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Abstract

In this thesis we use a modified birth and death process to model

phylogenetic trees reconstructed from sequence data that has been

sampled at different times. This is common in organisms where ma-

jor evolutionary changes can occur in a short period of time, such

as viruses, and therefore the dating of the sampling is of great im-

portance. Our main focus is on birth and death processes with time

dependent rates, instead of previously used constant rates. Here we

apply our model on eight phylogenetic trees reconstructed from dif-

ferent genome segments of influenza A virus. The evolution of in-

fluenza virus is affected by the interplay with our immune system,

which makes it possible to infer epidemiological parameters from its

sequence data. For example the effective reproductive number over

time, which is the average number that one infected individual will

infect in a population consisting of not only susceptible individuals.

It is known that influenza outbreaks have a seasonal behaviour. Our

aim with this thesis is to investigate if this seasonal behaviour can be

detected using birth and death processes with periodic rate functions

on the phylogenetic trees of the influenza A virus. Furthermore, we

also want to infer the effective reproductive number. As a main result,

models with periodic rate functions have a better fit to the data than

constant rate models.
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write this thesis. I also want to thank my examiner Pieter Trapman for comments
and input. Last but not least I want to thank Kaj Börjesson for helpful discussions.



Contents

1 Introduction 2
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 3
2.1 The reconstructed evolutionary process . . . . . . . . . . . . . . . . . 4

2.1.1 Homochronous data . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Heterochronous data . . . . . . . . . . . . . . . . . . . . . . . 11

3 Method 18
3.1 Periodic Rate functions . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Simulations and validation . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Likelihood surface . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Simulated data inferred with constant rates . . . . . . . . . . 21
3.2.3 Simulated data inferred with periodic speciation rate . . . . . 24
3.2.4 Differential equations . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Analysis 33
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Discussion 37
5.1 Reproductive number . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Yearly Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Studied models and possible drawbacks . . . . . . . . . . . . . . . . 38

6 Summary and future work 40
6.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A Equality between Equation 2 and Thompson (1975) 44

B Complete Results 46

C Simulations 61

D R code 67

1



1 Introduction

Humans worldwide get infected by influenza A virus every year. The interplay
between our immune system and the virus’s ability to adapt affect how the virus
evolves. Here we will use sequence data and molecular phylogenetics to address
epidemiological questions.

The process of evolution is often represented by a phylogenetic tree. A phylogenetic
tree is a binary tree where the ancestral node represents the most recent common
ancestor (MRCA) of all other lineages. A split in the tree represents a speciation
event, and a termination an extinction event. Molecular sequences are used to build
the evolutionary history. These are usually obtained at different time points, called
heterochronous sequencing. In larger organisms, such as mammals, this is of mi-
nor relevance since little evolution occurs between the years and we can assume the
sequencing was done at the same time point, called homochronous sequencing. How-
ever, in viruses many mutations can occur between samplings, and we should take
into account that the data was gathered at different time points. When performing
inference on virus evolution we should not use models that assume that sequencing
has been done at the same time. When inferring the substitution rate, the rate of
genetic diversification, Twiddy et al. (2003) showed that models taking into account
the different datings, when applied to Dengue virus sequences fitted much better
than models not doing so. This is not only needed in models for fast evolving organ-
isms but also for the incorporation of fossils, since methods of sequencing fossil DNA
and especially mtDNA has become more reliable (Orlando et al. 2002). Therefore
we need models that incorporate fossil data, as has recently been done for morpho-
logical data (Ronquist et al. 2012).

One can use phylogenetics to answer questions usually asked by epidemiologists
(Pybus et al. 2001; Stadler et al. 2013; Leventhal et al. 2012). For example to esti-
mate the basic reproductive number R0, which is equal to the expected number of
infections that one infected individual will cause when all other individuals in the
population are susceptible. This is mainly done by using a coalescent model (Volz
et al. 2009; Pybus et al. 2001). However, the coalescent approach is not suitable for
this kind of processes, but instead for population dynamics and it has some major
drawbacks (Stadler et al. 2012). It has been widely used because of its simplicity
and mathematical tractability. We will instead try to incorporate heterochronous
sampling using the birth and death processes. Under the birth and death process
speciation, extinction and sampling rates needs to be specified. Heterochronous
sampling using birth and death processes has been done by Stadler et al. (2012) but
only for constant rates and in Stadler et al. (2013) with piecewise constant rates.
Only using constant rates for organism evolution is not realistic and as stated several
times, we should use rates as functions of time instead. If time dependent rates are
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used we can for example allow periods where the extinction rate is higher than the
speciation rate. This is important when trying to model the spread of an infection;
we can capture more than the exponential increase of infected individuals in the
beginning of an epidemic. We can now also capture the saturation phase when the
number of susceptibles decreases.

In this thesis we will derive the likelihood for heterochronous data and time depen-
dent rates. We will use this likelihood to perform inference on eight phylogenetic
trees reconstructed from different genome segments of Influenza A virus. We espe-
cially want to infer the reproductive number over time. As we know, the influenza
infections come in clearly periodic intervals and we are interested if we can detect
this behaviour from the phylogenetic trees.

1.1 Outline

The structure of the thesis is as follows: In Section 2 the background of the thesis
is presented. First we will define the birth and death process used to model phylo-
genetic trees reconstructed from homochronous data. The focus will be put on the
derivations for time dependent rates. Next, the probability density of a phylogenetic
tree reconstructed from heterochronous data will be derived. This expression will
be used to make inference of the evolutionary history of influenza A virus.
In Section 3 we will go through the different rate functions used to answer our main
question; ’Can we detect the seasonal behaviour of Influenza?’. In this section we
will also try to validate if our likelihood gives reliable results by simulations.
In Section 4 we will go through the data used in this study and the results obtained
from our analysis.

2 Background

To model the splitting of lineages we will use birth and death processes. The lin-
eages can represent different things, such as individuals, populations or species. We
assume that we start with one lineage at t = 0. At any time t > 0, a lineage can
split into two lineages with rate λ(t) or go extinct with rate µ(t). Thus we have the
same speciation rate for every lineage at a given time and the same applies to the
extinction rate. In a short time period h three outcomes are possible: a birth event,
a death event or no event. If n(t) is the number of lineages at time t this process is
described by

n(t+ h) =


n(t) + 1 w.p. λ(t)n(t)h

n(t)− 1 w.p. µ(t)n(t)h

n(t) w.p. 1− (λ(t) + µ(t))n(t)h
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Most analysis on phylogenies have been on trees based solely on extant species/genes.
In case of virus evolution we can observe the extinction of branches. The derivation
of the likelihood for heterochronous data will be done as follows: we will describe the
underlying process which results in the species diversity with homochronous data in
2.1.1 and then how to expand this to heterochronous data in section 2.1.2.

