probability ξ of the homogenous branching process with offspring mean
p̃k. Then, from (6) we obtain

Rend0 =
d

dx

(
G
′
0(x)

G
′
0(0)

)
|x=ξ = G

′
1(ξ).

We are interested only in the case ξ < 1, when a large outbreak is possible. Since the
generating function G1 is convex (all its derivatives are positive) and ξ is the fixed point
of G1 in [0, 1), in the same manner as in the previous paragraph, we infer that

Rend0 = G
′
1(ξ) < 1.

Figure 3: The generating function
G′0(1−ψ+ψx)

G′0(1)
, with a fixed point s smaller than 1.
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The martingale convergence theorem from Section 3.1.3 has an important corollary which
is used in the analysis of the first stages of an epidemic, until the branching approxima-
tion breaks down. Namely, if the size of a generation Zi is of order O(f(n)) as n→∞,
then the total number of individuals who have lived until the i.th generation is also of
order O(f(n)). More precisely,

Zi∑i
k=0 Zk

a.s.→ c,

where c is a positive constant. The following lemma says that a similar result holds for
the end of the epidemic.

First, we explain why this is of interest. Let ε > 0 be an arbitrary number close to
zero. It has been proven in [7] that the generations at the peak of the epidemic consist
of O(n) individuals. Given this, from Figure 1 it is intuitively clear that the size of a
generation will be of order O(n1−ε) in two stages of the epidemic: once while the number
of infected individuals is increasing and once while it is decreasing. We consider the sec-
ond time this happens. Since the underlying graph is sparse, the number of half-edges to
connect to the currently infected individuals is also of order O(n1−ε). In other words, the
number of the susceptibles to infect in the following generation is O(n1−ε). Similarly to
the corollary discussed in the previous paragraph, the number of new infections until the
end is of order O(n1−ε). Therefore, the overall number of the individuals infected from
that point on is of order o(n), which is the condition of Theorem 6.3. In the following
lemma we outline a proof of this result.

Consider a time when there are O(n1−ε) infected in a generation in the declining part
of the epidemic curve. Let the infimum of such time be denoted by t∗. Let v be an
individual who is susceptible at time t∗ and who acquires the infection in the following
generation.

Lemma 6.4. Assume we have a large outbreak. The overall number of the vertices
infected after t∗ is of order o(n).

Idea of proof. Since the population is closed, the number of susceptibles decreases over
time. Therefore, the number of infected individuals after the peak must have a declining
mean, until the end of the epidemic. This implies that the average number of further
infections that v passes on must be smaller than 1, since otherwise the number of the
infected could not decline. Thus, if we were to approximate the infections that originate
from v by a branching process, the process would have to die out because its effective R0

is smaller than 1. This means that from this point on we have O(n1−ε) small outbreaks,
which are all of size O(1). Therefore, the overall number of the individuals infected
after t∗ is bounded above by O(n1−ε), and thus it is o(n). (It would be precisely of
order O(n1−ε) if the processes were independent. This issue will be discussed later in
the text.)
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Theorem 6.5. The branching process (approximating the final part of the epidemic)
that originates from v is subcritical.

Proof. According to Lemma 6.4, at time t∗ there are o(n) individuals more to be infected.
The theorem now follows from Theorem 6.3.

6.3.1 Discrete time

Recall the definition of the embedded Galton Watson process from Section 3.2. To get
an intuition about how much time it takes for the epidemic to die out, counting from the
point t∗, we first consider the discrete time (the number of generations until the end).
It holds that

E(Zi) = E(Z0)(ν∗)
i,

where Z0 denotes the number of the infected at time t∗ and it is of order O(n1−ε). Then,
ν∗ is the mean of the branching processes approximating the epidemic at these stages.
It follows from Theorem 6.5 that ν∗ must be smaller than 1. Zi denotes the size of the
i.th generation (counting from t∗). The formula above implies that, if i is an integer
larger than logn

| log ν∗| , the expected i.th generation size is of order O
(

1
nε

)
, which goes to 0

in the limit of large n.

However, the O(n1−ε) processes are not independent, as they may use the same sus-
ceptibles. In order to circumvent the problem, we consider three different processes. In
each, we use only the half-edges that are attached to a still susceptible vertex at time t∗.
The underlying graphs have the same degree distribution as the ultimately susceptible
individuals.

First is the process approximating the epidemic, where we erase a half-edge if it connects
to a vertex that has already been infected. If a half-edge is erased, the vertex at its end
cannot have any offspring. In this process the above mentioned dependencies exist, and
we will approximate it by another process. We denote it by Zε.

Second is a collection of O(n1−ε) independent branching processes with the appropriate
reproduction mean. This process is denoted by Z.

Let q ∈ (0, 1) be an arbitrary probability. The third process is a collection of O(n1−ε)
processes approximating the epidemic, where each half-edge is erased independently with
probability q. In the case of erasing a half-edge, the vertex at its end cannot have any
offspring. We call this process Zq.

