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Abstract

Value at Risk (VaR) is one of the most widely used risk measure
in risk management. It is defined as the worst loss to be expected
of a portfolio over a given time horizon at a given confidence level.
In this thesis we estimate portfolio VaR using an approach combin-
ing Copula functions, Extreme Value Theory (EVT) and GARCH
models. We apply this approach to a portfolio consisting of stock in-
dices from Germany, Spain, Italy and France. To estimate the VaR
of this portfolio, we first use an asymmetric GARCH model and an
EVT method to model the marginal distributions of each log returns
series and then use Copula functions (Gaussian, Student’s t, Clay-
ton, Gumbel and Frank) to link the marginal distributions together
into a multivariate distribution. We then use Monte Carlo Simulation
(MCS) approach to find estimates of the portfolio VaR. To check the
goodness of fit of the approach we use Backtesting methods. From
the results, we conclude that, in general the GARCH-EVT-Copula
approach performs well and specifically the GARCH-EVT-Student’s t
Copula outperforms all other GARCH-EVT-Copulas and traditional
methods such as Historical Simulation (HS) and Variance Covariance
(VC).

Keywords: Value at Risk (VaR), Copula, GARCH, Extreme Value
Theory (EVT), Backtesting.
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1 Introduction

The Basel III framework developed by the Basel Committee on Banking Supervision
requires that financial institutions such as banks and investment firms, set aside a min-
imum amount of capital to cover potential losses from their exposure to credit risk,
operational risk and market risk [2]. For measuring market risk they recommend to
use VaR, which is the worst loss to be expected of a portfolio over a given time horizon
at a given confidence level. Mainly three approaches are used to estimate portfolio VaR;
Historical Simulation (HS), Variance Covariance (VC) and Monte Carlo Simulation ap-
proaches. A key element in the VaR estimation is the distribution assumed for the
financial log returns of the assets constituting the portfolio. In practice it is assumed
that assets” log returns are normally distributed. However, this is not in accordance
with the stylized fact that distributions of financial log returns series are fat-tailed and
leptokurtic. Thus the normal distribution based VaR models (like the VC) tend to un-
derestimate risk [4].

Extreme Value theory (EVT) which is a branch of statistics that studies rare or extreme
events is well suited to describe the above mentioned fat-tailed property. It is impor-
tant to mention that some EVT methods assumes that the data to be studied are in-
dependently and identically distributed (i.i.d.), which is not always the case for most
financial log returns series. In this thesis, in order to estimate portfolio VaR with assets’
log-returns which are not i.i.d. we adopt an approach proposed by McNeil and Frey
[11]. They use GARCH models to estimate the current volatility of the log-returns series
and EVT for estimating the tail of the innovations” distribution of the GARCH model
before estimating VaR. They find that this approach gives better estimates than meth-
ods which ignore the fat tails of the innovations or the stochastic nature of the volatility.
Nystrom and Skoglund [12] combine ARMA-(asymmetric) GARCH and EVT method
to estimate quantiles of univariate portfolio risk factors. They find that for high quan-
tiles (between 97% and 98%) the use of EVT does indeed give a substantial contribution
and the Generalized Pareto distribution(GPD) is more able than the normal distribu-
tion to accurately model the empirically observed fat tails.

Another key element in portfolio VaR estimation is the dependence structure between
financial assets in the portfolio. The most common measure of dependence in the Pear-
son Correlation. However, Poon et al. [16] argue that Pearson Correlation is not a good
measure of dependency in cases where the extreme realizations are important. This
has resulted in the introduction of Copula based models in the last few years. Copulas
are defined as functions that links univariate marginals to form multivariate distribu-
tions. Therefore, the key characteristic of Copula based models is the separation of the



joint distribution into two components; the marginal distributions and the dependence
structure [4]. Applications of Copula based models to portfolio VaR estimation have
combined GARCH (or ARMA-GARCH-EVT) filtered marginals with various Copula
functions. Hsu et al. [14] estimates VaR using a Copula-EVT approach on Asian mar-
kets. They find that Clayton Copula-EVT have the best performance. Ghorbel and Tra-
belsi [17] proposes a method for estimating VaR using an ARMA-GARCH-EVT Copula
approach. For a given multivariate financial data, they find that their approach provide
a better presentation of the dependence structure of the multivariate data and produce
accurate estimates of VaR.

In this thesis we select stock indices from Germany, Spain, Italy and France to form
a portfolio to study. To estimate the portfolio VaR we combine GARCH models, EVT
and Copula functions in an approach we refer to as GARCH-EVT-Copula approach. In
this approach we use an asymmetric GARCH model and an EVT method to model the
marginal distributions of each log return series and then use Copula functions (Gaus-
sian, Student’s t, Clayton, Gumbel and Frank) to link the marginal distributions to-
gether to form a multivariate distribution. We then use Monte Carlo Simulation (MCS)
approach to find estimates of the portfolio VaR which are backtested to check the per-
formance of the approach compared to other popular approaches of VaR estimation.
The structure of this thesis is as follows; the next Section describes the theoretical frame-
work used, that is, a review of VaR as a risk measure, GARCH models, EVT and Copula
theory. Section 3 describes how marginal distributions and dependence structure are
modeled and the Backtesting procedure. Empirical results are presented in Section 4
and, finally, Section 5 concludes.

2 Theoretical Framework

2.1 Value at Risk (VaR)

2.1.1 Backgrounds and Definitions

Value at Risk is one of the most (if not the most) widely used risk measure in the field of
risk management. It has been adapted in the regulatory Basel framework for banks as
the major determinant of the risk capital required for covering potential losses arising
from market risks [2]. Its greatest advantages are that , it summarizes risk in a single,
easy to understand number and that it does not depend on a specific kind of distribu-
tion and therefore, in theory, can be applied to any kind of financial asset.



Definition:(Value at Risk (VaR)) The VaR at level p € (0, 1) of a portfolio with value X
at time ¢ + 1 is given by

VaR,(X) =min{m : P(mR; + X <0) <p}, (1)

where R, is the percentage return of a risk free asset at time ¢.

This means that the VaR of a position with value X at time ¢ + 1 is the smallest amount
of money that if added to the position now (at time t)and invested in the risk free asset
ensures that the probability of a strictly negative value at time ¢ 4 1 is not greater than

P

One can show that the minimum m in equation (1) is attained. In fact,
{m:P(mRt+X§O)§p}:{m:P(—%>m)§p}={m:1—P(—%§m)§p}
:{m:P(—R%Sm)Zl—p}.

Since a distribution function F' is right continuous (F(x) | F(xo) as « | o) and in-
creasing, then {m : F\(m) > 1 — p} = [mg, c0) for some my, and therefore there exists a
smallest element.

Hult et al. [1] suggest that, for VaR, to be a sensible choice of risk measure for typ-
ical asset portfolios with mainly long positions, one can have the following view: at
the current time ¢, one take a risk free loan of size V; (which is the current portfolio
value), use the capital to purchase the asset portfolio, and end up with the net value
X = Vi1 — ViR, at time ¢ + 1. Therefore, the portfolio is classified as acceptable if
the difference between the actual future portfolio value and the value that would be
obtained by instead investing the current portfolio value in a risk free asset is VaR,

acceptable.
Define, L; = —R%. Considering X as the net gain from the investment, where the
current portfolio value V; is viewed as a Liability gives us
X Vit
Li=-2 =y, - 2
= Vi @

which has a natural interpretation of the natural discounted loss. Because V;41 is un-
known to us L; is random from the perspective of time ¢. The distribution of L; will
be referred to as the loss distribution. Note that the definition of loss presented here
implicitly assumes that the portfolio composition is constant over the considered time
interval. In terms of L;, VaR, is given by

VaRy(X) =min{m : P(Ly <m) >1—p}. 3)

3



One can then interpret VaR,(X) as the smallest value m such that the probability of
the discounted loss being at most m is at least 1 — p; or, it is the smallest amount of
money that, if put aside and invested in a risk free asset at time t, will be sufficient to
cover a potential loss at time ¢ + 1 with a probability at least 1 — p.

We can see that VaR, has two basic parameters: the significance level p (or the con-
fidence level 1 — p) and the length in physical time of the time period over which the
discounted loss is modeled which we will refer as the risk horizon h. Often used values
of p are 5%, 1% and 0.5%, which shows that VaR, describes (to some extent) the right
tail of the loss distribution. The risk horizon 4 is the period over which we measure the
potential discounted loss. Different risks are naturally assessed over different time pe-
riods according to their liquidity. For example in market risk measurement % is equal to
1 day or 10 days (under Basel III) and 1 year for credit and insurance risk measurement.

