
Masteruppsats i matematisk statistik
Master Thesis in Mathematical Statistics

Nonparametric Volatility Density
Estimation

Xiaofen Huang



Matematiska institutionen

Masteruppsats 2013:9

Matematisk statistik

December 2013

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm



Mathematical Statistics
Stockholm University
Master Thesis 2013:9

http://www.math.su.se

Nonparametric Volatility Density Estimation

Xiaofen Huang∗

December 2013

Abstract

Stochastic volatility modelling of financial processes has become
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volution procedure; in this thesis we instead propose another non-
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estimates, based on which we then use the ordinary kernel density
estimator. To find the method parameters, we also suggest auto-
matic parameter selectors using theories from the Nadaraya-Watson
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uate performance of the proposed method in comparison with the
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Abstract

Stochastic volatility modelling of �nancial processes has become popular and most mod-

els contain a stationary volatility process. For volatility density estimation Van Es et

al.(2003) introduced a deconvolution procedure; in this thesis we instead propose an-

other nonparametric method. It is a two-step procedure, where we �rst apply some

nonparametric regression technique to generate the process estimates, based on which

we then use the ordinary kernel density estimator. To �nd the method parameters, we

also suggest automatic parameter selectors using theories from the Nadaraya-Watson

estimator and continuous-time kernel density estimation. To evaluate performance of

the proposed method in comparison with the deconvolution approach, we apply both

methods on simulated data from Heston model and real data. For simulated data, we

divide it into two sets; high frequency(hourly) and low frequency(daily). We �nd that

the proposed method slightly outperforms the deconvolution approach in terms of mean

integrated squared error(MISE) for high frequency data. However, for low frequency

data, the deconvolution procedure obtains far less MISE than the proposed method.

Unfortunately, their performances on the real data are hardly comparable.

Keywords: Volatility Density Estimation, Deconvolution, Bandwidth Selection, Nadaraya-

Watson Estimator, Continuous-time Kernel Estimation, Heston Model.
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1 Introduction

Volatility as a measure of variation of prices of some �nancial asset, is of great importance

in many �nancial applications like risk managements and option pricing. In the widely

used Black-Sholes Model, it is assumed constant which unfortunately cannot explain

some long-observed features such as the volatility smiles. To solve such a shortcoming,

stochastic volatility models(continuous time or discrete time) have been proposed to

model the volatility as a random process, often called the volatility process. In this the-

sis, we will discuss some nonparametric methods for estimating volatility density given

observations of the price process of some asset.

Assuming we have discretely observed price data at a regular time instant, denote Xt as

its standardized demeaned and de-trended log-return process. To describe the behavior

of this type of data, we consider a stochastic model of the form

Xt = σtZt t = 1, . . . , n (1)

where {Zt}nt=1 is a typical sequence of i.i.d Gaussian noises and Zt is assumed to be

independent of σt for each time t. Here we model the volatility process σ as a strictly

stationary process satisfying the strong mixing condition and ergodic properties. In addi-

tion, we assume that univariate marginal distribution of σ admits a density π(v) w.r.t the

Lebesgue on (0,∞). In the literature, there have been proposed many stochastic volatil-

ity models which imply di�erent marginal distributions of σ. For instance, the Heston

model by Heston(1993) displays a gamma distribution of σ, while Ornstein-Uhlenbeck

process by Wiggins(1987) suggests a normal distribution of log σ2. Besides, most of the

widely-used models implies that the invariant distribution of σ is unimodal. It hardly

explains the often-seen volatility clustering phenomenon, which may lead to a bimodal

marginal distribution of σ. Therefore, it is sensible to implement some nonparametric

method to reveal the shape of the volatility density.

By simply taking the logarithm of the squared equation (1), we transform the model

to the convolution form

logX2
t = log σ2

t + logZ2
t , (2)

based on which Van Es et al.(2003) proposed a deconvolution procedure for the volatil-

ity density estimation using ideas from deconvolution theory. In this thesis, we will

instead propose a slightly di�erent nonparametric method called transformed volatility

density estimation. The method is a two-step procedure, where we �rst use some non-

parametric regression technique-moving average to estimate log σ2
t and then based on

these estimates we apply the ordinary kernel density estimator to estimate the density
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of log σ2. There are two parameters involved: the window size k for moving average

estimates and the smoothing parameter u for the kernel density estimator. As they

control the smoothness of their corresponding estimate curves, it is crucial to have the

appropriate choices. That's why we also propose an automatic parameter selector for

each of them. For the window size k, it is chosen using the theory of bandwidth selec-

tions for the Nadaraya-Watson estimator. It is because the moving average estimator is

approximately equivalent to the Nadaraya-Watson estimator with a uniform kernel. For

the smoothing parameter u, we apply some ideas from continuous-time kernel density

estimation.

We compare these two methods by applying them on both simulated data from Heston

model and real data(Nasdaq index). For simulation data, we divide it into two sets; high

frequency(hourly) and low frequency(daily). We �nd that the transformed approach per-

forms slightly better than the deconvolution method in terms of mean integrated squared

error(MISE) for high frequency data. However, for low frequency data the deconvolution

has far better �t compared to the transformed method. Furthermore, on the basis of

real data the performances of both approaches can be hardly determined. The thesis is

organized as follows. In chapter 2 we summarize the theoretical background of various

nonparametric methods including kernel density estimations and kernel regression. In

chapter 3 we �rst describe a class of stochastic models based on which we review the

deconvolution procedure by Van Es. et al(2003) and then propose the transformed kernel

volatility density estimator. Finally, we give an example of such a stochastic model. In

chapter 4 we present the numerical results and conclude in chapter 5.

2 Nonparametric Kernel Methods

In this chapter, we outline some general theories of classical nonparametric kernel-type

approaches for density estimations and regression estimations. We review the kernel

density estimation with an addition of an summary of a continuous-time version of

this kernel density estimation. After that, we describe the deconvolution kernel density

estimation and �nish with a brief discussion of kernel regression.

2.1 Kernel Density Estimation

In this section, we present the basic de�nition of the kernel density estimator along

with its error criterion including mean squared error and mean integrated squared error.

Additionally, we introduce the asymptotic approximation of mean square error and mean
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integrated squared error based on Wand and Jones(1995).

2.1.1 De�nition

Suppose we have an independent and identically distributed random sampleX1, X2, . . . , Xn

taken from a continuous, univariate density f . We try to estimate the density f with

the kernel density estimator of f denoted as f̂(x;h), which is given by

f̂(x;h) =
1

nh

n∑
i=1

K(
x−Xi

h
) =

1

n

n∑
i=1

Kh(x−Xi), (2.3)

where K is called the kernel, a real-valued function satisfying
∫
K(x)dx = 1 and h is a

positive number called the bandwidth or smoothing parameter. To have a slightly com-

pact formula, we introduce the scaled kernel which is de�ned as Kh(u) = h−1K(u/h).

Usually we choose the kernel to be symmetric unimodal probability density function so

that f̂(x;h) itself is also a density.

We can see that the kernel estimate at a point x is constructed by centering a scaled

kernel on all the observations X1, X2, . . . , Xn and taking the average of these n kernels.

It is found that the choice of the shape of the kernel function is not as important as the

choice of bandwidth.(see Wand and Jones(1995)) It is critical to select an appropriate

bandwidth since there is a danger of undersmoothing or oversmoothing. More speci�-

cally, a smaller bandwidth leads to a very spiky and variable estimate (which is called

undersmoothing) while a larger bandwidth results in a oversmoothed estimate which

tends to smooth away some important features of the data.

2.1.2 MSE and MISE Error Criterion

After constructing the kernel density estimator, it is necessary to specify an appropriate

error criterion for the analysis of its performance at a single point as well as over the

whole real line. Let f̂(x;h) be an estimator of the density function f(x) at some point

x. We measure the closeness of f̂(x;h) to f(x) by the size of mean square error(MSE),

which is given by

MSE(f̂(x;h)) = E[(f̂(x;h)− f(x))2]

= Var(f̂(x;h)) + (E[f̂(x;h)]− f(x))2. (2.4)

The MSE can be decomposed into variance and squared bias. Thus, to compute the

MSE (f̂(x;h)) it requires the expression of the mean and variance which can be derived

from (2.3). Denote X as a random variable having density f . They are given as below

Ef̂(x;h) = EKh(x−X) =

∫
Kh(x− y)f(y)dy = (Kh ∗ f)(x), (2.5)
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Var{f̂(x;h)} = n−1{(Kh
2 ∗ f)(x)− (Kh ∗ f)2(x)} (2.6)

where (Kh ∗ f)(x) is the convolution of Kh and f . Inserting them into (2.4), we have

MSE{f̂(x;h)} = n−1{(Kh
2 ∗ f)(x)− (Kh ∗ f)2(x)}+ {(Kh ∗ f)(x)− f(x)}2. (2.7)

However, in most cases it is preferable to measure the distance between the functions

f̂(·;h) and f over the entire real line. One such error criterion is the mean integrated

squared error(MISE), given by

MISE{f̂(·;h)} = E[ISE{f̂(·;h)}] = E

∫
{f̂(x;h)− f(x)}2dx (2.8)

where ISE is short for integrated squared error, with ISE{f̂(·;h)} =
∫
{f̂(x;h)−f(x)}2dx.

By changing the order of integration we get

MISE{f̂(·;h)} =

∫
E{f̂(x;h)− f(x)}2dx =

∫
MSE{f̂(x;h)}dx. (2.9)

After plugging in the expression for MSE (2.7) and some manipulations, we get the �nal

expression for MISE

MISE{f̂(·;h)} = (nh)−1

∫
K2(x)dx+ (1− n−1)

∫
(Kh ∗ f)2(x)dx

− 2

∫
(Kh ∗ f)(x)f(x)dx+

∫
f(x)2dx. (2.10)

For the sake of simplicity, we use the notation R(g) =
∫
g(x)2dx for any integrable

function g. This means we can rewrite the �rst term of MISE as (nh)−1R(K).

2.1.3 Asymptotic MSE and MISE Criterion

To have a better understanding of the dependence of MSE and MISE on the bandwidth,

we will study the derivation of large sample approximations for the leading bias and

variance terms. They can also be useful for obtaining the rate of convergence of the

kernel density estimator. We begin with imposing the following assumptions as in Wand

and Jones(1995).