2.1 The reconstructed evolutionary process

The true tree of species evolutionary relationship is a tree where all species is rep-
resented, both extinct and extant species. This can be represented by an ordinary
birth and death process where we can observe births of new lineages as well as
deaths, terminations of lineages. Figure 1 a) is an illustration of such a process.
To build a phylogeny we reconstruct it from molecular or morphological data. In
our framework a reconstructed process is a birth and death process where we have
pruned off all lineages that we do not have any data from as seen in Figure 1 b). If
we allow for each lineage to have a probability of being sampled we can take into
account incomplete taxon sampling, Figure 1 c).

T
im

e

a) b) c)

Figure 1: a) is an example of a complete phylogeny where extinct unsampled lineages are
kept. b) A reconstructed phylogeny where only sampled lineages are kept. c) A recon-
structed phylogeny with incomplete taxon sampling, each lineage has the same probability
of being sampled

In Hansson (2011) we derived the likelihood for a reconstructed phylogeny from
homochronous data with time dependent rates and incomplete taxon sampling. This
was also done in Morlon et al. (2011) but using a different approach.

2.1.1 Homochronous data

Let us now consider in more detail how the phylogenetic tree is usually modelled.
At a given time point a split occurs with the same probability and independently
on every existing lineage. We only consider splits that results in both the lineages
surviving until present time T . If we have a phylogeny with n surviving lineages we
will have n− 1 splitting events where both lineages survived until present time.
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Figure 2: Tree with 4 surviving lineages. ti denotes the splitting times and si denotes the
time from each splitting event until present time T

We want to derive the probability density for the process generating reconstructed
phylogenetic trees. To achieve this we will first give the number of different trees
that can be created from a tree with n labelled tips, i.e. fixed species. Secondly,
some necessary probabilities and functions will be presented. Thirdly, a lemma
needed to simplify one part in the probability density is presented and proven for
time dependent rates. Before, this lemma has only been proven for constant rates.

The number of phylogenetic trees with n species can be found in the following way.
First consider a tree with labelled nodes and unlabelled tips, called an ”unlabelled
tree”. The first splitting event can only happen at the root, the second splitting
event can happen on two different branches, the third splitting event can happen on
three different branches and the final splitting event on any of the n − 1 branches.
Thus, there is (n − 1)! different ”unlabelled trees”. If now the tips are labelled as
well they can be placed on n different branches generating n! different ways to place
the labels. However, each of these ways will for the n− 1 splitting events count one
tree twice. Let us study Figure 2 and the split at time t3. If we are to place two
species labels on these two final lineages we can place them in two ways, but these
two ways generate the same phylogenetic tree. This gives us the total number of
trees we can create from n species and a labelled history to be

n!(n− 1)!

2n−1

where
n!/2n−1 (1)
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is the number of different distinct labellings of the tips of an unlabelled history
(Edwards 1970). The phylogenies does only have labelled tips and the orientation
within is not fixed, in other words, the phylogenies we want to infer have tips with
specified labels but do not distinguish between left and right. Thus, when deriving
the density for a phylogenetic tree it is needed to divide the final expression with
Equation (1) (Thompson 1975; Stadler et al. 2013).

Let us now go through notations, probabilities and some equations needed. Let
N be the number of lineages at present, let ~t denote the set of splitting events
{t1, ..., tN−1} and let τ denote the relation between the lineages, a topology de-
scribing the phylogenetic tree. We seek the density f(~t,N, τ ;λ(t), µ(t)). At present
time T each lineage has a probability ρ of being sampled. To model this a ’mass
extinction’ at the present time will be imposed where each lineage survives with a
probability ρ. This will change the extinction rate to be

µ(t, T ) = µ(t)− ln(ρ)δ(t− T ),

where δ(t) is the dirac delta function. Let PN (0, t) denote the probability of having
N species at time t if the process started at time 0 with one species. Also let PS(t, T )
denote the probability that the process has not gone extinct from time t to time T ,
i.e. at least one lineage survived to time T . We then have from Kendall (1949)

P0(0, t) = 1− PS(0, t)

P1(0, t) = PS(0, t)2er(0,t)

PN (0, t) = PS(0, t)2er(0,t)(1− PS(0, t)er(0,t))N−1

(2)

where

r(t, τ) =


τ∫
t

µ(s)− λ(s)ds if τ < T

τ∫
t

µ(s)− λ(s)ds− ln ρ if τ ≥ T
(3)

and

PS(t, T ) =
1

1 +
T∫
t

µ(s) exp(r(t, s))ds

. (4)

If T is the present time

PS(t, T ) =
1

1 +
T∫
t

µ(s) exp(
s∫
t

µ(τ)− λ(τ)dτ)ds− (ρ− 1) exp(r(t, T ))

With constant rates λ(t) = λ and µ(t) = µ and complete taxon sampling, Equation
2 is the same as in Thompson (1975). This is shown in Appendix A.
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Let us show this next lemma to be able to simplify one part in the derivation of the
density f(~t,N, τ ;λ(t), µ(t)). Thompson (1975) states why it must hold.

Lemma 1. If we start with one species at time 0 and want to end up with one
species at time t > 0 we can have k species at an earlier time point t− s, 0 < s < t,
one of these k species must have one descendant at time t and the remaining k − 1
must have gone extinct. Summing over all possible values of k gives

∞∑
k=1

kP0(t− s, t)k−1P1(t− s, t)Pk(0, t− s) = P1(0, t)

Proof. Let us begin by using Equation (2) on Pk(0, t− s)

∞∑
k=1

kP0(t− s, t)k−1P1(t− s, t)Pk(0, t− s)

=

∞∑
k=1

kP0(t− s, t)k−1P1(t− s, t)PS(0, t− s)2er(0,t−s)(1− PS(0, t− s)er(0,t−s))k−1

=P1(t− s, t)PS(0, t− s)2er(0,t−s)

×
∞∑
k=1

k
(
P0(t− s, t)(1− PS(0, t− s)er(0,t−s))

)k−1 (5)

Now consider first the expression outside the summation in Equation (5), which is
equal to

PS(t− s, t)2er(t−s,t)PS(0, t− s)2er(0,t−s)

=
(
PS(t− s, t)PS(0, t− s)

)2
er(0,t) (6)

The summation in Equation (5) can be simplified by noting that if we assume that
the birth rate is overall larger than the death rate:
t−s∫
0