Definition (Quantile): The u-quantile of a random variable L with distribution func-
tion F, is defined as F; '(u) = min{m : Fi(m) > u} where F; ' is just the ordinary

inverse if F7, is strictly increasing.

If F;, is both continuous and strictly increasing, then F; *(u) is the unique value m such
that Fy,(m) = u [1]. For a general FJ, the quantile value F; ' (u) is obtained by plotting
the graph of Fy, and setting F; ' (u) to be the smallest value m for which Fy,(m) > u.
From the definition above, VaR,(X) is defined as the 1 — p quantile of L, that is,

VaRy(X) = F; ' (1 - p). 4)

2.1.2 Empirical Quantiles and VaR

Consider observations z1, ..., z, from independently and identically distributed vari-
ables X1, ...X,, with a common unknown distribution function F' defined on the real
line R. The empirical quantile function F,; ! is the quantile function of the empirical
distribution function F,, and therefore given by F,;!(p) = min{z : F,(x) > p}. Simi-
larly, the empirical quantile function F, - % is the quantile function of F,, x. It is shown
in [1] that the empirical quantile F, - % (p) is the k" largest of the sample points 1, ...z,
where k = [n(1 — p)] + 1; this means that the empirical quantile function is given by

F{,}((P) = Xjn(—p)+1,n P € (0,1) (5)

So, given a sample Ly, ...L, of independent copies of L, the empirical estimate of

4



VaR,(X) is given by

—

VaRy(X) = L1 (6)

where Ly ,, > ... > L,, ,, is the ordered sample and [y] means the integer part of y. Note
that VaR,(X) is just the empirical 1 — p quantile of L. So, to compute the empirical VaR
estimate from a sample of historical prices, one need to first transform the prices into a

sample Ly, ...L, and then compute the VaR estimate as an empirical quantile.

2.1.3 Approaches for VaR Estimation

Historical Simulation (HS) Approach

The idea behind the historical simulation approach is to use the historical distribution
of assets’ prices (or log returns) in our portfolio to estimate the portfolio’s VaR, assum-
ing that we held this portfolio over the period of time covered by our historical data set.
To apply this approach, we first identify the different instruments in our portfolio and
collect a sample of their historic log returns over some observation period. We then use
the weights in our current portfolio to simulate the discounted loss distribution (L;).
Thus, the HS approach does not rely on any parametric model assumptions. It does
however rely on the stationarity of the historical data set to ensure convergence of the
empirical discounted loss distribution to the true discounted loss distribution [4].

We assume that this historical distribution of log returns is a good approximation of
the distribution of log returns we face over the next holding period. This means that
we assume that the history will repeat itself in the future. Finally, the relevant quantile
from the distribution of historical log returns will lead us to the expected portfolio VaR.
Suppose we have P; ; (Price of asset i at time j) observations, j running from period
1 to period N. Let r;; be the log return of asset i over period j, W; be the relative
weight of asset ¢ and that we have n assets in our portfolio. The historically simu-
lated loss series {Lt,j}év:l is generated using equation (2). Where, V; = Y " | WP, ,
and Vi1 =0, VVZ-Pi,teRivi. Where the R; ; are the historically simulated log returns.
Most often in practice, they are simulated by drawing with replacement from the orig-
inal sample of r; ;. The portfolio VaR is inferred from the discounted loss distribution.
The HS approach has a number of attractions; it is conceptually simple and easy to
implement. Moreover, it does not depend on assumption about the distributions of
log returns because it allows the data to speak for itself and determine the distribu-
tion. To ensure sufficient estimation precision, HS requires a large amounts of data [4].
However, it is not always practically feasible to obtain such large appropriate sample
data; and even if it is the history may not repeat itself or contains sufficient extreme



observations for the VaR estimation.

Variance Covariance Methods

Here we illustrate the Variance-Covariance approach, which is the most well known
approach for VaR estimation and which has been first fully explained in detail by J.P.
Morgan’s (1996) RiskMetrics Technical Document. Under this approach, VaR for indi-
vidual positions and portfolios can be easily derived by estimating the variance and
the covariance (or alternatively, the standard deviations and correlations) of some pre-
defined risk factors’ log returns and the sensitivity of the portfolio to those risk factors.
The most basic assumption in the model is that risk factor log returns are independently
and identically distributed (i.i.d.) with a multivariate normal distribution. Suppose we
have a portfolio consisting of n assets with log returns of asset i as 7; and relative
weights W;; the portfolio return Rpr and variance a% 7 at time ¢ are defined as:

Rpp =Y Wi @)
=1

0123F = ZZWZ'W]‘O'U (8)
=1 j=1

where 0;; is the covariance between asset i and j at time ¢. Using vector notation we
have that
o, =WTsw 9)

where W is the portfolio weights and ¥ the covariance matrix of log returns. Having
X = Viy1 — ViR and assuming that ¢ is one day we can suppose that the influence
of interest rates for such a short period can be neglected, then we have X = V4 —
V;. Assuming that X is normally distributed X ~ N(p,0?) and using the ellipticity
property of the normal distribution [1] we have that X =¢ y + 0Z with Z ~ N(0,1),
and

VaR,(X) = —p+0® (1 - p) (10)

where ;1 = E[Rpr], 0 = opr and @ is the distribution function of Z. The advantage
of Variance Covariance model is its simplicity. VaR computation is relatively easy if
normality is assumed, as standard mathematical properties of the normal distribution
can be used to calculate VaR at different levels. In addition, normality assumption
allows easy translatability between different levels and holding periods [6]. VaR can
be adjusted for different time horizon by VaR;, = \/% VaR;, and for different confi-
p)
1

dence levels by VaR, = %V@Rpl. Note that the Variance Covariance approach
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is only applicable to a portfolio whose return(or loss) is a linear function of its assets
returns. Thus, it gives poor estimate for portfolios with non linear instruments such
as options. However the most predominant disadvantage of the approach is the nor-
mality assumption. Most financial assets are known to have fat tailed log return distri-
butions, meaning that in reality extreme outcome are more probable than the normal

distribution would suggest. As a result, VaR estimate might be understated.

Monte Carlo Simulation (MCS) Methods

The basic idea behind MCS approach is to simulate repeatedly random process govern-
ing the prices of all financial instruments in our portfolio. Each simulation gives us a
possible value for our portfolio at the end of our target horizon; and if we take enough
of these simulations, the simulated distribution of portfolio values will converge to the
portfolio’s unknown “true” distribution, and we can use the simulated distribution to
infer the VaR of the “true” one. Dowd [6] summarizes the approach in the following
steps:

1. Select a model for the stochastic variables of interest.
2. Construct simulated paths for the stochastic variables.

3. Repeat the simulations in (2) enough times to be confident that the simulated
distribution is sufficiently close to the “true” distribution of actual values.

4. Infer the VaR from the distribution in (3).

We illustrate the above steps by first assuming that we have one financial asset in our
portfolio and that the price of the asset is described by the following process:

dP;, = 0dZ} (11)

This equation gives the changes in the current price dP; in terms of the volatility param-
eter o (which is assumed to be known or can be estimated) and a Wiener process Z.
Equations of this type are usually made more tractable by taking a discretised approx-
imation over some short time interval At. Let us therefore take such an approximation
while also choosing our time units so that At = 1. Hence:

Pt:Pt_l—FO'Zt\/At:Pt—l‘i‘O’Zt (12)

which gives the current price P; in terms of the price for the previous period P;_1, as
well as o and Z; (with Z; a standard normal variable). We now wish to simulate the



asset price over an interval [t, T]. We do so by first leading equation (12) by one period
to give us an expression for P, in terms of P; and Z;; we then substitute equation
(12) into this equation to get

Pow=P+ocZyyyw=Pa+oZi+0Ziy1 =P+ 0(Zi + Ziya) (13)

We repeat the above to get an expression for P, 9, then for P,;3, and so on until we

have an expression of Pr
T

Pr=P_1+) Z (14)
i=t

The price at 7' depends on the initial price P;_; and the sum of the realised values of
Zifori=t,t+1,..T. We now use a random number generator to produce a series of
the realised values of Z;, Z;y1,... Zr and substitute in equation (14) to produce a final
simulated price, Pr. We then multiply this price by the number of shares we have to
determine the portfolio value. If we repeat the process enough times, the distribution
of simulated portfolio values produced in this way will converge to the “true” proba-
bility density function underlying the portfolio values process [6]. We can then use the
simulated portfolio values to construct the corresponding loss distribution and hence
infer the VaR.
Suppose now that we have in our portfolio more than one financial asset. This require
us to simulate more than one Z-path, except for two special cases in which the pro-
cedure is much the same as with a single asset. The first of these is where the prices
are independent, in which case we have equations similar to equation (14). With two

Py Py or 0| Z1s
s — ’ _|_ ’ 15
[ Py ] [ Py q } [0 02] [ Lot ] (15

The portfolio value at time ¢ is found by multiplying equation (15) by [ Wi, Wa |

assets, we have:

the vector of relative weights of the two assets in the portfolio, to get

Py or O Z
Ve=[ Wie Way ] [ B } + [ Wi W | {01 02] [ Zﬂ (16)

which depends on time t’s drawings of Z;; and Z;. The portfolio value at time T is
given by:

T
Vr = Z Vi (17)
i=t
which depends on the drawings of both Z variables from ¢ to 7. All we now need to

do is run enough iterations to simulate the true distribution of portfolio values, switch
over to the loss distribution and then infer the VaR.



