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Abstract

When there is a need to analyse hundreds of peptides using the

Elispot assay, several peptides may be grouped in the same well. This

way of analysing peptides is routinely done by lab specialists, but

with limitations to the efficiency of this approach. We propose here a

method for using the Elispot assay with grouped peptides, involving

both an efficient design of the grouping and a statistical method to

obtain reliable estimates of the individual peptide effects. The method

assigns a distribution to the individual peptide responses and then

maximizes the likelihood for the individual peptide effects from the

observed group responses using the EM algorithm, which handles the

contributions of the individual peptides in a group as unobserved data.
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1 Introduction

1.1 Immunology and the Elispot assay

When the human body is infected by some disease-causing organism, the immune system

will respond in an attempt to eliminate the intruder. T-cells are a type of white blood

cells which are part of the immune system, in particular the adaptive immune system,

and help the body to stay free from disease. In the case of infection with Human

immunodeficiency virus (HIV), T-cells will recognize peptides from different parts of the

virus. These peptides, or short proteins, are the expressions of the viral genes, which

are only possible through a host, in this case a human cell. Such peptides, that leads

to a reaction of the immune system, are called antigens. An antigen is a substance that

stimulates the production of antibodies by the body. The purpose of these antibodies is

to bind to the antigen so that white blood cells can then disable the antigen and remove

it from the body.

After the T-cells recognize a ”foreign” peptide, or any antigen, they will respond by

producing Interferon-gamma (IFN-γ), a poison-like protein that inhibits viral replication

and also activates macrophage cells. Macrophages are large cells that seek up and eat

the virus-infected cells. Both T-cells and IFN-γ play important parts in the adaptive

immune system. In contrast to the innate immune system, the adaptive immune system

needs to be trained. This means that the first time the body is exposed to a specific

antigen there may not yet be a specific defense against this antigen. But the T-cells

will learn to recognize the antigen and prepare the body, so the next time the body is

exposed to the same antigen the T-cells will be ready. It is this property of the adaptive

immune system we use in vaccination.

When developing vaccines for HIV it is important to understand the T-cells reaction

to the protein expression of the viral gene. By understanding the T-cells reaction to the

peptides, or proteins, we can enhance our understanding of what part of the viral gene
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should be the direct focus in the development of vaccines.

One tool for measuring T-cell activity in response to a specific peptide is the Enzyme-

linked Immunosorbent Spot (Elispot) Assay. The Elispot plate has 96 wells, to each of

which is added a blood sample from the patient and also peptides of interest. An

automatic reader then measures the number of T-cells that produce IFN-γ on recognition

of the antigen by the patient’s T-cells. The response appears as spots on the wells that

can be counted either by eye using a microscope or by an automatic reader. A picture

of an Elispot plate and a well stimulated with an antigen can be seen in Figure 1. The

number of spots is a direct measurement of the number of T-cells producing IFN-γ, so

the number of spots increases proportionally with strength of the immune response. [6]

Of the 96 wells, 6 are usually used as controls to asses the validity of the assay; 3 for

negative controls and 3 for positive controls. The rest of the wells are used to test the

peptides of interest. Since the negative controls have no peptide present, they will only

generate a small number of spots (or none), and these spots represent of the “noise”

present in all wells. The positive control wells are stimulated by a known antigen, to

ensure that there is nothing wrong with the assay. For the remaining 90 wells it is

common to use triplicates (i.e. to use each peptide in 3 wells) and use the average of

the three counts as the estimate of the peptide effect. In this way 30 peptides can be

analysed on one plate, with one peptide per well.

To be able to separate positive responding peptides from non-responding peptides

we define a positivity criterion. There are many ways of defining a positivity criterion

[4], and this topic is still under discussion in the scientific literature. We will use the

intuitive and common rule of defining a response as positive if it is at least twice the

average of the negative controls.
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1.2 Grouping of peptides

Since usually less then 10% of the tested peptides pass the positivity criterion, it is

possible to test several peptides in the same well. Grouping peptides into each well of a

plate is most commonly done by the matrix pool design [1]. In the matrix pool design

each peptide is present in two groups. The idea with this design is that if a group does

not pass the positivity criterion neither will any of the peptides in that group, and these

peptides can therefore be removed from further analysis. Equivalently, only peptides

that belong to groups which both passed the criterion are still potential antigens. Those

that remain potentially antigens are hopefully only a small fraction of the initial peptides

and can then be tested individually. For example, to create matrix pools (i.e. groups)

of 100 peptides, these peptides are arranged in a 10× 10 matrix, and then the peptides

in each of the 10 columns and each of the 10 rows of the matrix define 20 groups of size

10, and each peptide will be present in two groups.

The matrix pool design has some drawbacks. For efficient use of plates, the number

of peptides tested on each plate should be close to a squared number and the number of

groups must equal the sum of the number of rows and columns. More importantly, each

peptide is only present in two groups, which as we show later can make it difficult to

estimate the individual peptide effects. In this project we propose a more flexible design

of the groups and a method to estimate the individual peptide effects from the grouped

data. We will formulate the problem statistically and use simulations to demonstrate the

efficiency of the method. We will also conduct analysis of real grouped data provided by

a researcher working with HIV vaccination (prof. Tomas Hanke, University of Oxford).