λ(x)dx >
t−s∫
0

µ(x)dx then P0(t− s, t)(1− PS(0, t− s)er(0,t−s)) < 1. We can then

use that if |x| < 1 then
∞∑
k=1

kxk−1 = 1
(1−x)2 .
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∞∑
k=1

k
(
P0(t− s, t)(1− PS(0, t− s)er(0,t−s))

)k−1
=
(
1− P0(t− s, t)(1− PS(0, t− s)er(0,t−s))

)−2
=
(
1− (1− PS(t− s, t))(1− PS(0, t− s)er(0,t−s))

)−2
=
(
PS(0, t− s)er(0,t−s) + PS(t− s, t)− PS(t− s, t)PS(0, t− s)er(0,t−s)

)−2
=
(
PS(0, t− s)er(0,t−s)(1− PS(t− s, t)) + PS(t− s, t)

)−2

(7)

If we now combine (6) and (7) we get

(
PS(t− s, t)PS(0, t− s)

PS(0, t− s)er(0,t−s)(1− PS(t− s, t)) + PS(t− s, t)

)2

er(0,t)

=

 PS(0, t− s)
PS(0, t− s)er(0,t−s) (1−PS(t−s,t))PS(t−s,t) + 1

2

er(0,t)

=

(
PS(0, t− s)

PS(0, t− s)er(0,t−s)( 1
PS(t−s,t) − 1) + 1

)2

er(0,t)

=

(
1

er(0,t−s)( 1
PS(t−s,t) − 1) + 1

PS(0,t−s)

)2

er(0,t)

Now it is only a matter of using Equation (4) to obtain the wanted result
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=
1(

er(0,t−s)
t∫

t−s
µ(x)er(t−s,x)dx+ 1 +

t−s∫
0

µ(x)er(0,x)dx

)2 e
r(0,t)

=
1(

t∫
t−s

µ(x)er(0,x)dx+ 1 +
t−s∫
0

µ(x)er(0,x)dx

)2 e
r(0,t)

=
1(

1 +
t∫
0

µ(x)er(0,x)dx

)2 e
r(0,t) = PS(0, t)2er(0,t) = P1(0, t).

In the following theorem the probability density of a reconstructed tree will be given.
Let 1 be the indicator function and let

1(ti, tj) := 1(branch joining the split at ti and split at tj)

where ti < tj . Also, let kij be the number of offsprings from the lineage at ti until
time tj .

Theorem 2. The density of a reconstructed phylogenetic tree is given by

f(~t,N, τ ;λ(t), µ(t)) =
2N−1

N !
P1(t1, T )2

N−1∏
j=2

λ(tj)P1(tj , T ) (8)

Proof. Splitting of lineages are independent events and thus the sought probability
is just the product of the probability of the branches where 1(ti, tj) = 1 for i =
1, ..., N − 1 and j = 2, ..., N . kij > 0 or kiN = 1. If we have two splitting times ti
and tj joined by a branch,1(ti, tj) = 1, we will with probability

Pkij (ti, tj)

have kij offsprings from time ti until tj . At time tj one of these lineages will split
with probability

λ(tj)kij .

The rest kij − 1 lineages must go extinct before time T , they do so with probability

P0(tj , T )kij−1.
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Even if one of the kij−1 lineages split in a later time than tj and then go extinct this
new lineage will not be considered since it has no ancestor in our tree. We also know
that all branches between a splitting time ts and tN = T must have ksN = 1, since
these are the final branches before time T . We also need to divide by the number
of distinct labellings of the unlabelled history. Note that tN is not a splitting event
but the present time T .

f(~t,N, τ ;λ(t), µ(t)) =

2N−1

N !

∏
1(ti,tj)=1
1≤i≤N−1
2≤j≤N

λ(tj)
( ∑
kij>0,kiN=1

kijP0(tj , T )kij−1Pkij (ti, tj)
)

We note that the summation is almost the same as in Lemma 1 apart from the
term P1(tj , T ). The second summation index, kiN=1, contributes in fact with only
one term, namely P1(ti, T ). Also, the last branches before present time will not
contribute with any λ(tN ) since there is no splitting event at time T . If we multiply
the nominator and denominator with P1(tj , T ) we get

f(~t,N, τ ;λ(t), µ(t)) =
2N−1

N !

N−1∏
j=2

λ(tj)
∏

1(ti,tj)=1
inner branch

P1(ti, T )

P1(tj , T )

∏
1(ti,tN )=1
outer branch

P1(ti, T )

=
2N−1

N !

N−1∏
j=2

λ(tj)
∏

1(ti,tj)=1
1≤i≤N−1
2≤j≤N

P1(ti, T )

P1(tj , T )

This product can be simplified by studying a specific tree (Figure 2). From one
splitting time ti there are two branches leading to, say, ti1 and ti2 , the contribution
from ti to our probability is

P1(ti, T )

P1(ti1,T )

P1(ti, T )

P1(ti2 , T )
.

From this we can conclude that P1(t1, T ) will be multiplied twice since t1 has two
branches and P1(ti1 , T ) or P1(ti2 , T ) will never become P1(t1, T ), therefore this term
is left alone. However, P1(t2, T ) will also be multiplied twice but once divided with.
That is, each splitting event is once an ending point and twice a starting point, except
the very first one which is only a starting point. P1(t3, T ) will also be multiplied
twice and then divided once with, and so on until P (tN , T ) which is simply equal
to 1. Thus we have our result
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f(~t,N, τ ;λ(t), µ(t)) =
2N−1

N !
P1(t1, T )2

N−1∏
j=2

λ(tj)P1(tj , T )

This likelihood function is the same as in Nee et al. (1994) except that they condition
on the survival of the two lineages from the first splitting event. Their likelihood
is this one divided with PS(t1, T )2. If we have no information of the length of the
lineage until the first splitting event we should begin the process at the first splitting
event t1 and thus condition on the survival of the first two branches.

2.1.2 Heterochronous data

Now we will change the underlying model to fit the data that has been sampled
throughout time. We will assume that a sampled lineage cannot be sampled again.
If we want to model disease transmission it is more realistic to assume that a sam-
pled lineage is terminated, i.e. becoming non-infectious. A sampling event in disease
modelling is equivalent to that the infected human is becoming aware of the disease
and either gets treatment or changes his/her behaviour. Especially since a sampling
from our virus data is a confirmed case of influenza this should result in the infected
individual becoming more careful. If we instead only want to model virus evolution
and for example studied the HIV virus it would make sense to allow for more than
one sample per lineage. However, if we are interested in the spreading of the disease
we would argue that a patient becoming aware of having HIV would become more
careful and then a sampling is equivalent to becoming non-infectious, even if the
virus can evolve inside this patient.