The other case is where the assets prices are perfectly correlated with each other, either
positively or negatively. In this case,

Pl,t—l o1 0 Zl,t
V, = [ Wie Way ] [ Py } + [ Wie Way ] |::|:O'2 Q:| [ Zoy } (18)

Use equation (17) to solve for the final portfolio value V7, and proceed as before to
repeat the exercise as many times as required to produce a reliable VaR estimate.

The difficulties arise when the two prices are imperfectly correlated with each other. In
this case, we have

Vi=[ Wiy Way | { 7 ] +[ Wi Wy | [a;i a;j { Z;Z ] 49

where the a; ; are functions of the underlying variances and correlations. We now have
to solve for these, and the usual procedure is by means of a Choleski decomposition.
To see what is involved, let’s first rewrite equation (19) in first difference form by sub-
tracting the lagged P terms from each side.

APlt:| |:a11 (112:||:th:|

= ’ ’ 20
[ APy a1 ag2| | Zag 20)
Now denote the vector of AP;; terms by AP, the matrix of a; ; terms by A and the

vector of Z; ; terms by Z;. We then multiply each side of equation (20) by its transpose
denoted by ZF' AT and AP/ to get:

APAPE = Az, zF AT (21)

Taking the expectation of equation (21) and since the Z;; variables are independent
standard normal, the expectation of the matrix Z;Z! is the identity matrix with ones
along the diagonal and zero elsewhere we get:

Y = AAT (22)

Equation (22) tells us that the matrix A is the 'square root matrix” of the expected vari-
ance covariance matrix X. The actual values of the terms in A then turn out to be:

[; (10— pQ)] )

Once we have the matrix A, we can find prices at time ¢; (16) and (17) give us the
portfolio values at time ¢ and T respectively. We then do repeated iterations as be-
fore, estimate the loss distribution and infer the VaR. A potential weakness of the MCS
models is Model Risk, which arises due to wrong assumptions about the pricing mod-
els and underlying stochastic processes. This will lead to wrong VaR estimates, if not

9



properly specified [7]. In practice, for equity positions the Geometric Brownian Motion
assumption is used. This is a generalization of equation (11) and this assumes that the
stock price is governed by the process ds—s;t = pdt + odWt where Wt is a Wiener pro-
cess. Moreover, Dowd [6] points out that complicated procedures associated with MCS
methods require special expertise. Senior management may therefore have hard time

following how VaR estimates are calculated when using MCS methods.

2.2 GARCH Models

In this section, we briefly describe time series models which are able to explain a num-

ber of important features common to most financial data including:

¢ Leptokurtosis: that is, the tendency for financial asset log returns to have distri-
butions that exhibit fat tails and excess peakedness at the mean.

¢ Volatility Clustering: the tendency for volatility in financial markets to appear
in bunches. Thus large log returns (of either sign) are expected to follow large
log returns, and small log returns (of either sign) are expected to follow small log
returns.

o Leverage effects: the tendency for volatility to rise more following a large price
fall than following a price rise of the same magnitude [19].

To capture the volatility clustering, Engle (1982) suggested the autoregressive condi-
tional heteroscedasticity (ARCH) model in which the conditional variance is modeled
as a linear function of past squared innovations. The general ARC'H (¢q) model has the

form:
q

of =w+ Z ajsg_j (24)
j=1

where w > 0 and a; > 0, for j = 1,...,¢ in order to keep the conditional variance
positive. Unfortunately, we often need ¢ to be large in order to fit the data. As a way
to model persistent movements in volatility without estimating a large number of pa-
rameters, Bollerslev and Taylor (1986) proposed a more parsimonious model; the gen-
eralized autoregressive conditional heteroscedasticity (GARCH) model. The general
GARCH (p,q) model is given by:

p q
ol =w+ Z Biot ; + Z ozjetz_j (25)
i=1 j=1

10



where w > 0, a; > 0, for j = 1,...,gand 8; > 0 for i = 1,...,p. The model is a gener-
alized version of the ARCH model in the sense that the squared conditional volatility
0? is a linear function of past squared conditional volatilities as well as squared inno-
vations of the process. The ARCH and GARCH models are symmetric in the sense
that negative and positive shocks have the same effect on volatility, this means that,
the signs of the innovations or shocks have no effect on the conditional volatility, only
the squared innovations enter the conditional variance equation. This is, however, in-
consistent with the stylized fact that negative shocks tend to have a large impact on
volatility than the positive shocks of the same magnitude (leverage effect). In the fol-
lowing we consider two extensions of the GARCH model that take this asymmetry into
account.

The exponential GARCH (EGARCH) model proposed by Nelson (1991) explicitly al-
lows for asymmetries in the relationship between return and volatility. The general
EGARCH (p, q) model can be expressed as follows:

q

p q
In(o?) = w+ 3 filnfor) + 33+ 3 a2l plEily
j=1

_ Ot—4q Ot—j
i=1 =7 = t=j t=j

By parameterizing the natural logarithm of the conditional variance as opposed to the
conditional variance, no inequality constraints are needed to ensure positive condi-
tional variances. The expected value of the standardized innovations depends on the
assumed innovation distribution which can be normally or Student’s t distributed. The
EGARCH model differs from the GARCH model by the fact that, it allows positive and
negative shocks to have a different impact on volatility and also allows large shocks
to have greater impacts on volatility. Finally, in contrast to the GARCH model which
allows for volatility clustering through a combination of the 3; and «; terms, volatility
clustering is entirely captured by j; in the EGARCH model.

The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model proposed by Glosten
(1993) [3] also allows the conditional variance to respond differently to past negative
and positive innovations, but the manner in which it does so is different from the
EGARCH model. In the EGARCH model the coefficients +; are applied to the actual
innovations ¢;_;, while in the GJR-GARCH model this coefficient enters the model
through a Boolean indicator. The general GJR — GARCH (p, ¢) model is as follows:

p q q
O't2 =w + Z /67;0'252,7; + Z OéjE?,j + Zrngffjlatfj<0 (27)
i=1 j=1 j=1
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where w > 0, 8; > 0fori = 1,...,p, aj > 0Oand aj +; > 0 for j = 1,...,q. I,
denotes the indicator function which returns one if the threshold level is satisfied and

zero otherwise.

2.3 Extreme Value Theory (EVT)

In this section we briefly discuss Extreme Value Theory (EVT) with applications in
financial risk management focusing on the methods we will be using in this thesis.
Within the context of EVT, there are mainly two approaches for modeling extremal
events. The Block Maxima Models, which are based on directly modeling the distri-
bution of extreme realizations, and the Peaks Over Threshold (POT) models, which
models the exceedences of a particular threshold. McNeil et al [4], acknowledge that
the POT method uses data more efficiently and is therefore considered as the most use-
ful for practical applications. Thus we will focus only on the POT method. EVT rests
on the assumption of independently and identically distributed (i.i.d.) data. In this the-
sis, however we are using financial time series data which have log returns which are
known to have some mild correlations and exhibit dependence in the second moment.
Consequently, when EVT is applied to financial time series data we need to take tem-
poral dependencies into account. If not we will produce estimators with non optimal

performances.