To our knowledge there are no publication which discusses the possibility of obtaining

estimates directly from the grouped data.
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2 Materials and methods

In this section we will describe relevant theory for the group of distributions that is called

the exponential family, and use this theory to derive a statistical model for grouped

Elispot data. We will also describe real grouped Elispot data and describe the details of

the simulations we have performed. First we show and motivate the design of the groups

that we used in the simulations.

2.1 Proposal for an efficient design

To create the peptide groups according to a Sparse Overlap Design (SOD), we start by

forming a list 1, 2, . . . , n, where n is the number of peptides that we want to analyse.

Since there are 90 wells on one Elispot plate, if we want each peptide to be present 3

times, we divide the plate into 3 blocks of size 30. To make the size of the groups as

similar as possible, we divide n by 30 and let the integer part,
⌊
n
30

⌋
, be the group size,

and then increase the group size by 1 for the first (n modulo 30) groups.

Example: for 200 peptides we get 200
30 = 6.67 and (200 mod 30) = 20, so for the first

block the first 20 groups will consist of 6+1=7 peptides and the last 30-20=10 groups

will consist of 6 peptides.

After creating the groups in the first block as just described, we create the groups

in the second block using the same group sizes as in the first block: e.g. create the first

group of size 7 by taking the first peptide from each of the first 7 groups in block 1, a

second group of size 7 consisting of each of the first peptides in groups 8 to 14 etc. When

the first peptide in all 30 groups of block 1 have been allocated, we continue with the

second peptide in the first group, and so on until all groups in block 2 have been filled

(and all peptides are present in block 2). For block 3 we repeat this process but with

the groups in block 2 taking the role of the groups in block 1 previously.

A more formal, or programmatic, way of describing this algorithm is to create a
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second list from the first list. We do this by starting with the first element of list 1

and then continue to choose the elements in list 2 by making ”jumps” in list 1, and on

reaching the end looping back to the beginning of the list. The first (n mod 30) jumps

will be of size
⌊
n
30

⌋
+ 1 and jumps (n mod 30)+1 to 29 will be of size

⌊
n
30

⌋
. Then we

continue to add elements by alternating between jump size
⌊
n
30

⌋
+ 1 for (n mod 30)+1

times and jump size
⌊
n
30

⌋
for 29 - (n mod 30) times, until list 2 is of length n (and all

peptides are present once). The next step is to create a third list in exactly the same

way, but now with list 2 replacing the role of list 1.

Finally, we form the groups in the three blocks by grouping the three lists by the

groups sizes described above. This makes 3 × 30 = 90 groups of sizes
⌊
n
30

⌋
and

⌊
n
30

⌋
+

1. We now let ζk be the set of peptides in group k and gk(β) be the sum of all βi

corresponding to the peptides in group k, k=1, . . . , 90.

To be able to efficiently distinguish between the effects of different peptides it is

important that the peptides in the groups overlap as little as possible, in the sense

that any two groups should have as few peptides in common as possible. This design

guarantees minimal overlap of the peptides in any adjacent blocks, which means that

any pair of groups in block 1 and 2 or block 2 and 3 will have as few peptides in common

as possible. The design does not, however, guarantee minimal overlap between block 1

and 3, so there may be room for improvement.

2.2 Assumptions and definitions

We will assume that for a given individual, the observed response to a specific peptide

has a Poisson distribution, with mean value equal to the underlying ”true” response [3].

Later we will relax this restriction and evaluate the method when we see larger variation

with the same peptide than expected for a Poisson variable. We will also assume that

different peptides within a well generate spots independently of each other, so that the

expected number of spots from each peptide in a pool add up to the expected number of
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spots in the pool. This will not be the case if the number of spots in a well is too high

due to limitations of the area where spots form, or limitations in ability of the reader to

discriminate between dense spots.

As mentioned earlier, the noise is estimated as the average of the 3 negative control

wells, and the positivity criterion defined as twice the estimated noise. Any estimated

peptide effect less than this value will be classified as a ”non-response”. Those that were

estimated higher than the positivity criterion are regarded as ”responders”. We will also

define responses to be low (up to 40 spots), medium (41 to 100 spots) or high (above

100 spots).

2.3 Exponential families and the Poisson distribution

2.3.1 Definition and notation

We will formulate the theory in terms of the exponential family as the Poisson distri-

bution is a member of the exponential family. The Expectation-Maximization (EM)

algorithm [2][7], that we use for estimation takes a simple form when the complete data

likelihood is based on a distribution from the exponential family. Although many elegant

statistical results have been derived for exponential families [7] we will mainly focus on

the expected value of a sufficient statistic as a function of only distribution parameters,

and vice versa. We will then generalize to the case of incomplete data and show how to

get a simple expression for the EM algorithm.

Definition (Exponential families). If a parametric model for y can be written in the

form

f(y; θ) = a(θ)h(y)eθ
T t(y),

for some statistic t, then the distribution is an exponential family with canonical pa-

rameter vector θ = (θ1, . . . , θk) belonging to the k-dimensional parameter space Θ and

canonical statistic vector t(y) = (t1(y), . . . , tk(y)).
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If y=(y1, . . . , yn) is a sample of independent observations yi from an exponential

family we get

f(y; θ) =
n∏
i=1

f(yi; θ) =
n∏
i=1

a(θ)h(yi)e
θT t(yi) = a(θ)n

∏
h(yi)e

θT
∑

t(yi).

This is also an exponential family since a(θ)n is a function only of θ and not of the data,∏
h(yi) is a function only of the data and not of θ, and θT

∑
t(yi) is the inner product

of the canonical parameter vector θ and the canonical statistic
∑

t(yi). In this case it

should be noted that the canonical statistic is a sum over the canonical statistic for each

individual observation.