The process proceeds as follows, we start at time t = 0 with one lineage, at a given
time before time T a lineage can give birth (transmission event), die or become
sampled. A sampling before present time is in this model equivalent to extinction
since a sampled lineage stops. Lineages surviving to the present will be sampled
with a probability ρ. Additional to this process compared to the one in the previous
section is a sampling rate which we will denote ψ(t). If ψ(t) = 0 the process is
reduced to the process explained in the previous section. All lineages not being
sampled will be deleted since we want to model a reconstructed phylogeny. Figure
3 shows an example of a tree from a birth and death process where we can see
sampled and non-sampled lineages. In this model we do not only want to consider
splitting events where both the new lineages survived to present time, but also
the incorporation of sampled lineages in the past. In this process three things can
happen in a short time period h, a new lineage is born (a birth event), a lineage is
removed (a death or sampling event occur) or no event

11



Figure 3: The left tree illustrates a complete tree with 3 surviving lineages and 5 extinct
lineages. The right tree illustrates a tree under heterochronous sampling with 3 surviving
lineages and 2 extinct sampled lineages

n(t+ h) =


n(t) + 1 w.p. λ(t)n(t)h

n(t)− 1 w.p. (µ(t) + ψ(t))n(t)h

n(t) w.p. 1− (λ(t) + µ(t) + ψ(t))n(t)h

The derivation of the likelihood will be done in the same procedure as Stadler (2010).
First we will define the probabilities needed to derive the likelihood. These probabil-
ities will be obtained by differential equations. Then, the likelihood will be derived.

The two probabilities needed to derive the likelihood are the following:
PS0 (t, T ), the probability that a lineage alive at time t before present time has no
sampled extinct or extant descendants.
PS1 (t, T ), the probability that a lineage alive at time t before present time has one
sampled extant and no sampled extinct descendant.

We have used the superscript S for ’sampling’ to distinguish the probabilites in
the previous section. We know that PS0 (T, T ) = 1 − ρ and that PS1 (T, T ) = ρ. Let
us begin with how to get PS0 (t, T ). For a lineage alive at time t before present time
not to be sampled until time T it need either to die, remain not being sampled or
it can give birth to another lineage and both the lineages does not get sampled. If
we move a short time step h from t this would yield

PS0 (t+ h, T ) = µ(t)h+ (1− (λ(t) + µ(t) + ψ(t))h)PS0 (t, T ) + λ(t)PS0 (t, T )2h

12



⇔
PS0 (t+ h, T )− PS0 (t, T )

h
= µ(t)− (λ(t) + µ(t) + ψ(t))PS0 (t, T ) + λ(t)PS0 (t, T )2

When h→ 0 we have the following differential equation

d

dt
PS0 (t, T ) = µ(t)− (λ(t) + µ(t) + ψ(t))PS0 (t, T ) + λ(t)PS0 (t, T )2. (9)

In a similar fashion we obtain a differential equation for PS1 (t, T ). For a lineage alive
at time t to have exactly one sampled extant lineage at present time either nothing
happens and the lineage survives or a birth happens and either of the two lineages
does not get sampled (2PS0 (t, T )) and the other one is sampled at present time.

d

dt
PS1 (t, T ) = −(λ(t) + µ(t) + ψ(t))PS1 (t, T ) + 2λ(t)PS0 (t, T )PS1 (t, T ) (10)

Note, that if we instead wanted to calculate the probability for a lineage alive at
time t of having exactly one sampled lineage at an earlier time than present time
s < T the differential equation would look like

d

dt
PS1 (t, s) = −(λ(t) + µ(t) + ψ(t))PS1 (t, s) + 2λ(t)PS0 (t, T )PS1 (t, s)

Since, to have exactly one sampled lineage at time s the lineage at time t undergo
no change (no splitting or no termination) and then get sampled at time s or it is
splitted into two lineages and one of them get sampled at time s and the other one
doesn’t get sampled during the whole time PS0 (t, T ). But then we do not have an
initial condition. The solution to these differential equations, Equation 9 and 10,
for constant rates is given in Stadler (2010). For time dependent rates we will need
to solve the equations for the different rates. To solve the two cases below we used
Mathematica.

• if µ(t) = ψ(t) = 0

The solution to Equation (9) if we do not have sampling in the past or extinction is

PS0 (t, T ) =
(1− ρ)e

−
T∫
t
λ(x)dx

(1− ρ)e
−
T∫
t
λ(x)dx

+ ρ

= 1− 1

1− (ρ− 1)e
−
T∫
t
λ(x)dx−ln(ρ)

This is easily verified to be exactly the same as P0(t, T ) in Equation (2) (when
µ(t) = 0) which is not surprising since we do not have any sampling through time.
Also, if ρ = 0 then PS0 (t, T ) = 1 as expected. If we have no sampling in the past
nor today the probability of having no samples should be equal to 1.
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• if µ(t) = 0

The solution to Equation (9) if we have sampling through time but no extinction is

PS0 (t, T ) =
(1− ρ)e

−
T∫
t
λ(x)+ψ(x)dx

1− (1− ρ)
T∫
t

e
−
x∫
t
λ(s)+ψ(s)ds

λ(x)dx

If we plug in constant rates λ and ψ this will become exactly the same solution
as in Stadler (2010) Equation (1) when µ = 0. If we want to solve the differential
equation for general λ(t), µ(t), and ψ(t) we cannot find a closed expression and have
to use numerically methods.

The solution to Equation 10 is

PS1 (t, T ) = ρe
−
T∫
t
λ(s)+µ(s)+ψ(s)−2λ(s)PS0 (s,T )ds

=: ρP I1 (t, T ) (11)

Where we denote the integral part by P I1 (t, T )

Now we want to derive the density of a phylogenetic tree τ with heterogeneous
sampling. We will approach this in the same way as in Stadler (2010). Let fl(t) be
the probability density that a lineage l alive at time t evolved between t and present
time T as seen in τ , see Figure 4, then

d

dt
fl(t) = −(λ(t) + µ(t) + ψ(t))fl(t) + 2λ(t)PS0 (t, T )fl(t). (12)

This is the same kind of differential equation as Equation (10) but with a different
initial condition. Let s be the ending time of the lineage l, if sampling corresponds
to a termination of a branch we will have the following

fl(s) =


ρ if l has no descendant lineage at s = T

ψ(s) if l has no descendant lineage at s < T

λ(s)fl1(s)fl2(s) if l has two descendant lineages l1 and l2

(13)

The solution to 13 will be

fl(t) =


PS1 (t, s) if l has no descendant lineage at s = T
ψ(s)PS1 (t,s)

ρ if l has no descendant lineage at s < T
λ(s)fl1 (s)fl2 (s)P

S
1 (t,s)

ρ if l has two descendant lineages l1 and l2
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=


PS1 (t, T ) if l has no descendant lineage at s = T
ψ(s)PS1 (t,T )

PS1 (s,T )
if l has no descendant lineage at s < T

λ(s)fl1 (s)fl2 (s)P
S
1 (t,T )

PS1 (s,T )
if l has two descendant lineages l1 and l2

(14)

The last step uses that
PS1 (t,s)

ρ = P I1 (t, s) =
P I1 (t,T )

P I1 (s,T )
=

PS1 (t,T )

PS1 (s,T )
.