2.3.1 Generalized Pareto Distribution (GPD)

The GPD describes the limiting distribution for modeling excesses over a certain thresh-
old. If X is a random variable (say daily portfolio losses) which is generalized Pareto
distributed, then its distribution function has the form

1= (1-%)7 ity 20

1—exp(—%> ify=0 29

Gy p(x) =

where 5 > 0and z > 0when~v > 0and 0 < z < _Tﬁ when v < 0. The parameters v and
B are referred to as the shape and scale parameters respectively. The GPD is generalized
in the sense that it contains a number of specific distributions under its parametrization.
When v > 0, the distribution function G, g is that of a heavy tailed ordinary Pareto
distribution; when v = 0 we have a light tailed exponential distribution and when
7 < 0 we have a short tailed Pareto type II distribution. Moreover for fixed = the
parametric form is continuous in v, so, limy_,0 G g(x) = Gy g(x) [4]. The GPD family
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can be extended by adding a location parameter ;. € &, that is

G%uvﬁ(fﬁ) = G%uﬁ(x — ) (29)

The support has to be adjusted accordingly. When p = 0 and 8 = 1, the representation
is known as the standard GPD. The GPD density function has the form

—y—1

%(1+%) T iy £0
%exp(—%) ify=0

The tail of the density fattens and the peaks are sharpening with increasing v, while

9y5(7) = (30)

with increasing 3 the central part of the density gets more flat [4].

2.3.2 The Peak Over Threshold (POT) Method

Let’s consider a series {X;}!"; of independently and identically distributed random
variables representing financial losses with a common but unknown distribution func-
tion F' and upper endpoint zrp = sup{z € R : F(z) < 1} < oco. Let u be a certain
threshold and denote N, by N,, = Card{i : X; > u, i = 1,...,n} the number of excee-
dences of u by {X7, ..., X,, }.

Definitions:

e A distribution function F' has a heavy tail if the tail probability F'(z) decays

slowly as x decreases, that is
— ) —of 1
A M=) oo for every A > 0 (31)

and a heavy right tail if

lim F(x)

d e = oo for every A > 0 (32)

e A distribution function F has a regularly varying right tail ¥ = 1 — F if there
exists a number p such that

im ]i(tx) = z” forevery x > 0 (33)
t—o0 F(t)
and a regularly varying left tail if
F(tz) 0
dim Ft) x” for every z > 0 (34)
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Since F'(z) is decreasing in z, it holds that p < 0, and we may set p = —a for
« > 0. Then (33) can be written as

lim P(X > tz|X >t) =2 “ forevery z > 1. (35)
t—00

Suppose now that the common and unknown distribution function F' of the {X;}? ;
has a regularly varying right tail. The following result from Theorem 7 (Pickands-
Balkema-de Haan) in [4], states that for large u approaching x r, the excesses y = X, —u
with distribution function F,, are well approximated by the GPD. That is

lim sup  [Fu(y) — G'y,ﬁ(u) (y)’ =0 (36)

UDEF 0 <y<zp—u

for some positive function §(u). This result is used by the POT method to construct
estimates of tail probabilities and quantiles. For v > 0 and 8 > 0 the GPD is defined by

YT, =L
Gyp(x)=1—(1+ F) v forz >0 (37)
Suppose that X is a random variable with distribution function F' that has a regularly
varying right tail so that lim, %((’\utg) = A"%forall A > 0 and some o > 0. Then
) X —u . PX>u(l+2))
ulinéop( i > x> “) = T A s W
T
= 1 — —)
(1-5)a
= @AJ(JC)
(38)
The excess distribution function of X over the threshold u is given by
Fy(z)=P(X —u<z|X >u) forx >0 (39)
This can be written in terms of F’ as:
— P(X >u+z,X >u)
(z) (X >u+z|X >u) PX > )
F Flu(l+Z
_ Flute)  Fll+y) (40)
F(u) F(u)

F(Au)
F(u)

Since F is regularly varying with index —a < 0, it holds that — A~% uniformly

in A > 1 as u — oo [1],this means that

lim sup [F(u) — A% =0

UuU—00 A>1
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Hence from equation (40) and using the result in (36) we have that :

lim sup |Fy(z) — G, g)(z)] =0 (41)

UuU—00 >0

where v = 1 and B(u) ~ % as 2 — co. As we are interested in finding F'(u + z) and
F~1(p) for large u and p; recall from (40) that:

F(u+x) = F(u)F,(z) (42)
If u is not too far into the tail, then the empirical approximation F(u) ~ F,(u) = 2 is
accurate. Moreover, from (41) we have that
— — — T =1
Fu(e) = G () = G lo) = (1435)7 (43)

where 7 and B are the estimated parameters of v and 3 respectively. Relation (42)
suggests estimating the tail of F' by estimating F',,(z) and F(u) separately. We consider
the estimator for F(u + z) given by:

%(Hx):%uw )5 (44)

) 8

Using the quantile definition and the equation (43) leads to,

F/\_l(p) = min{x: %(w) <1-p}

~

= min{u+az:Flu+z)<1-p}
x

)7 <1-p}

~

N,
= u+min{z: =147
n

™

~

- u+§((]\2(1_l)))_§_1) (45)

Hult at al. [1] summarizes the POT method for estimating tail probabilities and quan-
tiles by the following steps:

1. Choose a high threshold u and count the number V,, of exceedences X, > u
2. Given the sample Y7, ..., Y, of excesses, estimate the GPD parameters v and (.

3. Combine step (1) and (2) to get tail probabilities and quantile estimates using
relations (44) and (45).
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24 Copula Theory

The problem of modelling asset log returns is one of the most important issue in Fi-
nance. In general it is assumed that log returns are normally distributed; however
empirical research has shown that asset log returns are leptokurtic and fat tailed. An-
other issue in Finance which has been getting more attention after the financial crisis is
the capital allocation within Banks. Banks are urged by regulatory institutions to build
sound internal models to measure risks (mostly credit and market risks) for all their ac-
tivities. These internal models used to measure risks face an important problem which
is the modeling of the joint distributions of different risks. These two issues can be
treated as a problem of copula. A copula is a function that links univariate marginals
to their multivariate distribution. Copula theory was first developed in Sklar (1959)
[10]. It is a powerful tool as it does not require any assumptions on the selection distri-
bution function and it allows the risk manager to decompose any n-dimensional joint
distribution function into n marginals and a copula. In this section we briefly describe
copula theory by highlighting important properties and examples.

2.4.1 Definitions and Basic Properties

Before defining a copula we recall an important proposition from [1] (Proposition 6.1
page 166). We denote the uniform distribution on an interval (0, 1) by U(0, 1), i.e., the
probability of a random variable U satisfying P(U < u) = u for u € (0, 1).
Proposition: Let /' be a distribution function on . Then

(i) u < F(z) if and only if F~1(u) < z.
(ii) If F is continuous, then F(F~!(u)) = u.
(iii) (Quantile Transform) If U ~ U(0,1) then P(F~Y(U) < z) = F(xz).

(iv) (Probability Transform) If X has a distribution function F, then F(X) ~ U(0, 1) if
and only if F' is continuous.

Definition (Copula): A d-dimensional copula is the distribution function C' of a ran-
dom vector U whose components U}, are uniformly distributed. That is:

C(U1, ...,ud) = P(Ul <ui,...Uz < ud), (ul, ...,Ud) S (O, 1)d (46)

Let (X1, ..., X4) be a random vector with distribution function F(x1,...,x4) = P(X; <
z1,...,Xq4 < x4) and suppose that Fi(z) = P(X) < z) is a continuous function for
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every k. The probability transform from the statement (iv) of the proposition implies
that the components of the vector U = (Uy, ..., Ug) = (F1(X1), ..., Fiu(Xq)) are uniformly
distributed. In particular, the distribution function C' of U is a copula and we call it the
copula function of X. Using the statement (i) from the proposition we have that

C(F1($1), ...,Fd(xd)) = P(Ul < Fl(xl)v s Ug < Fd(xd))
= P(FyNUY) <1y, FyH(Ug) < 749)
= F(x1,...,2q) (47)

Equation (47) is the result from the famous Sklar’s theorem [8]. It is the representation
of the joint distribution function F' in terms of the copula C' and the marginal distri-
butions F1, ..., F;;, which explains the name Copula; a function that couples the joint

distribution function to its univariate marginal distribution functions.

Definition (Copula Density function): The density c(uy, ..., u4) associated to the cop-
ula C(uy, ..., uq) is defined as:

_0C(uy, ..., uq)

c(ugy ..., ug) = (48)

8u1 .Ug
For continuous random variables, the copula density is related to the density function
F, denoted as f, by the following so called canonical copula representation [8]:

d
f@1, ooy q) = c(Fi(21), ... Fa(zq) [ [ £i(=)) (49)
j=1
where f; are the densities of the marginals f; = di{ggfj).

2.4.2 Examples of Copulas

There are mainly two families of copulas used in financial applications: Elliptical cop-

ulas and Archimedean copulas.

Elliptical Copulas

Elliptical copulas are derived from multivariate elliptical distributions. The most im-
portant copulas in this family are the Gaussian (or normal) copula and the Student’s t
copula.