Condition 2.1.

1. The density f has continuous second derivative f ′′ which is also square integrable

and ultimately monotone.

2. The bandwidth is a non-random positive sequence satisfying lim
n→∞

h = 0 and

lim
n→∞

nh =∞.
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3. The kernel function is a bounded probability density function having symmetry

about the origin and �nite fourth moment.

Note that a function is called ultimately monotone if it is monotone over (−∞,−M) and

(M,∞) for some M > 0. By a change of variable and Taylor expansion of f , we have

bias[f̂(x;h)] = E[f̂(x;h)]− f(x) =
1

2
h2f ′′(x)

∫
z2K(z)dz + o(h2)

=
1

2
h2µ2(K)f ′′(x) + o(h2), (2.11)

where we use the notation µ2(K) =
∫
z2K(z)dz. So the bias is of order of h2. For the

variance, we will obtain

Var{f̂(x;h)} = (nh)−1R(K)f(x) + o((nh)−1) (2.12)

which means the variance is of order (nh)−1. It is easy to notice from the orders of

variance and bias, that larger value of bandwidth leads to a decline in variance but an

increase in bias. This is the so-called variance-bias tradeo�.

Finally, by the sum of (2.12) and the square of (2.11), we get the mean square error

MSE{f̂(x;h)} = (nh)−1R(K)f(x) +
1

4
h4µ2(K)2f ′′(x)

2
+ o{(nh)−1 + h4}. (2.13)

Under the integrability condition on f we impose, taking the integral of MSE gives us

MISE{f̂(·;h)} = AMISE{f̂(·;h)}+ o{(nh)−1 + h4}, (2.14)

where

AMISE{f̂(·;h)} = (nh)−1R(K) +
1

4
h4µ2(K)2R(f ′′). (2.15)

We refer to the AMISE as the asymptotic MISE, which provides useful asymptotic ap-

proximation for the MISE especially when �nding the optimal bandwidth. More speci�-

cally, by setting the derivative of equation (2.15) with respect to h equal to zero, we will

have an expression for the optimal bandwidth which minimizes the AMISE. It is given

by

hAMISE =

[
R(K)

µ2(K)2R(f ′′)n

]1/5

(2.16)

The expression depends on R(f ′′) i.e. the total curvature of f , apart from the known

kernel K and n. It also gives the minimum MISE and the rate of convergence of the

MISE for this kernel estimator equal to n4/5 under the conditions we impose above.
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2.2 Continuous-time Kernel Density Estimation

In this section we consider a (strictly) stationary stochastic process X = {Xt}t≥0 with

a marginal density f . Based on a random sample {Xt; t ∈ [0, T ]} from this process X,

for any x ∈ R we de�ne the kernel density estimator for the density function f as

f̂T (x) =
1

Th

∫ T

0
K(

x−Xt

h
)dt =

1

T

∫ T

0
Kh(x−Xt)dt (2.17)

where K is a kernel function satisfying Kh(·) = 1
hK(·/h) and

∫
K(u)du = 1. h is called

the bandwidth or smoothing parameter as in kernel density estimator in discrete time.

The advantage of having a continuous-time sample is that we can construct an unbiased

estimator in terms of local times and occupation-time density(OTD), whose existence

gives us a faster rate of convergence to zero than in discrete time (see Sköld&Hössjer

1999). It is shown that given a discrete-time stationary ergodic process {Xi}ni=1 having a

marginal density with m continuous derivatives, the optimal rate of convergence of MSE

for a kernel density estimator is of order n−2m/(2m+1) (Wahba 1975). In comparison, a

continuous-time kernel density estimator can obtain a rate of convergence faster than

T−1 under some conditions imposed by Castellana and Leadbetter(1986). However, for

a smooth process the optimal rate will be of order (log T )/T due to an in�nite variance

of its OTD shown by Sköld and Hössjer (1999).

Concerning the nature of the assumed dependence structure of the process, we consider

the strong mixing coe�cient αh(s, x) for any point x and s > 0,

αh(s, x) =

∫ ∫
Kh(u− x))Kh(v − x)(fX0,Xs(u, v)− f(u)f(v))dudv, (2.18)

where fX0,Xs is denoted as the joint distribution of X0 and Xs and assumed to exist for

s 6= 0. It is shown by Castellana and Leadbetter(1986) that the asymptotic variance of

f̂T (x) takes the form

TVar(f̂T (x))→ 2

∫ T

0
(1− s/T )αh(s, x)ds = 2

∫ ∞
0

(fX0,Xs(x, x)− f2(x))ds (2.19)

where αh(s, x)→ fX0,Xs(x, x)− f2(x), as h→ 0. Worth mentioning is that the integral

in right-hand side of the equation (2.19) is �nite for a process behaving locally as Brown-

ian motion, but not for a di�erentiable process. De�ne Ys = (Xs−X0)/s and Y0 := X ′0.

In order to present the results from Sköld and Hössjer (1999), we request the following

conditions to be satis�ed.
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Condition 2.2.

1. The density f is a continuous and bounded function such that its second derivative

is continuous, square integrable and ultimately monotone.

2. The kernel K is a symmetric density function with compact support.

3. The strong mixing coe�cient αh satis�es both lim
h→0

∫∞
δ |αh(s, x)|ds < ∞ for all

δ > 0 and lim
h→0

∫ ∫∞
δ |αh(s, x)|dsdx <∞.

4. There exists a constant fX0,X′0
(x, 0) such that lim

ε→0
sup

(u,v,s)∈Bε×[0,ε)
|fX0,Ys(u, v) −

fX0,X′0
(x, 0)| = 0, where Bε = {(u, v); (u− x)2 + v2 < ε2}.

5. There exists a constant fX′0(0) such that lim
ε→0

sup
(v,s)∈(−ε,ε)×[0,ε)

|fYs(v)− fX′0(0)| = 0.

Under these assumptions above, Sköld and Hössjer (1999) gave exact form of the asymp-

totic variance and its integral which are written respectively as follows,

Var(f̂T (x)) = 2fX0,X′0
(x, 0) log(h−1)T−1 + o(log(h−1)T−1), (2.20)∫

Var(f̂T (x))dx = 2fX′0(0) log(h−1)T−1 + o(log(h−1)T−1). (2.21)

as h→ 0 and T →∞. These allow us to derive an explicit expression for the asymptotic

bandwidth optimum which minimizes the AMISE:

h(T ) =

(
1

CT

)α
=

[
2fX′0(0)

µ2(K)2R(f ′′)T

]α
, (2.22)

where

α = 1/4 and C =
µ2(K)2R(f ′′)

2fX′0(0)
. (2.23)

This optimal bandwidth results in the rate of convergence of MISE equal to (log T )/T

for all α ≥ 1/4 regardless of the choice of C > 0, since

lim
T→∞

T (log T )−1

∫ ∞
−∞

E(f̂T (x;h(T ))− f(x))2dx = 2αfx′0(0). (2.24)

2.3 Deconvolution Kernel Density Estimation

According to the previous section, the kernel density estimator requires direct data. How-

ever, it is not always able to obtain in practise. One example is that data are measured
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with some non-negligible error. In this section, we will discuss the nonparametric density

estimation from error contaminated data, which is called deconvolution kernel density

estimation. We will present the deconvolution estimator as well as its MISE criterion

based on chapter 6.2.4 of Wand and Jones(1995). We will also summarize some insights

obtained by Fan(1991) about how di�cult the deconvolution is. Further, we will describe

the computational procedure using Fast Fourier Transform, based on Silverman(1986).

2.3.1 Deconvoluting Kernel Density Estimator

Assume that X1,X2,. . .,Xn are an unobservable random sample drawn from a common

density fX . Our objective is to estimate this unknown density fX based on the observed

data Y1,. . .,Yn which is de�ned as

Yi = Xi + Zi i = 1, . . . , n (2.25)

where the error term Zi's are i.i.d random variables with known error density fZ and

independent of Xi. That is why the density of fY is the convolution of fX and fZ , i.e.

fY = fX ∗ fZ . (2.26)

By a usage of Fourier transform(or characteristic function) properties, we have the

Fourier transform of density fY

ϕfY (t) = E(eitY ) = E(eit(X+Z)) = E(eitXeitZ) = ϕfX (t)ϕfZ (t). (2.27)

Then we apply Fourier inversion Theorem and obtain the target density fX written as

fX(x) =
1

2π

∫
e−itxϕfX (t)dt =

1

2π

∫
e−itx

ϕfY (t)

ϕfZ (t)
dt, (2.28)

provided that ϕfZ (t) 6= 0. If we replace fY by its kernel estimator

f̂Y (y;h) = 1
n

n∑
j=1

Kh(y−Yj) (according to formula (2.3)), an estimate of fX can be given

by

f̂X(x;h) =
1

2π

∫
e−itx

ϕf̂Y (x;h)(t)

ϕfZ (t)
dt (2.29)
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which is the so-called the deconvoluting kernel density estimator. Note that

ϕf̂Y (t) =

∫
eitxf̂Y (x)dx

=
1

n

n∑
j=1

∫
eitxKh(x− Yj)dx

=
1

n

n∑
j=1

∫
eit(x−Yj)Kh(x− Yj)eitYjdx

= ϕKh(t) · 1

n

n∑
j=1

eitYj

=

∫
eitx

1

h
K(

x

h
)dx · 1

n

n∑
j=1

eitYj

= ϕK(th)
1

n

n∑
j=1

eitYj (2.30)

= ϕK(th)ϕemp(t) (2.31)

where ϕemp(t) = 1
n

n∑
j=1

eitYj , which is called the empirical characteristic function as in

Van Es et al.(2005).