The part of the exponential family model that only depends on the parameters, a(θ),

can be interpreted as the normalizing constant which makes the density integrate to 1

(or the probability mass function sum to 1).[7] If we denote 1
a(θ) by C(θ) we get the

following expression

C(θ) =
∑

h(y)eθ
T t(y)

in the discrete case (substitute the sum for an integral in the continuous case).

In vector notation we can express the expected value of the canonical statistic in

terms of the gradient vector of the function log C(θ),

µt(θ) = Eθ(t) = D log C(θ),

and in matrix notation we can express the variance in terms of the Hessian matrix,

Varθ(t) = D2log C(θ).
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2.3.2 Log-likelihood in canonical parametrization - MLE and I(θ)

To get the Maximum Likelihood Estimate (MLE) we solve the likelihood equations

(i.e. set the score function equal to zero). The log-likelihood has the following form in

canonical parametrization:

log L(θ) = θT t− logC(θ) + constant.

Taking partial derivatives of the log-likelihood function:

∂logL(θ)

∂θj
= tj −

∂logC(θ)

∂θj
= tj − Eθ(tj).

In vector notation this is the score function

U(θ) = t− µt(θ).

Finally, setting the score function equal to zero and solving for θ gives the MLE:

θ̂(t) = µ−1t (θ).

To get the Fisher information we take the expected value of minus the second partial

derivative of the log-likelihood.

E

(
−∂

2logL(θ)

∂θi∂θj

)
= E

(
∂2logC(θ)

∂θi∂θj

)
= E (Cov(ti, tj)) = Cov(ti, tj)

In matrix notation we therefore get the Fisher information as

I(θ) = Varθ(t).
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2.3.3 The Poisson distribution

The Poisson distribution can be written in the form that defines an exponential family

f(x;β) =
βx

x!
e−β = e−e

θ 1

x!
eθx,

where the canonical parameter θ = logβ and C(θ) = ee
θ
. This gives Eθ(t) = Eθ(X) =

D logC(θ) = eθ and the MLE θ̂ = log y or, equivalently, β̂ = y.

For a sample x = (x1, . . . , xn) we get

f(x; θ) = e−ne
θ
∏ 1

xi!
eθ

∑
xi ,

and the canonical statistic is the sum of the sample. Since for a sample C(θ) = ene
θ
, we

get the MLE as an average of the observed values, θ̂ = log
∑
xi
n or, equivalently, β̂ =

∑
xi
n .

Conditioning on the sum of independent Poisson variables results in a multinomial

variable. Thus for independent Poisson variables x = (x1, . . . , xn), each with a unique

parameter βi, conditional on their sum y =
∑
xi, we can express the probability mass

function as multinomial:

f(x|y;β) =
f(x;β)

f(y;β)
=

=

∏
e−βi

β
xi
i
xi!

e
∑
βi (

∑
βi)y

y!

=

=
y!∏
xi!

∏
βxii∏

(
∑
βi)xi

=

=
y!∏
xi!

∏(
βi∑
βi

)xi
.
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2.4 Incomplete data

2.4.1 Implications of incomplete data for exponential families

When we cannot observe the complete data, x, but only the incomplete data, y = y(x),

we need to modify the theory of exponential families described above. For our application

the main distinctions are that the likelihood equations changes from t − Eθ(t) = 0 to

Eθ(t|y) − Eθ(t) = 0, and that the Fisher information changes from I(θ) = Varθ(t) to

I(θ) = Varθ(Eθ(t|y)).[7]

2.4.2 The EM algorithm for exponential families

The EM algorithm takes a very simple form when the complete data are from an ex-

ponential family. Solving the likelihood equations for incomplete data, the MLE must

satisfy

θ = µ−1t (Eθ(t|y)). (1)

We can find a solution to (1) by choosing a starting value, θ0, and iteratively alternating

the following two steps until convergence:

1. Calculate Eθ0(t|y).

2. Insert Eθ0(t|y) in (1) to get a new value, θ1.

The (n+1)th step thus has the form θn+1 = E(Eθn(t|y))−1, and we continue updating

this formula until θn+1 ≈ θn. However, this algorithm is not guaranteed to find a

global maximum of the likelihood, L(θ|y), but if it converges, it will at least find a local

maximum. The algorithm can be thought of as climbing the hill(s) of the likelihood

function. If the starting value, θ0, corresponds to a point on a slope of the likelihood,

the algorithm will climb (sometimes very slowly) the likelihood function and stop when

it reaches a maximum, regardless whether this is the global maximum or some unwanted

local maximum of the likelihood.[7]
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2.5 Statistical model

To derive a model, we assume we want to estimate the individual effects of n peptides

using 90 wells on a single plate. By allowing each peptide to be present 3 times we

divide the 90 wells into 3 blocks of 30 wells each. We then allocate the n peptides over

30 wells in 3 different ways (blocks). This means a total of 3× n peptides on the plate

and approximately n
30 peptides per group.