The Gaussian Copula
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The Gaussian copula C’pG“ of a d-dimensional standard normal distribution, with linear
correlation matrix p, is the distribution function of the random vector (®(X;), ..., 2(X4)),
where @ is the univariate standard normal distribution function and X ~ Ng4(0, p).
Hence,

CS = P(®(X1) < ug, ..., (Xg) < ug) = DUP ™ (ur), ..., 2 (ug)) (50)
where <I>Z is the distribution function of X.

The Student’s t Copula

The Student’s t copula C}, , of a d-dimensional standard student’s t distribution with
v > 0 degrees of freedom and linear correlation matrix p, is the distribution of the
random vector (t,(X1),...,t,(X4)), where X has a t%(0, p, v) distribution and ¢, is the
univariate standard student’s t distribution function. Hence,

Ch,=Pt,(X1) S ut, .o t(Xa) S ug) =8, (u1), ...t (ug)) (51)
with tl‘i , the distribution function of X.

Archimedean Copulas

Luciano et al. [8] define a d-variate Archimedean copula as the function

Cut,...,uq) = cp_l(cp(ul) + oo+ @(uqg)) (52)

where ¢(u) is called the generator of the copula and is such that ¢(u) € C? function
with ¢(1) = 0, ¢/(u) < 0 (p is strictly decreasing) and ¢//(u) > 0 (¢ is convex) for all

1

0 < u < 1. The inverse of ¢, ¢~ must be completely monotonic on [0, c0)[8].

Clayton Copula

The generator is given by ¢(u) = u=* — 1, hence o~ 1(t) = (t + 1)%1, it is completely
monotonic if o > 0. The Clayton d-copula is therefore:

d -1
Olug, ..., ug) = [Zu;a—dﬂ * with a > 0 (53)
=1

Gumbel Copula
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The generator is given by ¢(u) = (—In(u)¥)®, hence ¢~ 1(t) = exp(—té), it is com-
pletely monotonic if a > 1. The Gumbel d-copula is therefore:

d 1

C(u1,...,uq) = exp{— [Z(— ln(ui)o‘)] E} witha > 1 (54)

i=1

Frank Copula

The generator is given by

hence 1
¢~ (t) = == In (1 + exp(t)(exp(—a) — 1))

it is completely monotonic if & > 0. The Frank d-copula is therefore:

[T (exp(—au;) — 1)
(exp(—a) — 1)4-1

C(ut, ..., uq) :—éln{1+ } witha > 0whenn > 3 (55)

2.4.3 Dependence Measures

In this section we explore ways in which copulas can be used in the study of depen-
dence or association between random variables. The usual ways used to measure de-
pendence are the ones fulfilling the scale invariance property. This means that, they
remain unchanged under strictly increasing transformation of the random variables.
The most widely known scale invariant measures of association are the Kendall’s tau
and Spearman’s rho, both of which measure a form of dependence known as concor-
dance [10]. Informally, a pair of random variables are concordant if large values of one
tend to be associated with large values of the other and small values of one with small
values of the other.

Definition (Concordance): Let (z;,y;) and (x;,y;) be two observations from a vector
(X,Y) of continuous random variables. We say that (x;, y;) and (z;,y;) are concordant
if x; < zjand y; < y;, or if &; > z; and y; > y;. Similarly, we say that (z;,y;) and
(xj,y;j) are discordant if z; < z; and y; > y;, or if ; > x; and y; < y;. Note the
alternative formulation [10]: (z;,y;) and (x;,y;) are concordant if (x; — x;)(y; — y;) > 0
and discordant if (x; — z;)(y; — y;) < 0.
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Kendall’s Tau

Let (X1,Y7) and (X2, Y2) be i.i.d. random vectors, each with joint distribution func-
tion H. Then the kendall’s tau is defined as the probability of concordance minus the
probability of discordance:

T=7xy = P((X1 - X2)(Y1 = Y2) > 0) — P((X1 — X2)(Y1 — Ya) <0) (56)

Define a concordance function @), which is the difference of the probabilities of con-
cordance and discordance between the two vectors (X1, Y1) and (Xa, Y2) of continuous
random variables with (possibly) different joint distributions H; and H», but with com-
mon margins F' and G. It is shown in [10] (Theorem 5.1.1 page 159) that ) depends on
the (X1,Y1) and (X3, Y2) through their copulas

Q=Q(C,Cy) = 4/12 Ca(u,v)dCy(u,v) — 1 (57)

where C} and C are the copulas of (X1, Y7) and (X3, Y2) respectively so that H; (x,y) =
Ci(F(z),G(y)) and Ha(z,y) = Co(F(2), G(y)).

Spearman’s Rho

Let (X1,Y1), (X2,Y3) and (X3, Y3) be three independent random vectors with a com-
mon joint distribution function H (whose margins are again F' and &) and copula C.
Spearman’s rho is defined to be the probability of concordance minus the probability
of discordance for the two vectors (X1, Y1), (X2, Y3), i.e., a pair of vectors with the same
margins but one vector has distribution function A, while the components of the other
are independent.

pxy = 3(P((X1— X2)(Y1 —Y3) > 0) — P((X1 — X2)(Y1 — ¥3) <0)) (58)

(the pair (X3, Y3) could be used equally as well). It is shown in [10] (Theorem 5.1.6 page
167), that with continuous random variables X and Y whose copula is C' that

PXY = pC = 12/ C(u,v)dudv — 3 (59)
I

2.4.4 Estimation of Copula Parameters

In this section we briefly describes approaches for estimating copula parameters.

Exact Maximum Likelihood Estimation Method(MLE)
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Recall the canonical copula representation
d
f((L‘l, veey (L‘d> = C(Fl(.%'1>, veey Fd(.’de)> H fj(xj)
j=1
Let {z14, ..., xnt}thl be the sample data matrix. The log-likelihood function is given by:

T T n
10) = nc(Fi(211), ... Fu(wne) + > D In fi(x50) (60)
t=1

t=1 j=1

where 0 is the set of all parameters of both the marginals and the copula. Hence, given
a set of marginal probability density functions and a copula the previous log-likelihood
may be written, and by maximization we obtain the maximum likelihood estimator:

Orrrp = max1(6) (61)

A drawback of the exact MLE is that it could be computationally intensive in the case
of high dimension because it estimates jointly the parameters of the margins and the
parameters of the copula.

Inference for Margins (IFM)

To overcome the exact MLE drawback, IFM estimates the parameters in the log-likelihood
function in two steps:

1. Estimate the margins’ parameters 6; by performing the estimation of the univari-
ate marginal distributions

T n
01 = argmax,, Z Z In fj(xe;61) (62)
t=1 j=1
2. Given 6, perform the estimation of the copula parameter 6

T

0> = argmax,, > Inc(Fi(11), .., Fu(tnt); 0, 01) (63)
t=1

The IFM estimator is defined as 51 P M(§1, 52)
Canonical Maximum Likelihood (CML)

The idea behind the CML is that, the copula parameters can be estimated without spec-
ifying the marginal distributions. The CML consists in transforming the sample data
{@1¢, ..., Tt }1_; into uniform variates {u1y, ..., un¢ }-_; and then estimating the copula
parameters as follows:
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1. First estimate the margins using the empirical distributions (without assumptions
on the parametric form for each of them); i.e., ﬁj(a:jt) withj =1,...,n.

2. Estimate via MLE the copula parameters

T
02 = argmax,, Z Inc(F1(z1t), ..., Fn(znt); 02) (64)
t=1

2.4.5 Simulation from Copulas

One of the main applications of copula related to this thesis is the VaR estimation us-
ing Monte Carlo Simulation approach. In this section we describe a general method to
simulate draws from a chosen copula using a conditional approach (Conditional Sam-
pling). We first describe the simulation principle in a bivariate case then we extend
it in the multivariate case. Assume a bivariate copula in which all of its parameters
are known. Our task is to generate pairs (u, v) of observations of (0, 1) uniformly dis-
tributed random variables U and V' whose joint distribution is C'. To do so, we use the
conditional distribution

cu(v) = P(V <wlU =) (65)

for the random variable V' at a given value u of U. From probability theory, we know
that,

ca(v) = P(V <o|U = u) = Tim S0 OWY) = Cluy) 0C

Au—0 Au = %u = GV (66)

where C\,(v) is the partial derivative of the copula. It is shown that ¢,(v) is a non-
decreasing function and exists for almost all v € (0, 1) [8]. Thus we can generate the
random pair (u,v) in the following steps:

1. Generate two independent random variables v and ¢ from U (0, 1);

2. Setv = O, 1(t), where C;; ! is the inverse function of ¢,;

3. The pair (u, v) is just the random numbers from the copula.

The idea is the same when extending the simulation to a multivariate case. The goal in
multivariate case is to simulate Uy, ..., Uy from the copula C(uy, ..., uq). We do it in the
following steps:

1. Generate u; ~ U(0,1)
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2. Set
BC’(ul, u2, 1..., 1)

G2(Uz|Uy = uy) = P(Uy < uglUy = uy) = By (67)
we put ug = G;l(uQ\ul), where uy ~ U(0,1)
3. In general,
Gp(Uglut,...,up—1) = PUp < ulUy = uy, ..., Up—1 = up—1)
_ 8C(u1,...,uk,1,...,1)/8C(u1,...,uk_l,l,...,l) (69)

ouq...0up_1 ouq...0up_1

we put uy = G;l(Uk]ul, .oeyug—1) where U ~ U(0,1).