By inserting the equation (2.31) into the equation (2.29), we obtain one expression of

the deconvolution estimator,

f̂X(x;h) =
1

2π

∫
e−itx

ϕK(th)ϕemp(t)

ϕfZ (t)
dt. (2.32)

Or we can plug the equation (2.30) into (2.29)

f̂X(x;h) =
1

2π

∫
e−itx

ϕK(th)

ϕfZ (t)

1

n

n∑
j=1

eitYjdt

=
1

n

1

2π

n∑
j=1

∫
e−it(x−Yj)

ϕK(th)

ϕfZ (t)
dt

=
1

nh

1

2π

n∑
j=1

∫
e−is(

x−Yj
h

) ϕK(s)

ϕfZ (s/h)
ds (2.33)

and have another another expression of the deconvolution kernel density estimator given

by

f̂X(x;h) =
1

nh

n∑
j=1

vh(
x− Yj
h

) (2.34)

where

vh(x) =
1

2π

∫ ∞
−∞

ϕK(s)

ϕfZ (s/h)
e−isxds. (2.35)

9



From the equation (2.34) above, it is apparent that the deconvolution is in the same basic

form as the ordinary kernel estimator except with di�erent kernel functions. Comparing

with the kernel K, vh is referred to as the "e�ective" kernel as in Wand and Jones(1995),

whose shape is dependent on the choice of the bandwidth.

2.3.2 MISE Criterion

To access the quality of the deconvolution estimator and investigate its asymptotic be-

havior, we need to specify its MISE criterion. According to Wand and Jones(1995), it is

given by

MISE{f̂(·;h)} =
1

nh
R(vh(·;h)) + (1− 1

n
)

∫
(Kh ∗ f)2(x)dx

− 2

∫
(Kh ∗ f)(x)f(x)dx+

∫
f(x)2dx. (2.36)

Notice that the MISE is also of similar form as the one for ordinary kernel estimator(see

equation (2.10)). The only di�erence lies in the �rst term, where it is (nh)−1R(K) in

the latter case. It is actually the extra measurement error Z gives rise to the increase in

MISE which is

(nh)−1{R(vh(·;h))−R(K)}, (2.37)

where

R(vh(·;h)) = (2π)−1

∫
ϕK(t)2|ϕfZ (t/h)|−2dt. (2.38)

The size of the integral, or more speci�cally the size of the reciprocal of the characteristic

function of error variable determines the e�ect of the measurement error on MISE.(see

Wand and Jones 1995) Hence, the behavior of the error distribution has an impact on

the MISE of the deconvolution estimator.

2.3.3 The Di�culty of The Deconvolution

It is found that the di�culty of the deconvolution depends not only on the smoothness

of the target density fX but also on the smoothness of the distribution: the smoother,

the harder (Fan 1991). More speci�cally, Fan(1991) investigated optimal rates of conver-

gence in terms of mean square errors corresponding to two types of error distributions-

ordinary smooth and super smooth distributions. For the sake of clarity, here we present

their de�nitions along with the usual condition Fan(1991) imposed on the unknown den-

sity fX .
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Condition 2.3. f belongs to the set Lm,α,B with

Lm,α,B = {f(x) = |f (m)(x)− f (m)(x+ δ)| ≤ Bδα}

for known constants m,B and 0 ≤ α < 1

De�nition 2.1. (Super smooth) The distribution of a random variable Z is called

super smooth of order β if its characteristic function ϕfZ (t) satis�es

d0|t|β0 exp(−|t|β/γ) ≤ |ϕfZ (t)| ≤ d1|t|β1 exp(−|t|β/γ) as t→∞ (2.39)

where d0,d1,β,γ are some positive constants and β0,β1 are constants.

De�nition 2.2. (Ordinary Smooth) The distribution of a random variable Z is

called ordinary smooth of order β if its characteristic function ϕfZ (t) satis�es

d0|t|β ≤ |ϕfZ (t)| ≤ d1|t|β as t→∞ (2.40)

where d0,d1,β are some positive constants.

In other words, by the smoothness of the error distribution Z, we mean the order of

its characteristic function ϕfZ as t tends to in�nity. Take examples, normal, mixture

normal and Cauchy distribution are super smooth; gamma, symmetric gamma distribu-

tions are ordinary smooth. It is shown that for deconvoluting a super smooth error, the

faster rate of convergence is only of order of (log n)−a for some positive number a.(see

Fotopoulos 2000) Particularly, for normal deconvolution the optimal rate of convergence

is much slower. In contrast, if the error is ordinary smooth, the optimum rate of con-

vergence is of order n−b for some positive number b.(see Fotopoulos 2000) This means

that deconvolution problem with a super smooth error is much more di�cult to solve

than the one with an ordinary smooth error. Additionally, for both smoothness cases,

the deconvolution gets harder when the order of the smoothness gets higher. Therefore,

in practice one has to be careful when deconvoluting with a super smooth error. While

for ordinary smooth case, deconvolution techniques are possibly useful.

2.3.4 Computational Algorithm

The di�culty of a deconvolution problem lies in not only the problem itself but its

computation, since its direct computing is highly ine�ective. Fortunately, fast Fourier

transform(FFT) can be used to perform this time-consuming computation thanks to

its discrete structure. Denote IFT as inverse Fourier transform, we could rewrite the

11



equation (2.32) as

f̂X(x;h) = IFT (
ϕK(th)ϕemp(t)

ϕfZ (t)
). (2.41)

Here we assume that the characteristic function of K and fZ are known. Since the

fast Fourier transform(FFT) is the algorithm of computing the discrete Fourier trans-

form(DFT) and Inverse discrete Fourier transform(IDFT), it can be used to �nd the

empirical characteristic function ϕemp(t) and perform Inverse Fourier transform(IFT) in

the equation (2.41). The algorithm can be divided into three steps:

First, we begin with data discretization. Let [a, b] be an interval containing all the data.

Set M = 2r for some integer r. The density estimates will be found on the M points.

De�ne

δ = (b− a)/M

tk = a+ kδ

for k = 0, 1, . . . , (M − 1). The binning can be done in the following way. If a data point

X lies in the interval [tk, tk+1], it is split into a weight 1
nδ (tk+1−X) at tk and

1
nδ (X− tk)

at tk+1. We call the sequence of weights wk, whose sum is equal to 1/δ.

The next step is to compute the following sum using FFT,

Yl =
1

M

M−1∑
k=0

wke
i2πkl
M (2.42)

for −1
2M ≤ l ≤ 1

2M . This sum helps to �nd the value of the empirical function u(sl)

where sl = 2πl
b−a . It follows,

Yl =
1

M
eiasl

M−1∑
k=0

wke
itksl ≈ 1

M

1

δ
eiasl

1

n

∑
j

eislSj = eiasl
u(sl)

b− a
. (2.43)

Finally, de�ne ζl
∗ = ϕk(hsl)

ϕfZ (sl)
u(sl) and ζk = IFT (ζl

∗), then

ζk =

M/2∑
l=−M/2

e
2πikl
M ζl

∗ ≈
∑
l

e−isltk · eiasl ϕk(hsl)
ϕfZ (sl)

Yl

=
∑
l

e−isltk
ϕk(hsl)

ϕfZ (sl)

u(sl)

b− a
≈ 1

2π

∫
e−istk

ϕk(hs)

ϕfZ (s)
u(s)ds = f̂X(tk;h). (2.44)

Therefore, from the last equality above we can see that FFT is a suitable computational

tool for deconvolution estimator.
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2.4 Kernel Regression

As one of the nonparametric regression approaches, kernel regression is developed by

using the same ideas and mathematical skills in the analysis of kernel density estima-

tion. We devote this section to study a class of kernel regression estimators called

local polynomial kernel estimators, among which we mainly focus on the Nadaraya-

Watson estimator. Then we move on to give some basic de�nitions for kernel functions

required before analyzing some asymptotic properties of some error criterions for the

Nadaraya-Watson estimator. Lastly, we present some bandwidth selection methods for

the Nadaraya-Watson estimator.

2.4.1 Local Polynomial Kernel Estimators

Based on Wand and Jones(1995), the study of nonparametric regression is divided into

two contexts- �xed design and random design, where in the latter case a bivariate sample

(X1, Y1), . . . , (Xn, Yn) of random pairs is observed. While in the �rst case x1, . . . , xn

known as the design variables are ordered non-random numbers. In particular, when

the xi+1 − xi remains constant for all i or more specially xi = i/n for i = 1, . . . , n, it

is a special case called equally spaced �xed design which we will mainly focus on. In an

equally spaced �xed design model, we assume the respond variable to be satisfying

Yi = m(xi) + v1/2(xi)εi, i = 1, . . . , n (2.45)

where {εi}ni=1 is a sequence of i.i.d. random variables with zero mean and unit variance.

The function m and v are known as the regression function and variance function re-

spectively, since E(Yi) = m(xi) and Var(Yi) = v(xi). If we assume v(xi) = σ2 for all i,

then the model is called homoscedastic, otherwise heteroscedastic.

The main idea behind the local polynomial kernel estimator is for a given point x �tting

a p-th polynomial locally to the data points (xi, Yi) by weighted least square with kernel

weights Kh(xi − x), which is a kernel function scaled by the smoothing parameter h.

More speci�cally, at a point x, the local polynomial kernel estimator is a minimizer of

β̂ = arg min
n∑
i=1

{Yi − β0 − β1(xi − x)− . . .− βp(xi − x)p}2 ·Kh(xi − x). (2.46)

where β̂ = (β̂0, β̂1, . . . , β̂p)
T . Denote Y = (Y1, . . . , Yn) as the response vector and X as

an n× (p+ 1) design matrix given by

X =

1 x1 − x · · · (x1 − x)p

...
...

. . .
...

1 xn − x · · · (xn − x)p


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AlsoW is denoted as a n×n diagonal matrix of the formW = diag{Kh(x1−x), . . . ,Kh(xn−
x)}. Provided the invertibility of XTWX, the theory of standard weighted least squares

gives us

β̂ = (XTWX)−1XTWY, (2.47)

which leads to the value of the estimate m̂(x; p, h) equal to the height of β̂0, i.e.,

m̂(x; p, h) = eT1 (XTWX)−1XTWY, (2.48)

where e1 is a (p+ 1)× 1 column vector (1, 0, . . . , 0)T .