T

tl

l1 l2

t0=0

t1

t2

u1

r

s

Figure 4: A tree illustrating how to derive the density for a phylogenetic tree with hete-
rochronous sampling. For a lineage l alive at time t the derivation of the density fl(t) that
this lineage will evolve as seen in the tree is done by putting up a differential equation. The
initial condition depends on what happens with l. In this figure l split into l1 and l2 at time
s.

Before, when we had homochronous sampling, the data were the splitting times.
Now, when we have heterochronous sampling, additional to the splitting times ~t we
will have sampling points. Let m be the number of sampled lineages in the past and
let k be the sampled lineages at present time. Let us denote the sampling times with
~u = {u1, ..., um+k}. We will have k +m− 1 splitting events, ~t = {t1, ...tk+m−1}, let
t0 = 0 be the start of the process. Some of these splitting events will be connected
to another splitting event, some to sampling events and some to present time. The
only difference from Equation (8) is that we also need to consider the splitting events
ti connected to sampling events ui. To obtain the likelihood for the whole tree we
start with the first lineage f(t0) and recursively work our way through the tree.
Let us look at the tree in Figure 4. If we start the process at t0 then k = 2 and
m = 1. Denote the left branch at t1 as we have done in the figure with l and the
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right branch with r, then

f(t0) =
λ(t1)fl(t1)fr(t1)P

S
1 (t0, T )

PS1 (t1, T )

fr(t1) = PS1 (t1, T )

fl(t1) =
λ(t2)fl1(t2)fl2(t2)P

S
1 (t1, T )

PS1 (t2, T )

fl1(t2) =
ψ(u1)P

S
1 (t2, T )

PS1 (u1, T )

fl2(t2) = PS1 (t2, T ).

All togheter we have

f(t0) =
λ(t1)λ(t2)ψP

S
1 (t0, T )PS1 (t1, T )PS1 (t1, T )PS1 (t2, T )PS1 (t2, T )

PS1 (t1, T )PS1 (t2, T )PS1 (u1, T )

=
λ(t1)λ(t2)ψ(u1)P

S
1 (t0, T )PS1 (t1, T )PS1 (t2, T )

PS1 (u1, T )
.

We note as in the proof of Theorem 2 that each splitting event is once an ending
point and twice a starting point. All k+m sampling points are ending points. The
main difference from homochronous sampling is the m sampling points in the past.
So, much like in Theorem 2 but with m additional ending points in the past we get

f(~t, ~u, τ ;λ(t), µ(t), ψ) ∝ PS1 (t0, T )

k+m−1∏
j=1

λ(tj)P
S
1 (tj , T )

m∏
j=1

ψ(uj)

PS1 (uj , T )
(15)

Since all trees we do inference on have survived we need to condition on at least one
sampled lineage. That is, we need to divide Equation (15) with 1− PS0 (0, T ). The
data we are considering here start at the MRCA (most recent common ancestor).
We do not know how long the first lineage has lived before the first speciation event
occurred, therefore, as in Hansson (2011), we will put the first known speciation
event to 0.
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In the data we consider here there is only one last lineage in each phylogeny reaching
the last sampling time. Therefore it is not as relevant to speak of a probability for
that lineage to be sampled at present time and it is better to remove ρ from the
model. In this case ρ = 0 and the condition to Equation (9) is PS0 (T, T ) = 1. This
was also done in Stadler et al. (2012). We could argue that when we are considering
such fast evolving organisms as viruses, and especially influenza viruses, we cannot
have a positive probability of sampling this very moment, but we can instead have
a rate of sampling and a probability of being sampled in a time interval. Let m
denote the sampling events, we will then have m−1 splitting events. The differential
Equation (12) will look the same except for the initial condition.

fl(s) =

{
ψ(s) if l has no descendant lineage

λ(s)fl1(s)fl2(s) if l has two descendant lineages l1 and l2
(16)

The solution to this is

fl(t) =


ψ(s)P I1 (t,T )

P I1 (s,T )
if l has no descendant lineage

λ(s)fl1 (s)fl2 (s)P
I
1 (t,T )

P I1 (s,T )
if l has two descendant lineages l1 and l2

(17)

And our likelihood becomes

f(~t, ~u, τ ;λ(t), µ(t), ψ(t)) ∝ P I1 (t0, T )

m−1∏
j=1

λ(tj)P
I
1 (tj , T )

m∏
j=1

ψ(uj)

P I1 (uj , T )
(18)

Note, for Equation (18) to be a density it should be divided by the number of
distinct labellings of an unlabelled history, m!/2m−1. This is however a constant
and is disregarded in the maximization of the likelihood. This will lead to positive
log-likelihoods.
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3 Method

In this section we will first explain the different rate functions used to do inference
on our set of phylogenies. Then we will try to validate how well our models perform
with simulations. We will also try to investigate how well the numerical differential
equation works and for what parameter values it may not work. Lastly, we will
explain how the inference on the empirical data was done.

3.1 Periodic Rate functions

To do inference the rate functions need to be specified. Previously, mainly constant
rate models have been used when using birth and death models on heterochronous
data (Didier et al. 2012; Stadler et al. 2012). In Section 4.1 we will go through the
data used in this study. But first, let us only study the Ns1/2 phylogeny in Figure 5.
There is clearly a periodic behaviour; once a year there are several new bifurcation
events (except in the end of 2000 and the beginning of 2001) and then the lineages
dies out (are sampled). This indicates that constant rates for speciation and extinc-

1993 1995 1997 1999 2001 2003 2005

Figure 5: NS1/2 phylogeny. Time is measured in years. There is bursts of speciation events
before every new year.
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tion rates seem unlikely. Also simple decreasing or increasing functions for the rates
does not seem likely. We will instead try to use different periodic functions. We
will also assume that the sampling rate is constant even though one could specify a
non-constant function as well.