The conditional approach is very elegant but is may not be possible to calculate the in-
verse function analytically. In this case one has to do it numerically, and this procedure
might be computationally intensive. In the case of Archimedean Copulas this method
maybe rewritten using theorem 6.1 page 189 in [8], which gives that:

e D (o(ug) + ... + p(ug))
e 1D ((ur) + ... + @(up—1))

Cr(uglut, ooy up—1) = (69)

with C(u1, ..., ug) = ¢ 1 (o(u1) + ... + p(uq)) is an Archimedean copula with generator
p(u).

3 Methodology

As the title of the thesis states, in this thesis we are interested in estimating portfolio
VaR using GARCH methods, EVT theory and Copula theory. We call the resulting pro-
cedure the GARCH-EVT-Copula approach. From Copula theory described in section
(2) (more precisely the canonical copula representation), we can say that, in general, a
statistical problem for copulas could be decomposed into two steps: the identification
of marginal distributions and the definition of an appropriate copula function. We refer
to the first step as modeling the marginal distributions and the second as modeling the
dependence structure. In this section we describe these two steps.

For this Thesis we choose to use an hypothetical Portfolio consisting of indices from
Germany, Spain, Italy and France. The data consists of 3961 daily closing prices of DAX,
IBEX 35, FTSE MIB and CAC 40 downloaded from Yahoo Finance. The Figure 1 below
illustrates the relative price movements of each Index. (Initial level of each Index have
been normalized to unity to facilitate the comparison of their relative performances).
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Figure 1: Relative Price movements of each Index.

Since stock prices are mostly non-stationary, it is common in time series to model re-
lated changes of prices, that is the log return series. The log returns of the indices are

defined as: P
ri; = In (Pij)z —1,.4 (70)

ij—1
Where P, ; is the ith index price at time j; i = 1, ..., 4 corresponding to stock index from
Germany, Spain, Italy and France respectively. Figure 2 shows the log returns for the

four indices.
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Figure 2: Plot of the Indices Log Returns.
Table 1: Summary Statistics of daily Log returns.
Statistics Germany Spain Italy France
Mean 0.0001623 0.0000522 -0.0001182 0.0000653
Std 0.016 0.0158 0.0158 0.0154
Skewness -0.0289 0.0401 -0.0663 -0.0034
Kurtosis 6.6839 7.4636 7.0859 7.2419
Jarque-Bera 1 1 1 1
Ljung-Box(Returns) 1 1 1 1
Ljung-Box( Squared Returns) 1 1 1 1
Ljung-Box(Residuals) 0 0 0 0
Ljung-Box( Squared Residuals) 1 0 1 0
Engle’s ARCH(Returns) 1 1 1 1
Engle’s ARCH(Squared Returns) 1 1 1 1
Engle’s ARCH(Residuals) 1 0 1 0
Engle’s ARCH(Squared Residuals) 0 0 0 0

Before proceeding to the margins and dependence structure modeling, we first verify
some typical assumed properties of log returns, namely normality and i.i.d. properties.
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To check if the indices are normally distributed, one can use QQ-Plots which are plots
of the empirical quantiles against the quantiles of a reference distribution (the Normal
distribution in this case). If the QQ-plot looks linear then we say that the suggested dis-
tribution gives a good fit; otherwise one should reconsider the choice of the parametric
family. From Figure 3 one can see that the tails are not well modeled by the normal
distribution.

Quantiles of Input Sarmple
Quantiles of Input Sample

Standard Normal Quantiles

France

antiles of Input Sample

Quantiles of Input Sample

-005

el

- 1 - - 1 1
Standard Mormal Quantiles Standard Normal Quantiles

Figure 3: QQ Plots of the Returns.

To confirm the observations from the QQ-plots, we perform a Jarque Bera test statistic
[15], of the null hypothesis that the sample come from a normal distribution. Table 1
shows the results with values 1 meaning that the test rejects the null hypothesis at a 5%
significance level. Moreover, from the Skewness and Kurtosis in Table 1 we see that the
series are nearly symmetric (or slightly left skewed), and fat tailed (Kurtosis > 3).

To check if the log returns are independently and identically distributed, first we look at
the plots in Figure 2. From an eyeball inspection it is unclear whether the observed log
returns can be seen as outcomes of independently and identically distributed random
variables. What we can see is that all returns have clustered volatilities (some periods
have higher volatility than others). For instance we observe a high volatility in the
period between 2008 and 2010 (Points between 2500 and 3000 in Figure 3) representing
the time of the financial crisis.

Plots of the Sample ACF of the log returns in Figure 4 show virtually no significant
correlation. Performing a Portmanteau test of Ljung and Box [15] to check whether the
autocorrelations with different lags are zero, the test reject the null hypothesis , that log
returns exhibits no autocorrelation at 40 lags with a 5% significance level. This suggests
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Figure 4: Sample ACF of the Log Returns
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Figure 5: Sample ACF of the Squared Log Returns.

that a conditional mean model is needed for these log return series. To check the log
return series for conditional heteroscedasticity, we plot the sample ACF of the squared
log returns series. From Figure 5 we can see significant autocorrelation. This suggests
that a GARCH model with lagged variances and lagged squared innovations might be
appropriate for modeling these log returns series. Engle’s ARCH test rejects the null
hypothesis (Values 1 in Table 1) of no ARCH effects in favor of the alternative ARCH
model with two lagged squared innovations.
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3.1 Modeling Marginal Distributions

We have seen that the log returns series are not independently and identically dis-
tributed. We solve this by fitting a first order autoregressive model(AR(1)) to the con-
ditional mean of the log returns of each index and an asymmetric GARCH (GJR(1,1))
model to the conditional variance. The first order autoregressive model compensates
for autocorrelation and the GJR model for heteroscedasticity. Additionally, the stan-
dardized residuals of each index are modeled as standardized Student’s t distribution
to compensate for the fat tails of the log return series.The AR(1) and GJR(1, 1) choice
is motivated by McNeil and Frey (2000) [11] and Huang et al. [18].
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Figure 6: Standardized Residuals.

Figure 6 shows the standardized residuals (AR(1) — GJR(1,1)). We examine the sam-
ple ACFs of the standardized residuals and the squared standardized residuals in Fig-
ure 7 and 8 respectively; comparing these figures to Figure 4 and 5 we see that the stan-
dardized residuals are now approximately independent and identically distributed.

The Ljung-Box test statistic and the Engle’s ARCH test (Table 1) confirms the analysis
above (with an exception of German and Italian standardized squared residuals which
fails the tests at 5%). We conclude that the AR(1)-GJR(1,1) model sufficiently explains
the autocorrelation and heteroscedasticity effects in each log return series and leads to
standardized residuals which represent the underlying zero mean and unit variance in-
dependently and identically distributed series . From the standardized residuals series
obtained we can now model the marginal distributions. We choose to use a semi para-
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Figure 7: Sample ACF of the Standardized Residuals.
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Figure 8: Sample ACF of the Squared Standardized Residuals.

metric distribution which consists of using a Kernel Density estimation method (with
a normal density as kernel function) for the interior of the distribution, and a GPD in
the tails as proposed by Carol (2008) [5].