The epidemic approximation process, Zε, is stochastically smaller than the independent
processes union, Z. The erased model, Zq, is stochastically smaller than the epidemic
approximation process, Zε, until the overall number of infected vertices reaches the value
q ·n∗, where n∗ is the initial number of susceptible vertices, counting time from t∗. When
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the number of the overall infected (that is, infectious or recovered) reaches q · n∗, the
probability of erasing a half-edge in the epidemic approximation process Zε equals q and
it further increases as we continue with connecting the half-edges. This is when the cou-
pling of the epidemic process Zε and the erased process Zq breaks down. On the other
hand, if q is chosen so that q → 0 as n→∞, then the process Zq and the independent
process Z can be coupled so that their difference is small and the survival probability
and the final size are the same. Since the epidemic process Zε is stochastically in between
those two, it can be coupled with either the erased or the independent process so that
their difference is very small, in the limit of large n.

The above is a rough explanation and the details and proofs can be found in [5]. See
also [6].

Now we approximate the epidemic branching process by the independent process and
according to the previous formula, as indicated earlier, we infer that it will take at least
logn
| log ν∗| generations until the epidemic dies out completely, in the sense that the expected

value of a generation size after more than logn
| log ν∗| generations equals O

(
1
nε

)
.

This is in line with the result proven in Lemma 6.2 and the small world results listed in
Section 4.3. Namely, even in the case of almost sure per-pair transmission, ψ = 1, the
moments of the degree distribution in the process that originates from v are all finite.
Consequently, the typical distance and the diameter of the corresponding graph are of
order O(log n). Accordingly, we have obtained that it takes logn

| log ν∗| generations until the
epidemic ceases.

6.3.2 Continuous time

Time until the end cannot be replaced by the number of generations until the end, as
we may have individuals of different generations that are infective at the same time
point. Thus, instead of the Galton Watson processes we consider the general branching
processes and use Theorem 3.6. For the epidemic to stop it is necessary and sufficient
that all of the O(n1−ε) independent processes die out.

In the following text, we label the number of independent processes by N(= O(n1−ε)).
We denote the number of the infected at time t in the (individual) independent processes

by z
(i)
t , i = 1, 2, ...N . Let zt denote the number of the infected in their union, at time t.

(The notation is corresponding to that of Theorem 3.6.) The following theorem is the
main result of this work.

Theorem 6.6. If the contact process and the infectious period distribution are such that
the conditions of Theorem 3.6 hold, then the random time T that passes from t∗ until
the end of the epidemic has a distribution with an exponentially declining tail.

Proof. The probability that all the independent subcritical branching processes die out
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can be approximated in the following way.

P (zt = 0) = P (z
(i)
t = 0|i = 1, ..., N) ∼ (1− c · eαt)N ,

as t → ∞. In the above expression, α is the Malthusian parameter (see Section 3.2).
Further, we have

P (zt = 0) ≈ 1−Nceαt + o(eαt)

≈ 1−Nceαt

= 1−O(n1−ε)eαt,

if we let t→∞ and then n→∞. That is,

P (zt > 0) ≈ O(n1−ε)eαt, t→∞, n→∞.

If the time of extinction of the process Z is denoted by T , then

P (T > t) = O(n1−ε)eαt, t→∞, n→∞

and the approximate cumulative distribution function of T is given by

P (T ≤ t) = 1−O(n1−ε)eαt, t→∞, n→∞.

Note that, if t ≥ − 1
α log n, the extinction probability equals

P (zt = 0) = 1−O
(

1

nε

)
→ 1, n→∞, (20)

which confirms the discrete time result. (Note that then also t→∞.)

Remark. We could have as well started exploring the ending part from the point when
there are O(εn) infected vertices in the declining part of the epidemic curve and the
inference would be similar. This way we would have concatenated to the work done
in [7]. Instead, we start from the point when O(n1−ε) individuals are infected for the
second time, which happens a little later. This is because it is of interest to see that
the time it takes for an epidemic to be completely eradicated is longer than one might
anticipate. Starting from a later point of time thus strengthens the result.
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7 Concluding remarks

In this thesis we have explored the end of an SIR epidemic on a configuration model,
when there exists a Malthusian parameter for the infectious contact process and the
given life time distribution. The main result is Theorem 6.6. Namely, the time that
passes until the epidemic dies out is at least t∗ − 1

α log n. (Recall that t∗ is the infimum
of time when there are O(n1−ε) infected individuals and α < 0 is the Malthusian param-
eter.)

It would be of interest to examine more closely when the Malthusian parameter ex-
its, that is, the existence of a solution of the singular integral equation (2). For example,
we have seen in Section 3.2.1 that, in the case of a constant infectious rate during the
infectious period, the solution does not exist if the life time density declines slowly (the
decline rate is slower than exponential). However, that means that a single individual
is likely to be infected for a long time. In that case, one would expect the epidemic to
persist for a long time. Here we only emphasize that the diseases with such properties,
for example, are not well fitted by our model.

Further, we remark that the branching process approximation (Section 5.1) was only
justified in the case of finite variance. Also, the presence of a small number of self-loops
and multiple edges (which is why we allow for both in the model) was only proved under
the assumption of finite variance of the degree distribution (Theorem 4.1).

The final remark is regarding the configuration model as a model for real world net-
works. Apart from the number of self-loops and multiple edges being sparse, there are
also not many triangles (cycles of length 3) [20]. However, the real world networks con-
tain many triangles - as two friends of a person are likely to be friends as well. Therefore,
it would be interesting to address the question of time in a context of a more realistic
model of a contact network.
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