First a periodic speciation rate and a constant extinction and sampling rate will
be used. We can then directly use our likelihood function to do inference. We
will put λ(t) = α sin(βt) + λm. With this function for the speciation rate α is the
amplitude, β the period and λm is a value larger or equal to α ensuring that the
speciation rate is never negativ. λm is also the initial speciation rate. If α is 0 we
get a constant rate and thus if the underlying data is generated from a constant
speciation rate we could expect the estimated speciation rate either to have a very
low amplitude (low α) or very long period (low β). By using the sine function we
decide that the speciation rate begins at the value λm and then increases if the
amplitude is positive or decreases if the amplitude is negative. We will also add
an extra model with an additional parameter δ to govern the shift of the period,
λ(t) = α sin(βt + δ) + λm. Here λm is not the initial speciation rate but the value
the speciation rate will oscillate around. We will also add models with a periodic
extinction rate, µ(t) = α cos(βt+δ)+µm, again α ≤ µm to ensure that the extinction
rate is positive. Here µm is the value the periodic extinction rate oscillate around. If
β, the parameter corresponding to the period, is equal to 1 we would have a period
of 2π ≈ 6.28 years. Thus, given the influenza phylogenies it is expected to get an
estimated β close to 6.28 value to get a yearly period. The models used in this study
are listed In Table 1.

Table 1: Different models

Model λ(t) µ(t) ψ(t)

CS λ 0 ψ
CS & CE λ µ ψ
PS α sin(βt) + λm 0 ψ
PS & CE α sin(βt) + λm µ ψ
PS shift & CE α sin(βt+ δ) + λm µ ψ
CS & PE λ α cos(βt) + µm ψ
CS & PE shift λ α cos(βt+ δ) + µm ψ
PS & PE α1 sin(β1t) + λm α2 cos(β2t) + µm ψ

CS stands for constant speciation, CE constant etinction, PS periodic speciation, PE periodic
extinction
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3.2 Simulations and validation

There exist simulation tools for reconstructed trees, where all extinct trees have
been pruned off, under homochronous sampling and time dependent rates with the
R package TESS (Höhna 2013) and for trees under heterochronous sampling but
only with constant rates with the R package TreeSim (Stadler 2011). However,
there does not exist a simulation tool for trees under heterochronous sampling and
time dependent rates. Since we cannot simulate sampling through time with non-
constant rates, we need verify if these models work or not in other ways. We will
first examine the likelihood surface for constant rates to see if there seems to be
an unique maximum. Secondly, we will simulate trees under constant rates and
examine how accurate the inference is. We will choose parameter values so that
the simulated trees will be of similar age as the virus phylogenies, in Section 4.1
the data will be presented more thoroughly. For one simulation test we will use
the estimated values we got from our analysis on one of the virus trees. By both
examine the likelihood and do inference on simulated data we want to be able to
say if it is hard to distinguish between the extinction rate µ and the sampling rate
ψ. Since µ removes a lineage from the tree and ψ terminate a lineage it could be
hard to distinguish between the two. Thirdly, we will simulate trees under constant
rates, and then do the inference assuming a periodic speciation rate. We expect
the inferred rates to behave in certain ways given that the models work as we want
them to, e.g. if we use periodic functions on constant rates we want the period to
be really long or the amplitude to be low, to mimic a constant rate.

3.2.1 Likelihood surface

We begin with simulating trees with 400 tips. We put the speciation rate and the
extinction rate to known constants, λ = 3, µ = 2.52 and ψ = 0.28. This will often
give an age over 10. We chose 400 tips to be a little smaller than the Influenza A
phylogenies. We use the R package TreeSim to simulate the trees. First we need
to know how the likelihood surface looks, to ascertain that the maximum exist. We
put the speciation rate to a fixed (the true) value and vary the extinction rate and
sampling rate and calculate the likelihood for each of these values for the simulated
tree. Figure 6a and Figure 6b shows the result for one such simulated tree. In this
Figure and for others not shown here the results look good, it seems like we have
an unique maximum. However, here the true value for λ is fixed and we only need
to estimate two parameters.
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Figure 6: Likelihood surface when λ is fixed and µ and ψ is varied. True values are λ = 3,
µ = 2.52 and ψ = 0.28

3.2.2 Simulated data inferred with constant rates

We simulated 500 trees with 600 tips to be of similar size as the virus phylogenies
in this thesis. The true rates were λ = 3, µ = 1.89, ψ = 0.81 and R0 = 1.11.
The values was chosen because then the age of the trees usually becomes between
8 and 15, a similar age as the virus phylogenies. We analysed these trees assuming
constant rates and a summary is shown in table 2. The death rate is the parameter
that varies most but R0 and the total recovery rate µ + ψ is well estimated. The
result is shown in Appendix C and Table C.1 present the results for the 100 first
simulations. The relative error for λ is defined as

500∑
i=1

|λ̂i−λ|
λ

500
.
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Table 2: Summary simulation when inference was done assuming constant rates

parameter True value mean s.e rel. error Q1 median Q3

λ 3 3.008 0.916 0.255 2.2 2.867 3.589
µ 1.89 1.731 1.179 0.532 0.719 1.621 2.529
ψ 0.81 0.942 0.279 0.301 0.718 0.910 1.166
µ+ ψ 2.7 2.673 0.915 0.284 1.874 2.532 3.267
R0 1.111 1.141 0.064 0.046 1.092 1.129 1.176

We simulated 500 trees with constant rates. All trees have 600 tips.

As already stated the estimates for µ varies some, but the ratio between λ and µ+ψ
is very well estimated. The reason is a correlation between λ and µ + ψ as can be
seen in Figure 7.
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Figure 7: Each point represent the estimated value of λ and the estiamted µ + ψ for the
500 simulated trees when the true values are λ = 3, µ = 1.89 and ψ = 0.81. We see a
correlation between estimated λ and µ+ ψ.

Additionally to the simulation above we also simulated 500 trees with the same
rates as the ones inferred from the phylogeny for the genome segment NA (neu-
raminidase), assuming constant rates. The number of tips was set to the same as
in the phylogenies. The results are shown in Table 4. Here the death rate µ is
poorly estimated. There is a correlation between the estimated death rate µ and
the estimated sampling rate ψ. If the death rate is small the sampling rate will
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compensate by become larger. In Figure 8 the correlation between µ and ψ and also
between λ and µ + ψ is shown. However, the relation between the birth rate and
the recovery rate µ+ ψ is well estimated, thus generating good estimates of R0.