In a special case where p = 0, we obtain local constant kernel estimator known as the

Nadaraya-Watson estimator(Nadaraya(1964) and Watson(1964)) expressed explicitly by

m̂NW (x;h) =

n∑
i=n

Kh(xi − x)Yi

n∑
i=1

Kh(xi − x)

, (2.49)

or by

m̂NW (x;h) =
n∑
i=1

Wi(x;h)Yi, (2.50)

where the weights {Wi}ni=1 is called the e�ective kernel at x, given by

Wi(x;h) =
Kh(xi − x)
n∑
i=1

Kh(xi − x)

, i = 1, . . . , n. (2.51)

Furthermore, if the kernel K is chosen to be the uniform kernel K̄ = 1
2 I[−1,1](x), the

estimator can be written as

m̂R(x;h) =

n∑
i=1

YiI[−1,1](
xi−x
h )

n∑
i=1

I[−1,1](
xi−x
h )

=

n∑
i=1

YiI[x−h,x+h](xi)

n∑
i=1

I[x−h,x+h](xi)

. (2.52)

At a point x, this estimator gives a moving average estimate by taking a local average of

Yi in a neighborhood centered by x and scaled by bandwidth h.(see Horová et al. (2012))

2.4.2 Kernel Functions

The kernel function is constructed in a way that it is related both to the number of its

vanishing moments and to the number of existing derivative for the target curve to be

estimated.(see Horová et al. 2012) De�ne µj(K) =
∫
xjK(x)dx as the j-th moment of
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the kernel K. Then we introduce the same de�nition for kernel functions used in Horová

et al. (2012).

De�nition 2.3. Let ` be a nonnegative even integer and assume ` ≥ 2. A real-valued

function K ∈ Lip[−1, 1], support(K) = [−1, 1], satisfying K ∈ S0,`, where

Sν,` =


K(1) = K(−1) = 0

µj(K) =


0, 0 ≤ j < `, j 6= `

1, j = 0

µ`(K) 6= 0, j = `.

is called a kernel of order `.

Here Lip[−1, 1] denote a class of functions satisfying |K(x)−K(y)| ≤ L|x− y|, ∀x, y ∈
[−1, 1] for some constant L > 0. In addition, in some cases the smoothness of a kernel is

also required for kernel estimates. We say the smoothness of a kernel function of order

µ over the interval [−1, 1] if K(j)(−1) = K(j)(1) = 0 for j = 1, 2, . . . , µ.(see Horová et

al.(2012)). De�ne Cµ[−1, 1] as a set of such functions having µ-times continuous deriva-

tives on [−1, 1]. Thus, We can de�ne a set Sµ0,` = S0,` ∩ Cµ[−1, 1]. To illustrate, we

list some widely used examples from class S0,2 in Table 2.1. As for the commonly used

Table 1: Kernel Functions From Class S0,2

K(x) = 1
2 I[−1,1](x) uniform kernel µ = −1

K(x) = 3
4(1− x2)I[−1,1](x) Epanechnikov kernel µ = 0

K(x) = (1− |x|)I[−1,1](x) triangle kernel µ = 0

K(x) = 15
16(1− x2)2I[−1,1](x) quartic kernel µ = 1

Gaussian kernel, i.e. K(x) = 1√
2π

exp(−x2/2), it doesn't belong to S0,` since it has no

bounded support.

2.4.3 Asymptotic Error Criterions

Consider an equally spaced �xed model (2.45) with xi = i/n and v(xi) = σ2 for all i.

We �rst impose some conditions as in Horová et al. (2012):
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Condition 2.4.

1. K ∈ S0,`

2. m ∈ C`0 [0, 1], `0 > `

3. the bandwidth h = hn is a non-random sequence satisfying lim
n→∞

h = 0 and

lim
n→∞

nh = 0.

4. the point x at which the estimation is taking place is an inner point of the interval

[0, 1], which means there exists an index n0 such that h < x < 1−h for all n ≥ n0.

Under these assumptions, Kolá£ek(2005) derived for ` ≥ 2 the bias and variance of the

Nadaraya-Watson estimator, which are given by

bias{m̂NW (x;h)} =
µ`
`!
m(`)(x)h` + o(h`) +O(n−1), (2.53)

Var{m̂NW (x;h)} =
σ2

nh
R(K) + o((nh)−1). (2.54)

From here on we denote m̂NW (x;h) shortly by m̂(x;h) for simplicity. By the usage of

the results above and the decomposition property of MSE, some calculations leads us to

a global criterion- MISE given by

MISE{m̂(·;h)} = E

∫ 1

0
{m̂(x;h)−m(x)}2dx =

∫ 1

0
MSE{m̂(x;h)}dx

=
σ2

nh
R(K) +

(µ`
`!

)
R(m(`))h2` + o{h2` + (nh)−1}, (2.55)

(2.56)

as in Theorem 6.1. in Horová et al.(2012). In order to have the mathematical tractability,

we employ the AMISE which is written as

AMISE{m̂(·;h)} =
σ2

nh
R(K) +

(µ`
`!

)
R(m(`))h2`. (2.57)

By minimizing the AMISE as in kernel density estimation, i.e.,

hopt,o,` = arg min
h∈Hn

AMISE{m̂(·, h)} (2.58)

with Hn = [an−
1

2`+1 , bn−
1

2`+1 ] and 0 < a < b <∞, we can obtain the optimal bandwidth

given by

hopt,0,` =

(
σ2R(K)(`!)2

2`nµ2
` (K)R(m(`))

) 1
2`+1

, (2.59)
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To avoid the numerical integration in practice, one can instead utilize the average mean

square error or shortly AMSE, which is de�ned as

AMSE{m̂(·, h)} =
1

n
E

n∑
i=1

{m(xi)− m̂(xi;h)}2. (2.60)

It can be simply estimated by residual sum of squares(RSS) given by

RSSn(h) =
1

n

n∑
i=1

{Yi − m̂(xi;h)}2, (2.61)

Unfortunately this is a biased estimate. For its explanations, interested readers can refer

to Theorem 6.2. in Horová et al.(2012).

2.4.4 Bandwidth Selection Methods

Now we can have the discussion about methods for bandwidth selecting. Obviously, the

choice of the smoothing parameter in kernel regression plays the same role as in kernel

density estimation by a�ecting the feature of the estimated curve. Although one can

choose the bandwidth manually according to subjective judgements, in many situations

it is useful to have automatic bandwidth selectors. Here we will mainly focus on a type

of plug-in method using Fourier transformation after a brief summary of two other band-

width selecting approaches using the error function RSS.

Mallow's Method

As we mentioned RSSn(h) is a biased estimate of AMSE, in fact it is because its expected

value can be written as (see Theorem 6.2 Horová et al. (2012))

E(RSSn(h)) = AMSE{m̂(·;h)}+ σ2 − 2σ2

n

n∑
i=1

Wi(xi;h). (2.62)

By correcting this bias, we consider the error function given by

M̂n(h) = RSSn(h)− σ̂2 +
2σ̂2

n

n∑
i=1

Wi(xi;h), (2.63)

where we estimate σ2 by σ̂2

σ̂2 =
1

2n− 1

n∑
i=2

(Yi − Yi−1)2. (2.64)

Then the estimate ĥM of the optimal bandwidth is a minimizer of this error function

M̂n(h),

ĥM = arg min
h∈Hn

M̂n(h). (2.65)

17



Cross-validation Method

As one of the most popular bandwidth selectors, this method is developed by carrying

over the main idea of the cross-validation method in kernel density estimation. It is also

known as �leave-one-out� method, where we leave out one, say i-th observation, in the

regression expression in (2.50):

m̂−i(xi;h) =

n∑
j=1
j 6=i

Wj(xi;h)Yj . (2.66)

Then by this modi�ed regression estimator m̂−i(xi;h) we replace m̂(xi;h) in RSSn(h)

and obtain the �cross-validation� function given by

CV(h) =
1

n

n∑
i=1

{m̂−i(xi)− Yi}2. (2.67)

Similarly, the optimal bandwidth is estimated by the minimization of CV(h), i.e.

ĥCV = arg min
h∈Hn

CV(h). (2.68)

Note that CV(h) is still a biased estimate of AMSE, with E(CV (h)) = AMSE{m̂(·;h)}+
σ2 (see Theorem 6.3 in Horová et al. (2012)) and in most cases ĥCV tends to be less

than the optimal bandwidth.

Plug-in Method

It is observed by Chiu(1990) that the classical methods based on error function RSS(e.g.

Mallows' method) are subject to large sample variation and also give smaller values

more frequently than predicted by asymptotic theorems. To overcome this di�culty,

Chiu(1990) suggested a procedure which stabilizes RSS by modifying the periodogram

of the observations. By applying this procedure, Kolá£ek(2008) propose a type of plug-in

method, which produces much more stable bandwidth estimates. Here we will give a

brief description of this plug-in method without without delving into details.

To begin with, we suppose a cyclic design, i.e., m is assumed to be a smooth periodic

function and the estimates are based on the extended series Ỹi = Yj+ln, for j = 1, . . . , n

and l = −1, 0, 1. Similarly, xi = i/n, i = −n + 1,−n + 2, . . . , 2n. Then the regression

estimator can be expressed as

m̂(x;h) =
2n∑

i=−n+1

Wi(x;h)Ỹi. (2.69)
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Denote Y = (Yi, . . . , Yn)T as the vectors of observations. We de�ne the periodogram

IY = (IY1 , . . . , IYn) of Y as IYj = |Y −j |2/2πn for j = 1, . . . , n where

Y −j =
n−1∑
s=0

Ys+1e
− i2πs(j−1)

n (2.70)

is the discrete Fourier transform of the vector Y and thus can be denoted by Y− =

DFT−(Y). Again we denote a vector w−j = (w1, w2 . . . , wn) where

wj = W1(xj − 1;h) +W1(xj ;h) +W1(xj + 1;h) for j = 1, . . . , n. (2.71)

The application of Parseval's formula leads us to another expression of RSSn(h):

RSSn(h) =
4π

n

N∑
j=2

IYj{1− w
−
j }

2, (2.72)

whereN = [n2 ] indicates the greatest integer less or equal to n
2 ; w

−
j =

n−1∑
s=−n+1

W1(xs;h)e−
i2πs(j−1)

n

is the discrete Fourier transform of wj . De�ne ĨYj as

ĨYj =

{
IYj , 2 ≤ j < J

σ̂2/π, J1 ≤ j ≤ N.

where J1 is the least index such that IYJ1 < σ̂2/π. Then we can substitute IYj in (2.72)

with ĨYj and obtain the modi�ed residual sum of squares:

MRSSn(h) =
4π

n

N∑
j=2

ĨYj{1− w
−
j }

2, (2.73)

based on which we propose a selector given by

M̃n(h) = MRSSn(h)− σ̂2 + 2σ̂2w1

=
σ̂2

n

n∑
j=1

(w−j )2 +
4π

n

J1−1∑
j=2

{IYj −
σ̂2

2π
}{1− w−j }

2. (2.74)

The main idea of the plug-in method is estimating the unknown terms σ2 and R(m(`))

in the expression of AMISE((2.57)). We can estimate σ2 by simply using the formula

(2.64). But for R(m(`)), we need to use the result above. Let J2 be the last index from

{1, 2, . . . , n} for which

J2 ≤
`+1
√
ε(`+ 1)!