From the assumptions above, peptide i in block j generates spots according to the

distribution Xij ∼ Po(βi) for i = 1, 2, ..., n and j = 1, 2, 3. If we could observe all 3n

values of xij , the likelihood would be

L(β|x11, x12, ..., xn3) =

n∏
i=1

3∏
j=1

e−βi
βi
xij

xij !
, (2)

leading to the maximum likelihood estimates of the peptide effects

β̂i =

3∑
j=1

xij

3
=
xi1 + xi2 + xi3

3
. (3)

However, the xij are unobserved and we only observe the group values denoted yk

for k = 1, 2, ..., 90. An explicit formula that expresses yk as a sum of xij is not possible

because the grouping of peptides (using SOD or some other design) differs between

applications. Since the sum of independent Poisson variables is Poisson, the groups

generate spots according to the distribution Yk ∼ Po(gk(β)) for k = 1, 2, ..., 90, where

gk(β) is the sum of all βi corresponding to the peptides in group k. We now aim to

maximize the group likelihood which, due to assumed independence between unobserved

values of the xij , is

L(β|y) =

90∏
k=1

e−gk(β)
gk(β)yk

yk!
.

This likelihood has a maximum value at gk(β) = yk for all k, if these parameter values
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exists. There need not exist parameter values that satisfy this equality since there are

3 unobserved values from each peptide. Because gk(β) is a function of βi, i = 1, 2, ..., n,

this system of equations will be under-determined whenever n is larger than k (i.e. more

peptides than observations), and we cannot expect a unique solution. Any value of β that

satisfies gk(β) = yk for all k will be a global maximum of the unconstrained likelihood,

but since β is a vector of Poisson parameters, these need to be non-negative to make

sense (i.e. β must be constrained to be non-negative). We can impose this constraint by

considering this as an incomplete data problem and using the Expectation-Maximization

(EM) algorithm [2] to find the maximum for the likelihood.

The EM algorithm works by calculating the expected value (E-step) of a sufficient

statistic for the ”complete data” variables (i.e. the Xij), ti =
3∑
j=1

Xij , by an initial guess

for the parameter vector, β0, and conditioning on the observed data (i.e. the group values

yk). Since these 90 group values are sums of independent Poisson variables, conditioning

on these sums gives 90 multinomial variables, each with parameters ζk(β), where ζk(β)

is the set of parameters that belong to the peptides in group k. After the first E-step

we maximize (M-step) the ”complete data” likelihood (2), using the formula (3), by

replacing each sufficient statistic ti with the corresponding expected value calculated in

the previous step, E[ti|y, β0]. Combining these two steps gives the expression

β1i =

∑
k|βi∈ζk(β)

yk
β0
i

gk(β0)

3
,

where each term in the sum is an expected value for a peptide response considered as

an outcome from a multinomial distribution. The division by gk(β
0) is to normalize the

multinomial probabilities so that they sum to 1.

The algorithm continues by updating the estimate by replacing β0 with β1 to get β2

and so on, until βn ≈ βn−1. The EM algorithm is guaranteed to increase the likelihood

L(β|y) for each step [2], but we cannot be sure that it ”climbs the right hill” if the
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likelihood is multimodal. It would be intractable to derive conditions for when there

is only one mode, or when we have found the right mode, so we rely on simulations to

investigate how well the estimates correspond to the true values in realistic settings.

2.6 Fisher confidence intervals for grouped Elispot data

Here we will derive expressions that may be used to provide measures of uncertainty

and confidence intervals. Using the expression for Fisher information for incomplete

data and the structure of the data from our Elispot application, we can do the follow-

ing calculations for the canonical parameters. Since we only get a contribution to the

covariance when two peptides belong to the same group, we introduce Gijk to indicate

when peptide i and j belong to group k (i.e Gijk = 1 if βi ∪ βj ∈ ζk and 0 otherwise).

Iθ(θ)i,j = Covθ(Eθ(ti|y), Eθ(tj |y)) =

= Covθ(Eθ(
∑
k

(GijkXi|yk)), Eθ(
∑
k

(GijkXj |yk))) =

= Covθ(
∑
k

(GijkEθ(Xi|yk)),
∑
k

(GijkEθ(Xj |yk))) =

=
∑
k

GijkCovθ(Eθ(Xi|yk)), Eθ(Xj |yk)) =

=
∑
k

Gijk
βiβj
gk(β)2

Varβ(Yk) =

= βiβj
∑
k

(
Gijk

gk(β)

)

We can reparametrize to get the information for β, which is a more interpretable

parametrization:

Iβ(β) = JT Iθ(θ(β))J,
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where J is the Jacobian matrix of θi(β) = logβi. Since J is an n × n diagonal matrix

with elements 1
βi

for i = 1, ..., n, we get the following expression:

Iβ(β)i,j =
1

βi

1

βj
Iθ(θ(β))i,j =

∑
k

(
Gijk

gk(β)

)
.

If peptide i and j never occur in the same group, then the corresponding element in

the information matrix will be zero, and if they occur together only in group k, the

corresponding element will be 1
gk(β)

. Since each peptide occur in 3 groups, the diagonal

elements of the information matrix are 1
gk1 (β)

+ 1
gk2 (β)

+ 1
gk3 (β)

, where gk1(β), gk2(β) and

gk3(β) are the sum of the parameters in the groups to which peptide i belong, respectively.

Further, we can argue that three observations from a Poisson variable with mean

parameter of 10 or more could motivate the normality assumption, in which case we get

a 95% confidence interval,

[
β̂i − 1.96

√
Iii, β̂i + 1.96

√
Iii
]
,

where Iii is the i’th diagonal term of the inverted information matrix I(β̂)−1.