Briefly, the univariate Kernel Density Estimation method can be described as follows:
Assume we have ani.i.d. random sample X1, ..., X,, from a continuous density function
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f. Denote by f(z;h) the kernel density estimator of f which is defined as:

Flashy = iK(” . 7

The function K is called “kernel” and it satisfies [ K(z)dz = 1, and h is called "band-
width” and is a positive number. The following rescaled version of the kernel is useful

1 U
K = —-—K(= 72
n(u) n ( h) (72)
For example if the kernel is N (0, 1), then the scaled kernel is N (0, h?) as
K(w) =~ exp(") and 73)
U) = —— exp(——
V2or P
Ko = A exp(Z22) 74
u) = X
4 vV2mh P 2h?
This gives the following formula for the kernel density estimator
~ 1 <&
flash) =~ ; Kn(z — X;) (75)

McNeil and Frey (2000) and Nystrom and Sloglund conducted Monte Carlo simula-
tion experiments in order to evaluate the properties of the MLE in estimating the GPD
parameters for various distributions and sample sizes. The results show that the MLE
estimates are almost invariant to the threshold value u when this is set between 5% and
13% of the sample data. Carol (2008) argues that, provided that the historical sample
is sufficiently large (at most 2000 observations) there will be enough log returns in the
10% tail to obtain a reasonably accurate estimate of the GPD scale and tail parameters.
Thus, we estimate the marginal distributions using the kernel density estimator in the
interior of the distribution and the POT method in the tails using 10% of the data points
for each tail. Figure 9 shows the obtained semi parametric distributions for the four log
return series.

3.2 Modeling Dependence Structure

To model the dependence between the returns of the indices we use Copulas. GARCH-
EVT-Copula parameters are estimated using Canonical Maximum Likelihood estima-
tion method described in Section 2. Table 2 shows the different Copula parameters
obtained. To check the fit of these Copulas in value at risk estimation, backtesting
methods are implemented in later sections.
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Figure 9: Semi Parametric CDFs.
Table 2: Copula Parameters.
Names Gaussian Student’st Clayton Gumbel  Frank
Parameters PG p1,28.4299  1.11805 1 5.9609E-5

Where p and p; are given by:

1 0.0032 0.0218
0.0032 1 0.0445
0.0218 0.0445 1
0.0294 0.1427 0.0689

1 0.0048 0.0222 0.0298

0.0048 1 0.0469 0.1405
0.0222 0.0469 1 0.0724
0.0298 0.1405 0.0724 1

0.0294

0.1427

0.0689
1

3.3 Backtesting Methodology

VaR models are useful only if they predict future risks accurately. In order to evaluate

the quality of the estimates, the models should always be backtested with appropriate

methods. Backtesting is a statistical procedure where actual losses are systematically

31



compared to corresponding VaR estimates. We say that we have an exception (or a
violation or a breach) if the VaR has been underestimated, that is the portfolio has ex-
perienced a loss greater than the estimated VaR. In the backtesting process we could
statistically examine whether the frequency of exceptions over some specified time in-
terval is in line with the selected confidence level. These types of tests are known as
tests of unconditional coverage. They are straightforward tests to implement since they
do not take into account for when the exception occur [7]. In theory, however, a good
VaR model not only produces the correct amount of exceptions but also exceptions that
are evenly spread over time, i.e., they are independent of each other. Clustering of
exceptions indicates that the model does not accurately capture the changes in market
volatility and correlations. Tests of conditional coverage therefore examine also time vari-
ation in the data [7]. In the following we will briefly describe the Kupiec’s proportion
of failures test (which is an unconditional coverage test), and the Christoffersen’s tests
(Christoffersen’s independence test and Christoffersen’s interval forecast test) which
are conditional coverage tests.

3.3.1 Kupiec’s Proportion of Failures (POF) Test

The most common test of VaR model is to count the number of exceptions and if the
number of exceptions is less that the selected confidence level would indicate then we
say that the VaR model overestimate risk. Otherwise we say we have an underesti-
mation of risk. In practice it is rarely the case that we observe the same number of
exceptions as suggested by the confidence level. It therefore comes down to statistical
analysis to study whether the number of exceptions is reasonable or not. Let = be the
total number of exceptions and 7" the total number of observations. We define the fail-
ure rate as 7. In an ideal situation, this rate would reflect the selected confidence level.
For instance, if a confidence level of 99% is used we have a null hypothesis that the
frequency of tail losses is equal top =1 — ¢ = 1 — 0.99 = 1%. Assuming that the model
is accurate, the observed failure rate should act as an unbiased measure of p, and thus
converge to 1% as the sample size is increased [7]. Each trading outcome either pro-
duces an exception or not. This sequence of successes and failures is commonly known
as Bernoulli trial. The number of exceptions x follows a binomial distribution

r@ =] 7 [ra-pr

The POF test measures whether the number of exceptions is consistent with the confi-
dence level.



The idea is to find out whether the observed failure rate p is significantly different from
p, the failure rate suggested by the confidence level. According to Kupiec, the POF test
is best conducted as a likelihood ratio (LR) test. The test statistic takes the form

)T—:v T

(1-p) "p )
L= (I (F)"

T

LRpor = —2In ( (76)
Under the null hypothesis that the model is correct, LRpor is asymptotically x? dis-
tributed with 1 degree of freedom. If LRpoF is greater than the critical value of the
x2(1) then the null hypothesis is rejected and the model is said to be inaccurate. An
important drawback of the POF test is that it considers only the frequency of excep-
tions and not the time when they occur. As a result, it may fail to reject a model that
produces clustered exceptions.

3.3.2 Christoffersen’s Tests

Christoffersen uses the same likelihood testing framework as Kupiec, but extends the
test to include also a separate statistic for independence of exceptions. In addition to the
correct rate of coverage, his test examines whether the probability of an exception on
any day depends on the outcome of the previous day. The testing procedure described
below is explained in [7] and [13]. The test is carried out by first defining an indicator
variable that gets value 1 if VaR is exceeded and 0 if not.

7 1 if violation occurs
t = . ) )
0 if no violation occurs

Then define n;; the number of days when condition j occurred assuming that condition
it occurred on the previous day. The outcome can be displayed in a contingency table:

I; =0 100 n1o noo + n1o
Iy =1 no1 niy no1 + n11
- noo +no1  M10 +N11 Moo + No1 + Nio + N1

In addition, let 7; be the probability of observing an exception on state i on the previous

day.
no1
T =—
100 + No1
n11
"=
n10 + n11
no1 + ni1
= 0 (77)

o + No1 + N1o + N11
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If the model is accurate, then an exception today should not depend on whether or
not an exception occurred yesterday. In other words, under the null hypothesis the
probabilities 7y and 71 should be equal. The relevant test statistic for independence of
exception is a likelihood ratio:

(78)

_ 7)\n00+n10 01 +N11
(1—m) 0 )

LRinp = —21 (
IND n (1 — 71_0)”007_‘_6101(1 IR 7.(.1)711077?11

By combining this independence statistic test with Kupiec’s POF test we obtain a joint
test that examines both properties of a good VaR model, the correct failure rate and the
independence of exceptions or conditional coverage:

LRcc = LRpor + LRinD (79)

LRcc ~ x? with 2 degrees of freedom since there are 2 separate LR statistics in the test.
If the LR statistic is less than the critical value of the x?(2) then the model passes
the test. Note that we can calculate the p-value associated with our test statistic by,
Puawe = 1 — F2( gy where F 2, denotes the cumulative density function of a 2 (1).
If the P-value is below the desired significance level, then we reject the null hypothesis.

4 Empirical Results

4,1 Value at Risk Estimation

Including modeling marginal distributions and the dependence structure separately,
the GARCH-EVT-Copula approach for a portfolio value at risk estimation can be de-
scribed as follows:

Stepl Having index prices, transform them to log returns (r;) with i = 1, ..., 4 repre-
senting Germany, Spain, Italy and France respectively). Then filter the returns
by fitting an AR(1)-GJR(1,1) model to the returns to get the residuals and stan-
dardized them by the corresponding standard deviations to get the standardized
residuals.

Step2 Model the marginal distributions F;. From the standardized residuals, estimate
the empirical CDF with a Gaussian kernel method for the interior of the distribu-
tion and POT methods for the tails.

Step3 Transform the standardized residuals of each asset i from step (1) to the Copula
scale by taking F;(residuals).
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Step4 Fit a Copula to the transformed margins from Step 3 and estimate the Copula
parameters .

Step5 Use the estimated Copula parameters to generate N (10000 in our case) ran-
dom numbers from the estimated joint probability distribution. As we have
(1 =1,...,4) indices we form a matrix U = [Uy, ..., Us] where each U; inan N x 1
vector of marginal simulated numbers.

Step6 Transform U; to the original scales of the log returns using the inverse quantile
function of the marginals, i.e F;, ' (U;).

Step7 Reintroduce the autocorrelations and heteroscedasticity observed in the original
returns using again the AR(1)-GJR(1,1) model to get R; which corresponds to the
simulated returns for each corresponding marginal distribution.

Step8 Since 7;; = In( Pi’f - ), we have that P, ; = P; j_1€"7 where P, ; is the ith stock

index price at time j. We choose in our portfolio that indices have equal weights
(Wi = 1/4). The portfolio value at time ¢ is defined as: V; = Z?:l W;P; ;. From
this, the portfolio value at time ¢ + 1 is given by: Vi1 ; = Z?Zl W, P, eftii. We
define the portfolio discounted loss at time t as L; ; = V; — Vi1 ;. The distribution
of the series {L; ; };VZI is the distribution of the discounted loss function of the
portfolio between time [t, ¢ + 1].