2πh
(2.75)

with ε > 0 and h ∈ (0, 1). h is a starting approximation of the optimal bandwidth.

Usually, taking ε = 10−3 and h = `/n yields good results.(see Horová et al.(2012))

Further, we de�ne

J = min{J1, J2 + 1} (2.76)
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provided that both conditions for indices J1 and J2 are satis�ed simultaneously. Thus,

by a replacement of the AMISE with the selector (2.74) and some derivations, we obtain

an estimate of R(m(`)) expressed by

R̂(m(`)) =
4π

n

J−2∑
j=1

(2πj)2`{IYj+1 −
σ̂2

2π
}. (2.77)

As a result, by plugging this estimate above into (2.59) we will have the plug-in estimator

for hopt,0,`

ĥPI =

(
σ2R(K)(`!)2

2`nµ2
` (K)R̂(m(`))

) 1
2`+1

(2.78)

According to Kolá£ek(2008), the plug-in method could have preferable features to the

classical ones since it does not involve any minimization problem of any error function.

Besides, computationally it needs far less sample size than classical methods. On the

other hand, it has one minor disadvantage due to the requirement of assigning a starting

approximation of the unknown smoothing parameter h. Also, plug-in method is limited

in a sense that it is only developed for the cyclic design case.

3 Kernel Volatility Density Estimation

In this chapter, we will �rst describe a class of stochastic volatility models we will

be considering. Then we will study the deconvolution procedure for volatility density

estimation including its asymptotics. Furthermore, we will propose a relatively di�erent

approach called transformed kernel density estimator. Lastly, we will give an example

of the same class of stochastic volatility models.

3.1 Stochastic Volatility Models

Denote St as the logarithm of the price process for some asset on the �nancial market.

It is common that we model the evolution of log-price as a solution of the following

stochastic di�erential equation,

dSt = btdt+ σtdWt, S0 = 0 (3.1)

where bt is the drift,Wt is a standard Brownian motion. σt is called the volatility process

which is independent of Wt by assumption. We model it as a strictly stationary positive

di�usion satisfying the mixing condition and the ergodic properties. In addition, we

assume that one-dimensional marginal distribution of σ admits a density π(v) w.r.t the
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Lebesgue on (0,∞), which is actually the typical case in the literature. So we model

the volatility process σt by another stochastic di�erential equation in term of Vt with

Vt = σ2
t (or it can also be in log σ2

t ). It is given by

dVt = b(Vt)dt+ a(Vt)dBt, V0 = η (3.2)

where a and b are real-valued continuous function on R and η is a positive number. Bt

is a standard Brownian motion and independent of Wt.

In summary, in this thesis we will consider a simpli�ed version of this two-dimensional

di�usion (St, Vt) (refraining the drift term bt from equation (3.1)). It is given by{
dSt = σtdWt, S0 = 0

dVt = b(Vt)dt+ a(Vt)dBt, V0 = η
(3.3)

3.2 Deconvolution Kernel Volatility Density Estimation

In this section, we will �rst construct the deconvolution kernel volatility density estimator

using the theory of classical deconvolution kernel estimator. Then we will investigate

the asymptotic behavior of this estimator under a couple of mixing conditions on the

volatility process.

3.2.1 Construction of The Estimator

Assume that log-price St is observed discretely at regular time instant 0,∆, 2∆,. . ., n∆

such that ∆ → 0 and n∆ → ∞. In other words, it is assumed that as the number of

observation n tends to in�nity, the interval ∆ tends to zero and the total length of the

observation time tends to in�nity. For i = 1, 2, . . . , n, we work with normalized incre-

ments as in Genon-Catalot et al.(2000)

X∆
i =

1√
∆

(Si∆ − S(i−1)∆). (3.4)

We could see that X∆
i is the normalized log-return of the stock price. For small ∆,

roughly we have the approximation

X∆
i =

1√
∆

∫ i∆

(i−1)∆
σtdWt

≈ σ(i−1)∆
1√
∆

(Wi∆ −W(i−1)∆)

= σ(i−1)∆Z
∆
i (3.5)
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where

Z∆
i =

1√
∆

(Wi∆ −W(i−1)∆), for each i.

Since Wt is standard Brownian Motion, Z∆
1 ,Z∆

2 ,. . ., Z∆
n are i.i.d. standard normal ran-

dom variables. Moreover, the sequence of Z∆
i are assumed to be independent of the

volatility process. By taking the logarithm of the square of equation X∆
i , we have the

desirable convolution structure

log(X∆
i )2 ≈ log σ2

(i−1)∆ + log(Z∆
i )2. (3.6)

We assume that the approximation is accurate enough that we can use the approximate

structure to estimate the density of log σ2
(i−1)∆ based on the observations of log(X∆

i )2.

Denote g as the density of error variable log(Z∆
i )2 and ϕg as its characteristic function.

Since for each i Z∆
i ∼ N(0, 1), according to Van ES et al.(2009) the density function g

is given by

g(x) =
1√
2π
e

1
2
xe−

1
2
ex (3.7)

and the characteristic function by

ϕg =
1√
π

2itΓ

(
1

2
+ it

)
, (3.8)

where Γ(·) is the gamma function for a complex number. We plot the density function g

Figure 1: Left: density function g; Right: modulus of ϕg

along with the modulus of its characteristic function ϕg in Figure 1. Using the classical

deconvolution theory which we reviewed in section 2.3, we can write the deconvolution

kernel volatility density estimator as

f̂(x;h) =
1

nh

n∑
j=1

vh(
x− log(X∆

j )2

h
), (3.9)
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where

vh(x) =
1

2π

∫ ∞
−∞

ϕK(s)

ϕg(s/h)
e−isxds (3.10)

and ϕK denoted as the characteristic function of the kernel K. It can be veri�ed that

vh and therefore f̂(x;h) is a real-valued function.

3.2.2 Asymptotics of The Estimator

It is proven in Lemma 4.1 of Van Es et al.(2003) that the expectation of the deconvolution

kernel estimator is the same as that of the ordinary kernel estimator, thus their biases are

also the same. Also it is known that the variance of the deconvolution estimator depends

heavily on the smoothness of the error distribution g.(see Van Es et al. 2001) About its

characteristic function ϕg, we have the following equality from Van Es et al.(2009)

|ϕg(t)| =
√

2e−
1
2
π|t|
(

1 +O( 1
|t|)
)
, as t→∞. (3.11)

This means the error distribution is super smooth according to the de�nition (2.2).

Besides, the tail of the characteristic function ϕg is similar to the tail of a Cauchy

characteristic function. Thus, we can expect the same logarithmic rate of convergence

as in a deconvolution problem with a Cauchy error from i.i.d observations. However,

this argument is not directly applicable in our case, since the i.i.d assumption has been

relaxed. In our deconvolution problem

log(X∆
i )2 ≈ log σ2

(i−1)∆ + log(Z∆
i )2,

log σ2
(i−1)∆ is a strictly stationary sequence satisfying the strong mixing condition and

independent of the i.i.d noise sequence log(Z∆
i )2. Our task here is to expand the bias

and the variance of the deconvolution estimator under a couple of mixing conditions.

To begin with, we list the de�nitions and properties of the mixing conditions we will

use according to Bradley(2005). In a probability space(Ω,F , P ), A,B are two σ-�eld

included in F . The mixing coe�cients α, β, φ and ρ are de�ned by

α(A,B) = sup |P (A ∩B)− P (A)P (B)| A ∈ A, B ∈ B (3.12)

β(A,B) = sup 1
2

I∑
i=1

J∑
j=1
|P (Ai ∩Bj)− P (Ai)P (Bj)| A ∈ A, B ∈ B (3.13)

φ(A,B) = sup |P (A|B)− P (A)| A ∈ A, B ∈ B, P (B) > 0 (3.14)

ρ(A,B) = sup |corr(X,Y )|, X ∈ L2
real

(A), Y ∈ L2
real

(B) (3.15)

where the second supremum is taken over all pairs of partitions {A1, . . . , AI} and {B1, . . . , BJ}
of Ω such that Ai ∈ A for each i and Bj ∈ B for each j. In the last supremum, L2

real
(A)
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is denoted as the space of square-integrable, A-measurable and real-valued random vari-

ables. Also we have the following inequalities hold,

2α(A,B) ≤ β(A,B) ≤ φ(A,B) ≤ 1,

4α(A,B) ≤ ρ(A,B) ≤ 1. (3.16)

Suppose X = (Xt, t ∈ R+, or t ∈ N) is a strictly stationary stochastic process, for

−∞ ≤ J ≤ L ≤ ∞ we de�ne the σ-�eld

FLJ = σ(Xt, J ≤ t ≤ L). (3.17)

Then α(t), β(t), φ(t), ρ(t) can be de�ned as

c(t) = sup c(F0
−∞,F∞t ) (3.18)

with c = α, β, φ or ρ. A process is called c-mixing if c(t) → 0 as t → ∞. Moveover,

from the two relations (3.16), we have the fact that β-mixing, φ-mixing and ρ-mixing all

imply strong mixing or α mixing.

Now we turn to our target. First we impose the following conditions on the continuity

and the mixing condition of the volatility process σ2
t as well as on the kernel function K

and its characteristic function ϕK .

Condition 3.1.