2.7 Simulations of grouped Elispot data

2.7.1 Assumptions

To illustrate the method we simulated data similar to what is observed in a real situation.

The parameters were therefore either set to zero, corresponding to peptides that resulted

in no immune response, or drawn from a Gamma distribution. We used two Gamma

distributions, Γ(shape = 6, scale = 5) for mostly mild responses and Γ(shape = 6, scale =

10) for moderate responses, see Figure 2. We created a vector, β, of length n to represent

the parameter values by letting 96% of the values be zero and 4% come from one of the

two Gamma distributions, and then permuted the vector. To vary the scenarios we also
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used 8% of non-zero elements.

Next we generated 3 vectors of length n, each with values drawn from Poisson vari-

ables with mean values corresponding to the parameter vector β. In vector notation the

3 vectors of individual peptide responses were generated according to

x1,x2,x3 ∼ Po(β).

The values in these vectors are the ”complete data” which we suppose unknown in

conducting the EM analysis. When estimating the values in β we only observed the 90

group values yk, k = 1, 2, ..., 90, where the first 30 group values (block 1) were sums

of disjoint groups of values in x1, likewise for block 2 and 3. In notational form the y

vector was created as

yk = gk(x1), k = 1, ..., 30

yk = gk(x2), k = 31, ..., 60

yk = gk(x3), k = 61, ..., 90,

where gk (i.e. the grouping function) was decided by the SOD design.

The final step in generating values was to add ”noise” to each well (i.e. every group

value yk) and to 3 additional wells (i.e. the negative controls). The noise was simulated

from a Poisson(5) variable: a mean of 5 for the noise is reasonable in HIV applications

where 250.000 cells are added to each well [5]. The y vector is now of length 93, with

the first 90 values representing the sum of spots from each peptide in a group plus the

additional noise, and the last 3 values representing only noise. The β vector was also

extended with an extra parameter for the noise.

Although we derived our methods under the assumption that the data are from Pois-

son variables, we illustrate the performance of the method also when there is overdis-
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persion (i.e. extra variation) in the responses from each peptide. For this purpose we

followed the example in previous published work [4] [3] to not only generate Poisson data

but also negative binomial data with mild (ϕ = 2) and moderate (ϕ = 10) dispersion

parameter.

2.7.2 Different methods of estimation

We have compared two different ways of estimating the parameter vector β, both of

which numerically maximize the likelihood L(β|y): the constrained MLE from the EM

algorithm described above and the unconstrained MLE from the nlm function in R,

which maximizes the likelihood with a Newton-Raphson algorithm. In contrast to the

constrained MLE, which considers the individual peptide effects to be Poisson, this latter

way of estimating β does not impose any restriction on the estimated vector β̂. Since

we assumed all peptides were equally likely to elicit responses, we let the initial guess

for β be β0 = (1, 1, ..., 1)T , and used these starting values for both the EM method and

the nlm function. The R-code for all simulation steps, and estimation, can be found in

the appendix.

The comparison of the methods was done by calculating the sensitivity (i.e. the

number of true estimated positive responses divided by the number of actual true positive

responses) and specificity (i.e. the number of true estimated negative responses divided

by the actual number of negative responses) under different scenarios. For each scenario

50 simulations were made, and for each simulation the sensitivity and specificity were

calculated for both the constrained and the unconstrained MLE.

2.7.3 Comparing the number of blocks

Our choice of 3 blocks agrees with the convention of using triplicates in Elispot assays,

but it is not obvious that an assay should be divided into 3 blocks: we could just as well

use more or fewer blocks. For investigating the optimal number of blocks, we simulated
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30 data sets for each of 6 scenarios. In each simulation we used either Poisson variables

with low or with medium mean values to generate data for each of 200 peptides (of which

13 were positively responding peptides). We used the SOD design and estimated the

peptide effects by the EM algorithm.

2.8 Real grouped Elispot data

We have access to grouped data for 6 subjects for which we also have verification in

terms of individually assayed peptides. The groups were designed by a program called

DeconvoluteThis!, which tries to minimize the overlap of peptides between groups, but

based on simulations instead of an analytic approach. The grouped data for the 6

subjects consists of 199 peptides in 80 groups, each peptide being present 4 times. Each

of the 6 subjects assays had between 2 and 4 wells used for negative controls (to estimate

noise level of the assay). We then compared the constrained MLEs to individually

assayed peptide estimates (for the same subjects) provided by prof. Tomas Hanke,

University of Oxford.

The EM algorithm had no problem to converge and by using several different starting

values we found just one maximum of the likelihood for each of the 6 subjects.

3 Results

3.1 Simulation study

3.1.1 Quality of estimates

In Figure 3 and 4 we see an illustration of the characteristics of the estimates from both

the maximization of the unconstrained likelihood using the nlm function and from the

maximization of the constrained likelihood using the EM algorithm. The three rows

of plots in a figure each correspond to only one simulated plate, with 200 × 0.04 = 8,

400 × 0.04 = 16 and 400 × 0.08 = 32 responding peptides respectively. To the right
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we see the estimated group values (i.e. gk(β̂)) plotted against the true group values yk

for k = 1, 2, ..., 90. If the dots and stars closely follow the straight line with slope of 1,

it indicates that both methods find a global maximum (or close to) since gk(β̂) ≈ yk.