Step9 The one day value at risk at time ¢ with confidence level a (99%, 95% and 90% ),
VaR;(a) is just the 1 — o quantile of the distribution of the discounted loss series

{Lt,j }é\[:l

We have in Table 3 estimated VaR on July 3"¢ 2013 from the different GARCH-EVT-
Copulas, the Historical Simulation (HS) and the Variance Covariance (VC) methods.

Table 3: One day VaR Estimates.

- Gaussian Student’st Clayton Gumbel  Frank HS VC

VaR(99%) 181.7708  184.3487  313.9214 183.4489 183.3647 2289704 167.9644

VaR(95%) 125.4743  124.4993  193.7815 120.7332 120.6514 128.9491 118.8915

VaR(90%)  95.0177 95.5305 141.6696 93.5284  93.4345 89.1899  92.7049
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4.2 Value at Risk Backtesting

In this Section, backtesting procedures are conducted by comparing daily losses with
daily VaR estimates. We use the Kupiec’s Proportion of Failures Test, the Christof-
fersen’s Independence Test and the Christoffersen’s Interval forecast Test.

Let Ly ;11) denote the portfolio loss over a one day interval. The corresponding VaR
estimate VaR; is calculated at the beginning of the period, i.e using closing prices of
day t, and is based on historical data. We fix an estimation period consisting of 2000
observations which defines the sample used to estimate the VaR model parameters.
Then we use a rolling window approach as follows. The estimation sample is rolled
over almost the entire data period, keeping the estimation period constant, starting at
the beginning of the data set. We fix the length of the risk horizon to one day, and the
test sample starts at the end of the estimation period. The result of this procedure is two
time series covering the sample from 2001*" to 3960'" observation, i.e covering all the
consecutive rolling test periods. One series is the one day VaR estimates and the other
is the one day realized portfolio losses (we do this for each VaR estimation method).
The backtest is based on these two series. Figure 10, 11 and 12 show these two series
for the different methods used and the different confidence levels.
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Figure 10: Backtesting Results (99%).
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Backtesting results {35%)
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Figure 11: Backtesting Results (95%).
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Figure 12: Backtesting Results (90%).
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Table 4: Backtesting Tests Results.

HS VaRgg VaRgs; VaRgy Tests results
Number of Exceptions 34 148 262 -
LRyc p value 0.0030 0.00000129 0 (RRR)
LR;np p value 0.6204 0.000616 0 (ARR)
LRcc p value 0.011 0.000000023 0 (ARR)
VC VaRgg VaRgs VaRgy Tests results
Number of Exceptions 84 200 267 -
LRyc p value 0 0 0 (RRR)
LRnyp p value 0.2245 0.0001677 0 (ARR)
LRcc p value 0 0 0 (RRR)
Gaussian Copula VaRgg VaRos VaRgy Tests results
Number of Exceptions 18 98 206 -
LRyc p value 0.7143 0.9959 0.4503 (AAA)
LR;np p value 0.5634 0.3329 0.6868 (AAA)
LRcc p value 0.7914 0.6258 0.6933 (AAA)
Student’s t Copula VaRgg VaRgs VaRgy Tests results
Number of Exceptions 18 98 202 -
LRyc p value 0.7143 0.9959 0.6474 (AAA)
LRinp p value 0.5634 0.3329 0.8387 (AAA)
LRcc p value 0.7914 06258  0.8822 (AAA)
Clayton Copula VaRyg VaRgs VaRgy Tests results
Number of Exceptions 5 19 86 -
LRyc p value 0.00007687 0 0 (RRR)
LRinp p value 0.8729 0.5418 0.2971 (AAA)
LRcc p value 0.0003978 0 0 (RRR)
Gumbel Copula VaRgg VaRgs VaRgy Tests results
Number of Exceptions 20 115 217 -
LRyc p value 0.9261 0.0850 0.1176 (ARA)
LRrnp p value 0.5207 0.7548 0.9932 (AAA)
LRcc p value 0.8101 0.2162 0.2939 (AAA)
Frank Copula VaRyg VaRys VaRgy Tests results
Number of Exceptions 20 115 218 -
LRyc p value 0.9261 0.0850 0.1015 (ARA)
LRnp p value 0.5207 07548 07721 (A AA)
LRcc p value 0.8101 0.2162 0.2508 (AAA)
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Empirical backtesting results based on the different GARCH-EVT-Copulas, the Histor-
ical Simulation (HS) and the Variance Covariance (VC) methods for our portfolio are

summarized in Table 4.

LRyc, LRinp and LRcc represents the Kupiec’s Proportion of Failure test, the Christof-
fersen’s Independence test and the Christoffersen’s Interval Forecast test respectively.
The notation (A R A) in Table 4 means that the first test accept the null hypothesis that
the model used for VaR estimation performs well on average, the second test rejects the
null hypothesis and the last accept the null hypothesis. Note that, from Table 4 most
of the number of exceptions are close to the expected exceptions (20 for the 99% confi-
dence level, 98 for the 95% confidence level and 196 for the 90% confidence level). If the
obtained number of exceptions are much larger than the expected ones, the models are
said to have a poor performance in predicting the VaR. Otherwise (when they are much
less) we say that the models fails to capture the information of historical observations
(GARCH-EVT-Clayton Copula in our case). The results in the last Column of Table 4
are obtained by considering a significance level of 10%, and check if a test statistics’
p value is less than the significance level to reject the null hypothesis, that the model
is not accurate on average. From the results we conclude that in general the GARCH-
EVT-Copula approaches outperforms the commonly used Variance Covariance method
and the Historical Simulation method with the exception of the GARCH-EVT-Clayton
Copula case which passes only the Christoffersen’s Independence test.
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5 Summary and Conclusions

Accurate VaR estimates for portfolios are essential for financial institutions” risk man-
agement teams and for regulators like the Basel Committee on Banking Supervision.
In the past years, traditional VaR estimation approaches like Historical Simulation and
Variance Covariance have been supplemented by more flexible approaches based on
Copula functions. In this thesis we used a GARCH-EVT-Copula approach to estimate
the VaR of a portfolio consisting of stock indices from Germany, Spain, Italy and France.

We started the estimation by first, performing a preliminary analysis on the four stock
index log return series to verify some typical assumed properties of log returns, namely
normality and i.i.d. properties. We found that the series were heavy-tailed and lep-
tokurtic and moreover they were not i.i.d. To solve this we fitted an AR(1)-GJR(1,1)
model to the series and divided the obtained residuals by their corresponding volatili-
ties to get standardized residuals which were approximately i.i.d. The second step was
of estimating the marginal distribution of each series. We achieved this by combining
the Kernel Density Estimation method and the Peak Over Threshold (POT) method.
That is, having the standardized i.i.d. residuals we estimated the interior of the em-
pirical cumulative density functions (CDF) using the Kernel Density method and the
POT method in the tails. We thus obtained semi-parametric empirical CDF for each
series. The third step was the modeling of dependence structure using Copulas (Gaus-
sian, Student’s t, Clayton, Gumbel and Frank) by the Canonical Maximum Likelihood
method. It consists of, first transform the standardized residuals to uniform variates
by the semi-parametric empirical CDF and then fit the different Copulas to the trans-
formed data to obtain Copula parameters. The last step of the approach was the port-
folio VaR estimation using Monte Carlo Simulation method. Following this method,
we generated 10000 observations using the different estimated Copula parameters and
the VaR estimates were inferred. To check the performance of the approach we used
Backtesting procedures.

Using Kupiec’s proportion of failures test, Christoffersen’s independence test and Christof-
fersen’s interval forecast test, we found that GARCH-EVT-Gaussian Copula and GARCH-
EVT-Student’s t Copula passed all the test with the former being better as at the 90%
level it had fewer number of exceptions. GARCH-EVT-Gumbel Copula and GARCH-
EVT-Frank Copula performed quite well passing all the tests except at the 95% level
where they didn’t pass the Kupiec’s test. GARCH-EVT-Clayton Copula passed only
the Christoffersen’s independence test. In general, the GARCH-EVT-Copula approach
outperformed the Historical Simulation and Variance Covariance approaches. Even-
though the GARCH-EVT-Copula approach performs well in general, further works
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could be done to improve the approach. One could check the performance of the ap-
proach in high dimension, and also, one could use time-varying copulas instead of
static copula for modelling the dependence structure.
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