Table 3: Summary simulation when inference was done assuming constant rates

parameter True value mean s.e rel. error Q1 median Q3

λ 5.6451 4.983 0.861 0.149 4.634 4.816 5.115
µ 2.3590 0.744 1.192 0.767 0.158 0.420 0.899
ψ 3.0703 3.840 0.400 0.264 3.698 3.908 4.077
µ+ ψ 5.4293 4.584 0.871 0.185 4.225 4.422 4.698
R0 1.0397 1.090 0.044 0.051 1.057 1.084 1.117

We simulated 500 trees with constant rates. All trees have 687 tips to be similar in size to the virus
phylogenies.
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Figure 8: Each point represent an estimated value for the 500 simulated trees when the true
values are λ = 5.6451, µ = 2.3590 and ψ = 3.0703. Left figure shows correlation between λ
and µ+ ψ. Right figure shows correlation between ψ and µ.
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3.2.3 Simulated data inferred with periodic speciation rate

We wanted to investigate how often we would chose a periodic speciation rate model
in favour of a constant rate model if the underlying data was from constant rates.
Therefore we simulated 100 trees and made inference with both the constant rate
model and the periodic speciation rate model. The true constant rates was set to
λ = 3, µ = 1.89 and ψ = 0.81. A comparison of the AIC values between the models
showed that for 88 of the trees a constant rate model would have been chosen. Of
the 12 trees where a periodic speciation model is chosen 7 of inferred rates mimics
a constant rate and thus leaving us 5 badly inferred cases. The inferred speciation
rate for these 12 trees are shown in Figure 9. The likelihood for every of these 100
trees and the two different models are shown in Appendix C and Table C.2.

0 2 4 6 8

0
2

4
6

time

0 2 4 6 8

0
2

4
6

speciation rate

time

0 2 4 6 8

0
2

4
6

time

0 2 4 6 8

0
2

4
6

time

0 2 4 6 8

0
2

4
6

time

0 2 4 6 8

0
2

4
6

time

0 2 4 6 8

0
2

4
6

time

0 2 4 6 8

0
2

4
6

time

0 2 4 6 8

0
2

4
6

time

0 2 4 6 8

0
2

4
6

time

0 2 4 6 8

0
2

4
6

time

0 2 4 6 8

0
2

4
6

time

Figure 9: Data was simulated with constant rates. Inference was done assuming both
constant rates and then assuming a periodic speciation rate. When comparing AIC values
for the two cases 88 trees where best fitted by a constant rate model. For the 12 trees
where a periodic speciation rate model was chosen 7 of the inferred speciation rates mimics
a constant rate, as shown in this figure.
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Then we wanted to determine how the inferred periodic rate behave when the true
speciation rate is constant. We simulated additional 100 trees with 600 tips and
again the true rates where λ = 3, µ = 1.89, ψ = 0.81. Inference typically gave a
very low amplitude for the speciation rate. The mean of the amplitude for the 100
trees is 0.43, the median is 0.197, first quantile 0.089 and the third quantile 0.45.
We have a few amplitudes up to a value of 5. In Figure 10 examples of the inferred
speciation rate are shown, all amplitudes are plotted in Figure 11. In the cases
where the amplitude is large the parameter β, governing the period, is instead small
which corresponds to a long period. In Figure 12 we have plotted the amplitude
against the period. In all but 6 of the 100 cases we have either a small amplitude
or a long period to mimic a constant rate. The inferred R0 is shown in Figure 13.
Sometimes the inferred initial speciation rate is a little below the true value. The
initial speciation rate and, thus the value oscillated around has a mean of 2.59, a
median of 2.34 and a standard error of 1.01.
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Figure 10: Inferred speciation rate when underlying data is from a constant rate model
with λ = 3. We can see that the inferred speciation rate has a low amplitude

In 11 of the 100 cases the extinction rate µ is estimated to be less than 0.1, but
instead the sampling rate is estimated to at least 1.27. In all, it seems like if the
phylogenetic tree is generated by constant rates we will discover this both by the
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Figure 11: We simualted 100 trees under constant rates and did estimation with a periodic
speciation rate. Here the inferred amplitude of the speciation rate is plotted.

amplitude being really low or the period to be very long and otherwise by a model
comparison when the constant rate model will be chosen. In table 4 a summary of
the parameters able to compare to the true one is shown. The extinction rate µ is
not well estimated.

Table 4: Summary of simulation with inference assuming a periodic seciation rate

parameter True value mean s.e rel. error Q1 median Q3

µ 1.89 1.574 1.524 0.685 0.404 1.296 2.041
ψ 0.81 0.976 0.367 0.438 0.7504 0.9907 1.290
µ+ ψ 2.7 2.55 1.211 0.356 1.727 2.260 2.777
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Figure 12: We simualted 100 trees under constant rates and did estimation with a periodic
speciation rate. Here the inferred amplitude is plotted against the inferred period. Clearly,
if the amplitude α is large the parameter β governing the period becomes very small. A
small β gives a long period.
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Figure 13: The inferred R0 for 100 trees simulated under a constant rates but inferred
using a periodic speciation rate. The darker line is the true value.
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3.2.4 Differential equations

We are using numerical differential equations to obtain the probabilities needed in
the likelihood. What we can test is wheter these methods obtain a good approxima-
tion where an analytically answer exists. In section 2.1.2 we gave the analytically
answer for PS0 (t, T ) when µ(t) = ψ(t) = 0 and when µ(t) = 0.
First a comparison of the numerical and analytically answer will be done for the
case µ(t) = ψ(t) = 0 and then a comparison for the case µ(t) = 0. We will use
T = 13 to be in the lower age of the virus phylogenies.