To the left we see each of the two estimates of β plotted against the true values, in

the sense that the true values are the estimates that would have been obtained if all

individual responses xij were observed. These plots reveal if the methods of estimating

the β vector have been successful. Values close to the line with slope 1 are correctly

identified and if all estimated values from one of the methods are close to the line we

know that that method has found the correct MLE. The vertical and horizontal lines

are twice the estimated noise (i.e. the positivity criterion).

We also averaged the result from several simulations to investigate the ability of the

two methods to correctly discriminate between positive and negative responses. Table

1 shows the mean of the 50 estimations of the sensitivity and specificity under several

scenarios (in per cent). Here we see systematic trends in the ability to separate positive

and negative responses as we increase the variation in the responses of the same peptide

(i.e. increase dispersion) or increase the number of responding peptides. We can also

notice a systematic difference in this ability between 8% positive responding peptides

of 200 tested peptides and 4% of 400 (i.e. the same number of positive responding

peptides).

3.1.2 Analysis of the number of blocks

We simulated data with 2, 3 and 4 blocks using a SOD design and the EM algorithm

for estimates. From Table 2 we see a large increase in sensitivity and specificity going

from 2 to 3 blocks, but practically no difference between 3 and 4 blocks.
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Table 1: The values are sensitivity / specificity under different scenarios (e.g. 200
peptides of which 4% are mostly low responders with a within variation that follows a
Poisson distribution) based on 50 simulations each, in per cent. For each scenario two
estimates of the sensitivity and specificity are presented, one based on the constrained
MLEs (bold) and the other based on the unconstrained MLEs. Disp. 2 and 10 means a
within variation that is 2 and 10 times that of a Poisson variable, respectively.

Table 2: The values are sensitivity / specificity for constrained MLEs based on 30 simu-
lations in each setting, with 13 responding peptides among 200 tested peptides. The low
and medium responding peptides where generated from the densities shown in Figure 3
in Appendix.

3.2 Analysis of real grouped Elispot data

The real grouped Elispot data (described above) were analyzed for 6 subjects and com-

pared to estimates of individually assayed peptides for the same subjects. The response

from the individually assayed peptides described above can be found in Figure 5 in Ap-

pendix. We compared the ranks of these responses to the ranked constrained MLEs

for each subject assigning rank 1 to the highest values, and compared the rank of con-

strained MLEs for the top 5 individually-assayed peptides for each of the 6 subjects.
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The results of this comparison are presented in Table 3.

ID
Rank 403 404 406 409 410 411

1 7 1 14 6 1 1
2 63 79 27 5 3 3
3 28 18 4 12 15 4
4 4 181 2 4 56 48
5 105 57 13 31 74 25

Table 3: Comparing rank of individually assayed peptide responses and rank of grouped
assayed constrained MLEs for 6 subjects (assigning rank 1 to highest values). The
numbers under subject ID are the rank of constrained MLEs corresponding to the top
5 ranks of individually assayed peptides for each subject.

4 Discussion

It is clear that the number of responding peptides strongly affects the ability to obtain

reliable estimates, but other factors also influence the performance. It can be seen from

Table 1 that increasing the number of non-responding peptides while maintaining the

number of responding peptides (from row 8% of 200 to row 4% of 400) will lower the

sensitivity and specificity. We also see a lower sensitivity and specificity when simulating

low responses compared to medium responses, and when increasing the variance of the

responses from each peptide.

From our simulations, we conclude that the constrained MLEs are more reliable

than the estimates obtained from maximizing an unconstrained Poisson likelihood. The

constrained MLEs are also better in separating positive and negative peptides. The

constrained MLE maintain acceptable sensitivity and specificity as long as the number

of responding peptides is not too high. From Table 1 the constrained MLE shows a

sensitivity around 90% and specificity close to 100% for 16 responding peptides out of

200 or 400 tested peptides. For 400 × 0.08 = 32 responding peptides the sensitivity of

the EM was just above 50% for low responding peptides, and a bit higher for medium
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responding peptides.

Besides distinguishing between positive and negative responses the EM algorithm

provides good estimates of the true value of the response, as long as the number of

responding peptides is not too high. This is illustrated for one simulation for each of

6 scenarios with Poisson responses in Figures 3 and 4 (overdispersion in Figure 6 to 9

in Appendix). These figures illustrate the correlation of constrained and unconstrained

MLEs with the true value of the peptide effects. Each figure show three simulations,

each with a unique β. The 3 plots to the left in each figure show estimated peptide

effects plotted against the true value of the peptide effects. The 3 plots to the right in

each figure show the estimated group value (i.e. sum of estimated peptide effects in a

group) plotted against the true value. Maximizing the constrained likelihood generally

leads to sensible group estimates in the sense that they more or less follows the line with

slope 1. This need not be the case when maximizing the unconstrained likelihood as can

be seen in Figure 3a. For the individual peptide effects, the MLEs from the constrained

likelihood are often close to the true values while maximization of the unconstrained

likelihood can result in estimates that are too low. These latter estimates cannot be

adjusted upwards as that will also increase the number of false positive estimates (and

therefore lower the specificity).

We have proposed a way to obtain a measure of uncertainty for the constrained

MLEs, which is based on an approximate quadratic form of the log-likelihood function.

This approximation may not be valid due to the constraint on the parameter space.

We have not, theoretically or empirically, validated the reliability of the expressions

for confidence intervals we derived. This is merely thought of as a starting point or

inspiration for further research.