1. σ2
t is L

1-Hölder continuous of order one-half, i.e. E|σ2
t − σ2

0| = O(t
1
2 ) for t→ 0.

2. σ2
t is strongly mixing with coe�cient α(t) satisfying∫∞

0 α(t)qdt <∞ for some 0 < q < 1 (3.19)

Condition 3.2.

1. K is a real symmetric function satisfying

∫∞
−∞ |K(u)|du <∞,

∫∞
−∞K(u)du = 1,

∫∞
−∞ u

2|K(u)|du <∞ (3.20)

2. ϕK is a real-valued symmetric function with bounded support [−1, 1] and satis�es

ϕK(1− t) = Atξ + o(tξ) for some ξ > 0,A ∈ R

One example of such kernel function is taken from Wand(1998), which is

K(x) =
48x(x2 − 15) cos(x)− 144(2x2 − 5) sin(x)

πx7
, (3.21)

with its characteristic function given by

ϕK(t) = (1− t2)3, |t| ≤ 1. (3.22)
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We will present the following theorem by Van Es et al.(2009) which concerns the mean

square error of the estimator at a �xed point x. Note that although the result is based

on the simpli�ed model we are considering, it also applies to the original model which

contains the drift term bt. For its proof and deriving, interested readers can refer to Van

Es(2003).

Theorem 3.3. Assume E[b2t ] is bounded. Suppose the process σ satisfy Condition 3.1

and the kernel function K satisfy the condition 3.2. Moveover, the density f of log σ2
t

is assumed to be twice continuously di�erentiable with a bounded second derivation. In

addition, let the density of σ2
t to be bounded in a neighborhood of zero. Assume that

∆ = n−δ for given 0 < δ < 1 and set h = γπ/ log n, where γ > 4/δ. Then the bias of

the estimator (3.9) satis�es

Ef̂(x;h)− f(x) =
1

2
h2f ′′(x)

∫
u2K(u)du+ o(h2), (3.23)

whereas the variance of the estimator satis�es the order bounds

Varf̂(x;h) = O(
1

n
h2ξeπ/h) +O(

1

nh1+q∆
). (3.24)

Remark 3.4 Choose ∆ = n−δ with 0 < δ < 1 and h = γπ/ log n with γ > 4/δ. By

some elementary computations, we have the order bounds of the variance

Varf̂(x;h) = O(n
−1+ 1

γ (log n)−2ξ) +O(n−1+δ(log n)1+q). (3.25)

Since γ > 4/δ results in 1
γ < δ/4 < δ, the second term in the above dominates the �rst

term. This means the variance is of order n−1+δ(log n)1+q. Obviously, the bias is of

order (log n)−2, which dominates the variance. Therefore, the mean square error is of

the same order as the squared bias, which is (log n)−4.

Remark 3.5 We can obtain a better bound for the variance under a stronger mix-

ing condition, say uniform mixing with mixing coe�cient φ as de�ned previously. As

we know, uniform mixing implies strong mixing and we have the relation α ≤ 1
2φ(t). If

we instead assume σ2
t is uniform with coe�cient φ(t) satisfying

∫∞
0 φ(t)

1
2dt <∞ in the

Theorem 3.3, we will have the following variance bound given by

Varf̂(x;h) = O(
1

n
h2ξeπ/h) +O(

1

nh∆
). (3.26)

However, it turns out that the variance bound cannot be improved by this stronger as-

sumption on σ2
t . Hence, the order of MSE stays unchanged.

Remark 3.6 There are many examples of such a stochastic volatility model which
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belongs to the same class of the model (3.3) and satisfy a mixing condition. They

are Ornstein-Uhlenbeck process proposed by Wiggins(1987), GARCH(1,1)-M by Nel-

son(1990) and Heston model suggested by Heston 1993. By proper choices of model

parameters, these continuous-time stochastic models ensure an ergodic stationary solu-

tion satisfying ρ-mixing for the volatility process(see Genon-Catalot 2000). Note that in

these models the assumption on α(t) in Theorem 3.3 still holds.

3.3 Transformed Kernel Volatility Density Estimation

In this section, we will propose a transformed density estimator along with parameter

selectors for its parameters using theory of continuous-time kernel density estimation

and kernel regression. After that, we will apply it to estimate the volatility density.

3.3.1 Transformed Kernel Density Estimator

Let us consider the convolution structure

Yi = Xi + Zi i = 1, 2, . . . , n. (3.27)

where {Xi}ni=1 is a discrete random sample with a regular time interval ∆ from a

continuous-time stationary ergodic process having a marginal density f . The noises

{Zi}ni=1 are assumed to be identically and independently distributed with a zero mean

and constant variance. In addition, for each i, Zi is independent of Xi. If the error terms

have non-zero mean, we can easily correct it by subtract both sides of (3.27) by E(Zi).

The transformed kernel estimator consists of two steps.

On the �rst step, we estimate Xi by X̂i in the same style as a non-parametric regression

technique called moving average (see Takezawa(2006)). It is the most typical technique

for smoothing one-dimensional equally spaced data and commonly used to determine a

rough trend of the time-series behavior of the target variable. Thus, we refer to X̂i as

moving average estimator. Suppose that the width of the window upon which we

take the average is 2τ + 1 for a nonnegative integer τ . That is, the estimate of Xi is the

average of (2τ +1) data points {Yj}((i− τ) ≤ j ≤ (i+ τ)). Thus, the resulting estimator

X̂i is given by

X̂i =
1

2τ + 1

i+τ∑
j=i−τ

Yj . (3.28)

or by

X̂i =
n+τ∑
j=1−τ

wijYj , (3.29)
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where

wij =

{
1

2τ+1 if − τ ≤ (i− j) ≤ τ
0 otherwise.

For the estimates close to two ends, we adopt the re�ection boundary condition, which

is

Y0 = Y1, Y−1 = Y2, . . . , Y−τ+1 = Yτ ; (3.30)

Yn+1 = Yn, Yn+2 = Yn−1, . . . , Yn+τ = Yn−τ+1. (3.31)

Now let us take a look at the conditional mean and variance of this estimator X̂i. Denote

the window size k = 2τ + 1 and X = {Xi}ni=1. For a �xed i,

E
(
X̂i|X

)
= E

∑
j

Yj/k|X

 = E

∑
j

(Xj + Zj)/k|X


=

1

k
E

∑
j

Xj |X

+
1

k
E

∑
j

Zj |X


=

1

k

∑
j

Xj +
1

k
E

∑
j

Zj


=

1

k

∑
j

Xj + E (Zi)

bias(X̂i|X) = E
(
X̂i|X

)
−Xi =

1

k

∑
j

Xj −Xi + E (Zi) (3.32)

Var(X̂i|X) = Var

1

k

∑
j

Yj |X

 = Var

1

k

∑
j

(Xj + Zj)|X


=

1

k2
Var

∑
j

Zj

 =
k

k2
Var(Zi) =

Var(Zi)

k
(3.33)

That is to say, the conditional variance of X̂i is equal to the variance of Zi divided by

k and the conditional bias equal to the sum of 1
k

∑
j Xj −Xi and the mean of Zi. This

indicates that conditioned on X, a rise in window size k reduces the variance of X̂i but

increases its bias. Thus, the selection of window size is a bias-variance trade o�.

Denote X̂ = {X̂i}ni=1. The second step is to utilize the ordinary kernel density esti-

mator on the estimate X̂ from step one. By applying the formula (2.3), we would have

the transformed kernel density estimator

f̂X(x;u) =
1

n

n∑
i=1

Ku(x− X̂i) =
1

n

n∑
i=1

Ku(x−
i+τ∑
j=i−τ

Yj), (3.34)
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where u is the smoothing parameter. For this estimator, the choices of the parameters

τ and u are of great importance. Thus, we will investigate how to select them in the

following.

3.3.2 Parameter Selectors

We will also analyze how to choose the parameters in two steps, where we �rst choose

the parameter τ for the moving average estimator. It can be shown that the moving

average estimator above is approximately equivalent to a Nadaraya-Watson estimator

with the uniform kernel K̄(x) based on observations {(i, Yi)}ni=1. We �rst transform the

observations to {(i/n, Yi)}ni=1 in order to have a equally spaced �xed design over [0, 1].

Then according to the formula (2.52), we have the Nadaraya-Watson estimator written

as

m̂R(
i

n
;h) =

n∑
j=1

YjI[ i
n
−h≤ j

n
≤ i
n

+h]

n∑
j=1

I[ i
n
−h≤ j

n
≤ i
n

+h]

=

n∑
j=1

YjI[i−nh≤j≤i+nh]

n∑
j=1

I[i−nh≤j≤i+nh]

(3.35)

≈ 1

2[nh] + 1

i+[nh]∑
j=i−[nh]

Yj = X̂i (3.36)

where [nh] indicates the greatest integer less or equal to nh. As we mentioned previously,

the uniform kernel belongs to S−1
0,2 , which satis�es the �rst assumption in Condition 2.4.

In addition we assume that its second assumption is also ful�lled. So if we choose

the Fourier-type plug-in method for its computational advantages, we can estimate the

parameter τ by [nĥPI ], where ĥPI is the optimal bandwidth estimate generated using

the plug-in method (2.78) with ` = 2. Therefore, we have one estimate of the window

size k given by

k̂ = 2[nĥPI ] + 1 (3.37)

In the second step, as X̂ = {X̂i}ni=1 is a series of moving average estimates, it is sensible

for us to consider it as a continuous-time sample {X̂t, t ∈ [0, T ]} with T = n∆. That is

to say,

f̂X(x;u) =
1

n

n∑
i=1

Ku(x− X̂i) ≈
1

T

∫ T

0
Ku(X̂t − x)dx. (3.38)

If we assume that the kernel function K and the target density f satisfy all the assump-

tions in Condition 2.2., then we can estimate the bandwidth u by the continuous-time

bandwidth selector h(T ) in (2.22):

h(T ) =

[
2fX′0(0)

µ2(K)2R(f ′′)T

]1/4

(3.39)
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If we choose the uniform kernel K̄, we can obtain µ2(K) = 1/3 by some simple calcula-

tions. To estimate the total curvature measure R(f ′′), we assume f is normal and use

the formula(in Wand and Jones(1995)) which is given by

R(f (s)) = (−1)s
∫
f (2s)(x)f(x)dx. (3.40)

De�ne ψr =
∫
f (r)(x)f(x)dx. According to Wand and Jones(1995), given a normal

density f with variance σ2, for r even we have

ψr =
(−1)r/2r!