When analysing the most efficient number of blocks, we saw a large improvement

on increasing from 2 to 3 blocks but practically no increase from 3 to 4 blocks. Taking

into account the potential extra uncertainty in a real setting of grouping more peptides
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together (as needs to be done if 4 blocks are used instead of 3 blocks) and the increased

risk of losing the additivity property of the peptide effects because of the limited area

for spots to form in a well, we recommend the use of 3 blocks.

Although we use a HIV application for illustration, the method proposed here is quite

general. The R-code can be used to simulate data from other applications. Even though

we made an effort to represent true data by also imposing extra Poisson variation, it

would be useful to evaluate the method in a laboratory setting using real Elispot plates

with the proposed design and follow-up verifications of the estimates.

It is unclear why the analysis of the real data for the 6 subjects performed rather

poorly. Contributing factors to this may be the lack of an efficient design of the groups

(this was not SOD), that each peptide was tested individually only once for the 6 sub-

jects, that too few cells (specimen) were added in the grouped assay or that the grouped

and individually assayed peptides were not assayed at the same time. Another expla-

nation may be that there simply are too many sources of uncertainty in a real lab

situation to be able to realistically model the assay, and to obtain reliable estimates of

the individual peptide effects.

In summary, we believe that our method of analyzing a large number of peptides can

be useful and sufficiently accurate for practical purposes in some situations. The R-code

can be modified to represent a wide range of scenarios, and to analyse Elispot plates

for any application. An important advantage of the method is the potential for more

cost-effective laboratory assays. If 200 or 300 peptides instead of 30 can be analysed on

one plate, while maintaining an acceptable precision in the estimates, this could lead to

dramatic reductions in the number of plates required.
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5 Conclusion

We have demonstrated an efficient way of using Elispot plates when there is a need to

test hundreds of peptides for each patient. We present both an efficient design and a

method to obtaining reliable estimates. The basic idea is to design the groups in a way

that minimizes the overlap of peptides in any pair of groups, and to regard each peptide

within a group as an unobserved event. By using Poisson distributions for the number of

spots generated by the individual peptides we can use the EM algorithm to maximize the

likelihood with the constraint that all estimated peptide effects must be non-negative.

The estimated peptide effects were shown to have a much better sensitivity and

specificity compared to maximization of the unconstrained likelihood, for a number of

scenarios considered. The accuracy of the estimates was also much higher when using

the EM algorithm to estimate the individual peptide effects. R-code is supplied in

the appendix and can easily be modified to evaluate and apply the method in other

applications of the Elispot assay.
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6 Supplementary figures

Figure 1: An Elispot plate and how a well could look like after being challenged with an
antigen. The response of interest is the number of spots, which usually is counted by an
automatic reader.

Figure 2: This graph shows the densities of the two gamma distributions, Γ(shape =
6, scale = 5) and Γ(shape = 6, scale = 10), that were used to represent the positive effect
peptides. The former has mean 30 and variance 150 and the latter has mean 60 and
variance 600.
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Figure 3: Three simulations of low responding peptides that each generate Poisson data.
Peptides grouped into 90 groups and 3 blocks using SOD. Vertical and horizontal line
is twice the estimated noise (i.e. the positivity criterion). A line with slope 1 is also
provided.
a) 200 peptides of which 4% are responding peptides.
b) 400 peptides of which 4% are responding peptides.
c) 400 peptides of which 8% are responding peptides.
∗”True value” denotes the estimate that would have been obtained if all individual
responses had been observed.

.

28



Figure 4: Three simulations of medium responding peptides that each generate Poisson
data. Peptides grouped into 90 groups and 3 blocks using SOD. Vertical and horizontal
line is twice the estimated noise (i.e. the positivity criterion). A line with slope 1 is also
provided.
a) 200 peptides of which 4% are responding peptides.
b) 400 peptides of which 4% are responding peptides.
c) 400 peptides of which 8% are responding peptides.
∗”True value” denotes the estimate that would have been obtained if all individual
responses had been observed.

.
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7 Appendix

7.1 R-code

#Simulated data

#Decide number of peptides and estimated percent responders

pep<- #assign no. peptides

resp<- #assign % responding peptides

#Vector of peptide names

pn<-1:pep

#Vector of expected values for peptides.

#m<-sample(c(rep(0,pep-floor(0.01*resp*pep)),rgamma(floor(0.01*resp*pep),6,0.2)))

m<-sample(c(rep(0,pep-floor(0.01*resp*pep)),rgamma(floor(0.01*resp*pep),6,0.1)))

noise<-5

#Simulate values.

#r1<-rpois(pep,m)

#r2<-rpois(pep,m)

#r3<-rpois(pep,m)

#Negative binomial with phi=2 and phi=10

phi<-2

k = (m+0001)/(phi - 1)

r1 = rnbinom(pep, mu = m+0.0001, size = k)

r2 = rnbinom(pep, mu = m+0.0001, size = k)

r3 = rnbinom(pep, mu = m+0.0001, size = k)
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#3 blocks

blocks<-3

wells<-90/blocks

pepmax<-ceiling(pep/wells)

d1<-c(1:pep,rep(NA,pepmax*wells-pep))

d2<-as.vector(matrix(d1, nrow=wells, byrow=T))

d3<-as.vector(matrix(d2, nrow=wells, byrow=T))

d4<-as.vector(matrix(d3, nrow=wells, byrow=T))

d<-c(d2,d3,d4)

pool<-rep(1:90,each=pepmax)

x<-table(pool,d)

p<-t(x)/colSums(x)

p<-t(p)

mean<-(r1+r2+r3)/3

#Add noise

xx<-matrix(rep(0,3*pep),nrow=3)

xnoise<-rep(1,93)

x<-rbind(x,xx)

x<-cbind(x,xnoise)

p<-t(x)/colSums(x)

p<-t(p)
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#Sum to group values

y<-c(x[1:30,1:pep]%*%r1,x[31:60,1:pep]%*%r2,x[61:90,1:pep]%*%r3)

rnoise<-rpois(93,noise)

es.noise<-mean(rnoise[91:93])

y<-rnoise+c(y,rep(0,3))

#Marie’s algorithm

beta_0=rep(1,pep+1)

cond=1

while (cond > .001) {

mu=as.vector(x%*%beta_0)

beta=(t(p)%*%(y/mu))*beta_0

cond=sum(abs(beta-beta_0))

beta_0=beta

}

#NLM

fkn<-function(beta){

t(x%*%beta-y*log(x%*%beta))%*%rep(1,length(y))

}

as<-nlm(fkn,rep(1,pep+1))

#Compare estimates with responders.

positive<-length(mean[mean>=2*es.noise])

negative<-length(mean[mean<=2*es.noise])

tp.em<-length(beta[1:pep][beta[1:pep]>=2*es.noise & mean>=2*es.noise])

sens.em<-tp.em/positive
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tp.nlm<-length(as$es[1:pep][as$es[1:pep]>=2*es.noise & mean>=2*es.noise])

sens.nlm<-tp.nlm/positive

tn.em<-length(beta[1:pep][beta[1:pep]<=2*es.noise & mean<=2*es.noise])

spec.em<-tn.em/negative

tn.nlm<-length(as$es[1:pep][as$es[1:pep]<=2*es.noise & mean<=2*es.noise])

spec.nlm<-tn.nlm/negative

#Real data

#Read design matrix

MP80<-read.table("Z://...//MP80.txt",header=F)

MP<-as.matrix(MP80)

MP<-as.numeric(MP)

#Read grouped data

y403<-read.table("Z://...//y403.txt",header=F)

y403<-as.matrix(y403)

y403<-as.numeric(y403)

y403<-c(y403,1,0,0,1)

#Create an 83*200 matrix indicating which peptides are present in each group

pool<-rep(1:80,10)

w<-table(pool,MP)

v<-matrix(c(w,rep(1,80)),nrow=80)

z0<-matrix(0,nrow=4,ncol=199)

z<-matrix(c(z0,rep(1,4)),nrow=4)

v403<-rbind(v,z)

34



x<-v403

p=t(x)/colSums(x)

p<-t(p)

y<-y403

#Obtain the estimates

beta_0=rep(1,200)

cond=1

while (cond > .0001) {

mu=as.vector(x%*%beta_0)

beta=(t(p)%*%(y/mu))*beta_0

cond=sum(abs(beta-beta_0))

beta_0=beta

}
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7.2 Figures

Figure 5: Estimates of 199 peptides for 6 subjects assayed using individual peptides.
Any number between 1 and 199 not shown means that peptide was estimated a non-
responder for all 6 subjects. Numbers in each box show spots per million cultured cells
(higher number means stronger response). Subject ID is shown in the top row. This
figure is a part of an image provided by prof. Tomas Hanke, University of Oxford.
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Figure 6: Three simulations of low responding peptides that each generate data with 2
times the variance of a Poisson variable. Peptides grouped into 90 groups and 3 blocks
using SOD. Vertical and horizontal line is twice the estimated noise (i.e. the positivity
criterion). A line with slope 1 is also provided.
a) 200 peptides of which 4% are responding peptides.
b) 400 peptides of which 4% are responding peptides.
c) 400 peptides of which 8% are responding peptides.
∗”True value” denotes the estimate that would have been obtained if all individual
responses had been observed.
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Figure 7: Three simulations of medium responding peptides that each generate data
with 2 times the variance of a Poisson variable. Peptides grouped into 90 groups and
3 blocks using SOD. Vertical and horizontal line is twice the estimated noise (i.e. the
positivity criterion). A line with slope 1 is also provided.
a) 200 peptides of which 4% are responding peptides.
b) 400 peptides of which 4% are responding peptides.
c) 400 peptides of which 8% are responding peptides.
∗”True value” denotes the estimate that would have been obtained if all individual
responses had been observed.
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Figure 8: Three simulations of low responding peptides that each generate data with 10
times the variance of a Poisson variable. Peptides grouped into 90 groups and 3 blocks
using SOD. Vertical and horizontal line is twice the estimated noise (i.e. the positivity
criterion). A line with slope 1 is also provided.
a) 200 peptides of which 4% are responding peptides.
b) 400 peptides of which 4% are responding peptides.
c) 400 peptides of which 8% are responding peptides.
∗”True value” denotes the estimate that would have been obtained if all individual
responses had been observed.
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Figure 9: Three simulations of medium responding peptides that each generate data
with 10 times the variance of a Poisson variable. Peptides grouped into 90 groups and
3 blocks using SOD. Vertical and horizontal line is twice the estimated noise (i.e. the
positivity criterion). A line with slope 1 is also provided.
a) 200 peptides of which 4% are responding peptides.
b) 400 peptides of which 4% are responding peptides.
c) 400 peptides of which 8% are responding peptides.
∗”True value” denotes the estimate that would have been obtained if all individual
responses had been observed.
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