(2σ)r+1(r/2)!π1/2
. (3.41)

Thus, some elementary computation yields R(f ′′) = 3/(8σ̂5π1/2) with σ̂ equal to the

corrected sample standard deviation of X̂ given by

Std(X̂) =

√√√√ 1

n− 1

n∑
i=1

(X̂i − (

n∑
i=1

X̂i)/n)2 (3.42)

which is an estimate of σ. As for fX′0(0), i.e. the value of marginal density of X ′0 at

0, we �rst approximate the derivatives by X̂ ′i = X̂i+1−X̂i
∆ . Denote X̂ ′ = {X̂ ′i}ni=1. Then

we estimate fX′0 by 1
σ̂′φ(0), where σ̂′ = Std(X̂ ′) and φ is the normal probability density

function. To sum up, we have the �nal expression of the bandwidth estimator written

as

û =

[
16π1/2φ(0)σ̂5

σ̂′∆n

]
(3.43)

3.3.3 Transformed Kernel Volatility Density Estimator

Now we turn to our problem

log(X∆
i )2 ≈ log σ2

(i−1)∆ + log(Z∆
i )2.

For notation simplicity, we write log σ2
i∆ instead of log σ2

(i−1)∆. Before following the two-

step estimator procedure described previously, we �rst examine if the mean of the error

terms {log(Z∆
i )2}ni=1 is equal to zero or not. We �nd numerically the mean is approx-

imately equal to −1.27. So by applying the formula (3.34), we obtain the transformed

kernel volatility density estimator expressed as

f̂(x;u) =
1

n

n∑
i=1

Ku(x− ̂log σ2
i∆) (3.44)

where

̂log σ2
i∆ =

1

k

i+τ∑
j=i−τ

log(X∆
j )2 + 1.27 (3.45)
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Assume that all the assumptions are satis�ed in the Condition 2.2. and the Condition

2.4. Also suppose the normality assumption for the target density is appropriate. Then

we can use the parameter selectors (3.37) and (3.43) in the previous section to estimate

the k and u here.

3.4 An Example of The Stochastic Volatility Model

In this section, we will outline the basic dynamics of Heston Model and summarize a few

facts about the model parameters and the process involved. We also discuss the monte

carlo simulation of the model mainly about its discretization schemes.

3.4.1 The Model

The Heston model proposed by Heston(1993) is de�ned by the following two stochastic

di�erential equations:

dSt = σtdW
1
t , S0 = 0 (3.46)

dVt = κ(θ − Vt)dt+ λ
√
VtdW

2
t , V0 = η (3.47)

dW 1
t dW

2
t = ρdt, ρ ∈ [−1, 1]

where St is the logarithm of the price process and Vt = σ2
t is the volatility process.

κ, θ, λ and η are strictly positive constants and W 1, W 2 are scalar Brownian Motion

in some probability measure. It is easy to see from the equations that Heston model

belong to the model class (3.3). The Heston model is related to the square root process,

which was initially used to study the term structure of interest rate by Cox, Ingersol

and Ross(1985). A square root process is appealing for modeling interest rates and

volatility since it can never become negative given an initial nonnegative value, see e.g.

Feller(1951). The Heston Model is now used as an extension of Black-Scholes Model to

incorporate stochastic volatility and often for derivative pricing e.g. exotic options. Its

increasing popularity is mainly because of its main features:

• The volatility process is mean-reverting given κ > 0;

• The model can reproduce a smile-like implied volatility curve, similar to the market

one;

• The existence of semi-analytical solution for European Option.
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To know the Heston model better, let us look at the parameters in the variance process

• κ- mean-reverting speed (κ > 0)

• θ- The long-term level of variance Vt

• λ- the volatility of Vt, often referred to volatility of volatility

• ρ- The correlation between the Brownian Motion driving the stock price process

St and the Brownian Motion driving the volatility process Vt

• V0- The starting value of the variance process

These parameters follow the proposition below: see e.g. Andersen(2007)

Proposition Assume that V0 = 0. If 2κθ ≥ λ2 then the process for Vt can never

reach zero. If 2κθ < λ2, the origin is accessible and strongly re�ecting.

In typical cases, 2κθ is often much less than λ2. That is to say, it is quite likely for

Vt to touch zero. By the origin being accessible and strongly re�ecting, we mean the

variance can touch zero but leave immediately. Also noteworthy is the fact that the

process of the stock price and volatility process are negatively correlated, i.e. market

volatility increases when stock prices go down. Therefore, the parameter ρ tends to be

negative. However, in this work we study the special case when ρ is equal to zero.

According to Genon-Catalot et al.(2000), there is another important fact about the

volatility process. Set a = 2κθ/λ2, µ = 2κ/σ2. If µ > 0 and a ≥ 1 (i.e.κ > 0, 2κθ > λ2),

the stationary distribution π for V has density

π(v) = µa

Γ(a)v
a−1e−µv, v > 0 (3.48)

This is gamma distribution with parameter (a, µ), where a is the scale parameter, µ is

the rate parameter.

3.4.2 Monte Carlo Simulation

Now our task is to �nd a suitable discretization scheme for Heston Model. There are

plenty of ways biased or exact, among which Euler scheme is the most simple and straight-

forward method to implement. It takes the following form{
St+∆ = St +

√
Vt∆W1

Vt+∆ = Vt + κ(θ − Vt)dt+ λ
√
Vt∆W2

(3.49)
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where we replace σt by
√
Vt, W1 ∼ N(0, 1), W2 = ρW1 +

√
1− ρ2W3 and W3 ∼ N(0, 1).

Unfortunately, it gives rise to numerical problems. While the variance process itself is

guaranteed to be nonnegative, the discretization is not. Speci�cally, given Vt > 0, for

any choice of time step the probability of the variance becoming a negative value at the

next time step is strictly greater than zero. That is to say,

P (Vt+∆ < 0) = Φ(
−Vt − κ(θ − Vt)∆

λ
√
Vt∆

) > 0 (3.50)

where Φ is the standard normal cumulative distribution function. Moreover, negative

variance makes the computation of
√
Vt fail. Therefore, when using Euler Scheme, one

has to carefully think about how to �x the negative variance.

Practitioners have often opted for a quick '�x' by either setting the process equal to

zero when it attains a negative value or re�ecting it in the origin and continuing from

there on. These �xes are referred to as absorption and re�ection by Gatheral(2006). In

comparison, Lord et al.(2008) proposed a slightly di�erent approach to �x the problem

which is so-called full truncation scheme. It is given bySt+∆ = St +
√
V +
t ∆W1

Vt+∆ = Vt + κ(θ − V +
t )dt+ λ

√
V +
t ∆W2

(3.51)

where V +
t = max(Vt, 0), W1 ∼ N(0, 1), W2 = ρW1 +

√
1− ρ2W3 and W3 ∼ N(0, 1).

According to Andersen(2007), the main feature of full truncation scheme is that the

process V is allowed to go below zero, at which point the process V become determin-

istic with an upward drift of κθ. Additionally, Lord et al.(2008) found that the full

truncation scheme outperformed most biased scheme like absorption and re�ection Eu-

ler schemes in terms of bias and root-mean-square error(RMSE). Moveover, when the

volatility of the volatility(λ) is not too high, it has relatively smaller bias and RMSE

error even than some exact schemes(e.g. quasi-second by Kahl and Jäckel(2006)) given

a certain computational budget. Thus, we choose the full truncation scheme as our

discretization scheme for the simulation.

4 Numerical Results

This chapter will be devoted to apply deconvolution kernel volatility estimator and trans-

formed kernel volatility estimator on both simulated data from Heston model and real

data. We will also compare their performance based on each data set.
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4.1 Simulations

Given two di�erent time intervals, we will generate two sets of data from Heston model

which we refer to high frequency and low frequency data. Then we will utilize both

methods on these data.

4.1.1 High Frequency Data

We choose the size of the simulation n equal to 1.8× 105 and ∆ equal to 1/(250× 24),

which corresponds to a sample of 30yrs of hourly data. Suppose that the ∆ is small

enough for the approximation (3.6) to hold. We consider the parameters of Heston

model listed in Table 2, which are �tted parameters for S&P 500 with annualized value.

They satisfy the conditions κ > 0 and 2κθ ≥ λ2 such that the process σ2 has a Gamma

Table 2: The Parameter Set

κ θ λ ρ V0

parameter set 3.46 0.008 0.14 0 0.007569

Note: this parameter set is taken from Table 7 of Broadie and
Kaya(2006) except for setting ρ = 0.

distribution Γ(a, µ), where a = 2.8245 and µ = 353.0612. By changing the coordinate

we can have the density of log σ2, which can be written as

flog σ2 = exπ(ex) (4.1)

where π(·) is the density function of the gamma distribution, which is given in equation

(3.48). This would be assumed as the true density of log σ2 to compare with. Then we

use the full truncation Euler scheme(equation (3.51)) to simulate a sample path {Si}ni=1

of log-price S and transform it to a sample path of log(X∆
i )2, where

log(X∆
i )2 = log(

1√
∆

(Si∆ − S(i−1)∆))2 (4.2)

After that, we �rst apply the transformed kernel density estimator on this transformed

sample path {log(X∆
i )2}n−1

i=1 . To investigate the impact of the choice of window size k,

we �x the bandwidth u equal to 0.3 and vary the window size k = 481, 721, 961, 1081,

which gives us the result in Figure 2. Similarly, we also set k = 721 while varying the

bandwidth u = 0.2, 0.25, 0.28, 0.3, which renders to the resulting Figure 3. Note that in

these �gures and all the �gures based on simulations below the dashed line stands for

the corresponding true density. From these two �gures we can see that the larger the

window size, the higher the peak of the estimated density. In contrast, the bigger the

bandwidth, the lower the peak.
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Figure 2: Transformed kernel estimation with �xed u = 0.3 and varying k(high)

Figure 3: Transformed kernel estimation with k = 721 and varying u(high)

Figure 4: Transformed kernel estimation with varying k and u(high)

34



Figure 5: Moving average estimate curve(high)

According to the impacts of both parameters, we change k and u manually according

to its �t to the true density and �nd three approximately optimal estimated densities.

Their corresponding values of parameters are k = 481, u = 0.2; k = 721, u = 0.25;

k = 961, u = 0.28. On the other hand, we also apply the automatic parameter selec-

tors k̂ = 2[nĥPI ] + 1 and û we described previously, where we implement the Matlab

toolbox attached with Horová et al. (2012) for the computation of ĥPI . As a result,

we �nd the optimal window size k∗ = 1099 and bandwidth u∗ = 0.2047 respectively.

The resulting estimated densities from both manual selections and automatic parameter

selectors are all plotted in Figure 4. It is obvious that the three estimated densities using

manually picked parameters are all good �ts and they are close to each other, meaning

the optimal value of the parameter pair is not unique. However, the one with parameter

selectors is slightly di�erent with a taller peak. We also plot the moving average esti-

mates {̂log σ2
i∆}

n−1
i=1 (red line) along with the sample {log(X∆

i )2}n−1
i=1 (blue

′+′) in Figure 5.

For deconvolution method, we choose (3.21) as our kernel function and utilize the

fast Fourier transform in section 2.3.4 for the computation. Concerning its band-

width selection, Theorem 3.3 suggests a theoretical optimal bandwidth hT = γπ/ log n

with γ > 4/δ and ∆ = n−δ. This results in the inequalities − log ∆ = δ log n and

hT > 4π/(δ log n) = 4π/(− log ∆). If we plug in ∆ = 1.6667 × 10−4 in our case, we

will have hT > 1.445. Of course, this implied value of bandwidth cannot be useful

here, unless we have an extremely small time interval. To illustrate, in order to have

hT > 0.5 we at least need the time interval ∆ = 1.2162 × 10−11. However, such a

data sample is hardly obtainable in practice. Thus, instead we select the bandwidth

manually by looking at several densities over a range of di�erent values of bandwidth

and choosing the most appropriate one by subjective judgements. More speci�cally, we

start with a larger bandwidth and gradually decrease the amount of smoothing until the

density estimate appear not too wiggly. Here we try di�erent values of the bandwidth
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h = 0.2, 0.25, 0.27, 0.3 and we pick the optimal h∗ = 0.2 shown in Figure 6.

Figure 6: Deconvolution with di�erent bandwidths(high)

Figure 7: Estimated densities with both methods(high)
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In addition, we plot the optimal estimated density from the deconvolution estimator

along with the optimum one using the transformed estimator in Figure 7. Clearly, from

this �gure we can say that the transformed method performs better than the deconvolu-

tion estimation. To con�rm our argument above, we approximate the MSE for a given

point x0 and MISE for both methods by

ˆMSE(x0) =
1

m

m∑
j=1

(
f̂j(x0)− f(x0)

)2
, (4.3)

ˆMISE =
1

2m

m∑
j=1

ñ∑
i=1

(
f̂j(xi)− f(xi)

)2
, (4.4)

where f̂j is a density estimate based on j-th simulated data. For the transformed esti-

mator, we have its parameters chosen using the parameter selectors for each replication.

As for deconvolution method, we estimate the density over several choices of bandwidth

h = 0.2, 0.22, 0.24, 0.25, 0.26. m is the number of replications and −10 = x1 < x2 <

. . . < xñ = 0 is an equally spaced grid over [−10, 0], on which we will estimate the

MISE. Here we take x0 = −5, m = 50 and ñ = 20 and the results are listed in Table

3. Focusing on the global criterion, we can see that the transformed estimator obtain

slightly smaller MISE than the deconvolution, which has its least MSE and MISE when

bandwidth equal to 0.2.

Table 3: MSE & MISE(high frequency data)

transformed
deconvolution with bandwidths

0.2 0.22 0.24 0.25 0.26
MSE 0.0183 0.0176 0.0243 0.0314 0.0351 0.0389
MISE 0.0227 0.0279 0.0339 0.0413 0.0452 0.0493
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4.1.2 Low Frequency Data

To obtain a sample of low frequency data, we draw every 24th data from the high fre-

quency data {Si}ni=1 above and form a new data set of size nl = 7500. This means the

time interval ∆l is equal to 1/250 and the new sample corresponds to 30yrs of daily data.

In the same way as in the previous section, we transform the new sample path of log-prices

{Sj}nlj=1 into a sample of {log(X∆l
j )2}nl−1

j=1 , on which we apply both methods. As for the

transformed estimator, the parameters are chosen both manually and automatically. The

optimums are k = 53, u = 0.2; k = 71, u = 0.27; k = 81, u = 0.29; k∗ = 513, u∗ = 0.2162

and corresponding density estimates are presented in Figure 8. Obviously, the one with

automatically selected parameters �ts poorly compared to the rest. It is mainly be-

cause the moving average estimator produced over-smoothed estimates with a far too

big value of k. This is also consistent with Figure 9, where the blue ′+′ stands for the

sample {log(X∆l
j )2}nl−1

j=1 and the red line is the corresponding moving average estimates

{ ̂log σ2
j∆l
}nl−1
j=1 . For the deconvolution estimator, we select the bandwidth manually and

�nd the optimal h∗ = 0.25 (see Figure 10). Finally, we plot the optimal results from

both estimators in Figure 11 (with the transformed estimator using k∗ and u∗). It is

di�cult to tell from this �gure which estimator performs better. That's why we also

approximate the MSE(-5) and MISE in Table 4, where the deconvolution has far less

MSE and MISE comparing to the transformed estimator.

Table 4: MSE & MISE(low frequency data)

transformed
deconvolution with bandwidths

0.2 0.22 0.24 0.25 0.26
MSE 0.4646 0.0177 0.0233 0.0303 0.0339 0.0377
MISE 0.3107 0.0547 0.0402 0.0432 0.0458 0.0490

Figure 8: Transformed kernel estimation with varying k and h(low)
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Figure 9: Moving average estimate curve(low)

Figure 10: Deconvolution with di�erent bandwidth(low)

Figure 11: Estimated densities with both methods(low)
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Figure 12: Left: daily closing prices; Right: log of daily prices

Figure 13: Left:demended and de-trended log return Xt; Right: the series of log(X2
t )

4.2 Nasdaq Index

We will estimate the volatility density based on 10760 daily closing prices of NASDAQ

index from 1971/2/5 until 2013/10/2, which is plotted along with the log-prices in Figure

12. After transforming the log-prices into normalized log-returns, we demean and de-

trend the log-returns and plot the resulting series of Xt as well as the series of log(X2
t )

in Figure 13. We �nd the optimal window size k∗ = 373 and smoothing parameter

u∗ = 0.532 for the transformed estimator and plot the corresponding moving average

estimates in �gure 14. Also the optimal bandwidth for deconvolution method is found

to be h∗ = 0.28, which is shown in Figure 15. Lastly, we compare the both estimators

through the plot in Figure 16.
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Figure 14: Moving average estimate curve(real)

Figure 15: Deconvolution with varying bandwidth(real)

Figure 16: Estimated densities with both methods(real)
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5 Conclusions

To investigate the shape of the volatility density, we propose a new nonparametric

method called transformed kernel volatility density estimator. It is a two-step proce-

dure, where we �rst generate the moving average estimates of log σ2
t based on which we

then apply the ordinary kernel density estimator. Moreover, we also suggest automatic

selectors for its parameters k and u. Since the moving average estimator is approxi-

mately equivalent to the Nadaraya-Watson estimator with a uniform kernel, we estimate

the window size parameter k by the bandwidth selector, more speci�cally the Fourier-

type plug-in method for the Nadaraya-Watson estimator. As for the bandwidth u, we

utilize the explicit formula for the asymptotic optimum of bandwidth for continuous-time

kernel density estimation derived by Sköld and Hössjer(1999). It is because the moving

average estimates are considered as a continuous-time sample and the kernel density

estimator in the second step can be approximated by the continuous-time kernel density

estimator.

We compare the transformed method with the deconvolution procedure by applying

them on both simulated data and real data. We generate two sets of simulated data-

high frequency and low frequency data from Heston model with di�erent time intervals

using full truncation scheme. The bandwidth for the deconvolution is selected manually,

while the parameters in transformed method are chosen both by hand and by the au-

tomatic parameter selectors. Since without knowing the true density of the volatility it

is impossible to choose the parameters manually for the transformed approach, we use

the results with automatically selected parameters to compare with the deconvolution

method. We �nd that for high frequency data the transformed approach performs bet-

ter than the deconvolution method, which is also in accordance with the transformed

estimator giving slightly smaller mean integrated squared error. However, for the low

frequency data, the deconvolution has a much better performance in terms of MISE

because the moving average estimates in the transformed method are over-smoothed.

Thus, in order to have satisfying estimates from the transformed method, one had better

use high frequency data if possible. Moreover, if we look at those estimates from the

transformed approach with manually picked parameters alone, they all produce good

estimations of the density. This implies that there is more than one optimal pair of

the parameters, probably because each of the parameters has an opposite impact on

the estimate curve. More speci�cally, the bigger the window size the taller the peak,

while the larger the smoothing parameter the lower the peak. Also we can say that it is

possible for the transformed method to achieve a good �t by appropriate choices of its

parameters and the parameter selectors we propose are worth improving. Lastly, for the

real data, the performance of both methods are incomparable although the result from
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the deconvolution displays some sign of bimodal feature.

On a critical note, there is one limitation concerning the stochastic model we consider,

since we make the assumption that the volatility process is independent of the Brownian

motion driving the price process. As a matter of fact, it is observed that stock prices

are negatively correlated with the volatility. Moreover, when proposing the parameter

selectors for the transformed method, it is debatable for us to assume the conditions

2.2. and the conditions 2.4 to be satis�ed. In particular, when estimating the smooth-

ing parameter normality assumption we impose on target density is worth questioning.

Thus, one can investigate some bandwidth selector without assuming any normality for

further research. Besides, as the Fourier-type plug-in method we used to estimate the

window size parameter is limited to the cyclic design case, one can try the classical

plug-in method for comparison.
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