If µ(t) = ψ(t) = 0 we had

PS0 (t, T ) =
(1− ρ)e

−
T∫
t
λ(x)dx

(1− ρ)e
−
T∫
t
λ(x)dx

+ ρ

When λ(t) = λ the approximation is identical to the analytical values. In Figure 14
two examples are shown. For other values on λ and ρ the result is the same.
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Figure 14: analytical and numerical answer to PS
0 (t, T ) in case of µ(t) = ψ(t) = 0 and

λ(t) = λ. In these examples λ = 1. The grey line is the numerical solution and the black
line is the analytical solution

However, it is more interesting to test the approximation when we have a periodic
speciation rate λ(t) = α sin(βt) + λm, α ≤ λm. Figure 15 show the result when
α = 0.9, β = 6 and λm = 1. We chose β = 6 since this is close to the value we
almost always got from our inference. Here we can see some slight deviations from
the true values.
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Figure 15: analytical and numerical answer to PS
0 (t, T ) in case of µ(t) = ψ(t) = 0 and

λ(t) = α sin(βt) + λm. In these examples α = 0.9, β = 6 and λm = 1. The grey line is the
numerical solution and the black line is the analytical solution
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It is for parameter values where the speciation rate is really low together with a very
low probability of sampling today that the approximation performs badly. This is
the case if ρ is very small and if α is close to λm. If we have an α close to λm we
will often have a speciation rate close to zero. This in combination with a period
that yields most time where the speciation rate is close to 0 generates a really bad
approximation. That is, parameter values corresponding to a small expected tree
size generates a bad approximation. The virus phylogenies we are to make inference
on are however not of a small size. If we change λm to a higher value we again
have a good approximation as shown in Figure 16. However, when we introduce the
sampling rate this bad approximation disappears.
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Figure 16: analytical and numerical solution to PS
0 (t, T ) in case of µ(t) = ψ(t) = 0 and

λ(t) = α sin(βt) + λm. The grey line is the numerical solution and the black line is the
analytical solution. In the left figure we can see a really bad numerical solution.

Now, let us examine the case when only µ(t) = 0. We had the result

PS0 (t, T ) =
(1− ρ)e

−
T∫
t
λ(x)+ψ(x)dx

1− (1− ρ)
T∫
t

e
−
x∫
t
λ(s)+ψ(s)ds

λ(x)dx

Since we assumed in the analysis ρ = 0 we will do the same here. For the previous
case this was not relevant since then PS0 (t, T ) was always 1. This seems to work fine
as well. In Figure 17 have we plotted some different scenarios where α = 0.3 and
β = 4. For more values, see Appendix C and Figure C.4
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Figure 17: analytical and numerical solution to PS
0 (t, T ) in case of µ(t) = 0 and λ(t) =

α sin(βt) + λm. The grey line is the numerical solution and the black line are the analytical
solution
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3.3 Inference

The likelihood function, Equation 18, was implemented in R for the given models
in Table 1. Optimization and estimation was performed with the function Optim
and the Nelder-Mead method (Nelder and Mead 1965). The optimization had to
be run several times when the periodic rate functions were used. Both numerical
integration and differential equation solver was needed and thus even more slowed
down the inference. In a maximum likelihood approach the time for optimization
is still tractable. R code for the constant rate model and the periodic speciation
and extinction model is given in Appendix D. To compare the models we used the
Akaike information criterion (AIC)

AIC = 2k − 2 log(L),

where k is the number of parameters and L is the maximized likelihood for the
model. The chosen model is the one with lowest AIC score.
To estimate the basic reproductive number given constant rates we use the following
(Stadler et al. 2012)

R0 =
λ

µ+ ψ
.

Additionally, if varying rate functions are used a reproductive number over time
can be obtained, R(t), the effective reproductive number. The effective reproduc-
tive number is the average number of infections caused by an infectious individual in
a population where not everyone is susceptible. R0 is defined as the average number
one initial infective infects when everyone else is susceptible. If this first infected
person infects on average more than one other person, if R0 ≥ 1, an outbreak is pos-
sible. Since R0 is defined when everyone is susceptible and R(t) is defined when not
everyone is necessarily susceptible we have that R(t) ≤ R0 and if a large proportion
of the population is susceptible in the beginning of an infection maxR(t) ≈ R0.
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4 Analysis

4.1 Data

The influenza virus is a single-stranded (negative) RNA virus of the family Or-
thomyxoviridae. One of the most important characteristic of RNA viruses is their
very high mutation rate (Drake et al. 1998). In this study we will use sequence-data
from Influenza A virus, which causes the majority of influenza infections. Different
types of influenza A virus can infect humans, birds, poultry and other mammals.
Some well knowns variants are viruses causing bird flu and swine flu. Influenza A
virus are categorised by their membrane surface glycoproteins hemagglutin (HA)
and neuraminidase (NA), e.g. H5N1 bird flu. Hemagglutin is responsible for the
binding to host cells and neuraminidase helps in the virion release from host cells.
The Influenza genome comprises eight segments. The data we have are from these
eigth segments, two from HA and NA proteins, additionally we have data for M1
(matrix protein, envelope of the virus) and M2 protein (ion channel protein) labelled
M1/2, three different viral polymerase PA, PB1 and PB2 (associated with replica-
tion and transcription), nucleocapsid protein NP and non-structural proteins NS1
and NS2 labelled NS1/2.

The models explained in Section 3.1 were applied to the 8 different phylogenetic
trees of the genome segments of H3N2 human influenza A virus from New York
State (USA) from Rambaut et al. (2008). The different segment trees used in this
thesis is summarized in Table 5 and the phylogenies are plotted in Appendix B.

Table 5: The 8 different genome segments. All phylogenies have 687 tips

Name Age

1. NA 14.684
2. HA 12.961
3. PA 13.719
4. PB1 15.583
5. PB2 14.022
6. M1/2 12.509
7. NP 13.833
8. NS1/2 12.657
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4.2 Results

The result from the AIC comparison is shown in Table 6. One main result is that
if a periodic rate function is included for the speciation or extinction rate we get
a higher likelihood. The likelihood is often increased so much it cannot only be
explained by the additional parameters.

Table 6: Chosen models and the estimated parameter values for each phylogeny.

Name Periodic Model λm/λ µm/µ ψ α1 β1 α2 β2 δ

NA speciation 9.50 6.22 1.39 -8.49 6.499

HA speciation shift 6.699 4.57 1.28 -5.976 6.33 0.409

PA speciation shift 9.33 6.958 1.45 7.88 6.53 3

PB1 speciation shift 7.27 4.06 2.2 -4.058 6.55 1.04

PB2 spec. and ext. 5.23 5.26 2.37 -4.27 6.32 5.08 6.16

M1/2 extinction shift 18.58 12.69 2.32 8.89 6.04 2.0

NP spec. and ext. 9.94 10.04 3.10 -9.31 2.28 9.11 6.28

Ns1/2 speciation shift 7.074 4.29 2.55 -5.68 6.36 1.26

All phylogenies is best explained by a periodic rate model. The period is also almost every time
estimated close to a yearly period.

The parameter β representing the period is always estimated to a value close to
6.3 which is the value corresponding to yearly period. As an example we will show
the periodic rates for the best fitting model for the Ns1/2 and NP phylogeny in
Figure 18 and Figure 19. The best fitting model for the Ns1/2 phylogeny is the one
with a periodic speciation rate and a constant extinction rate and the best fitting
model for the NP phylogeny is the one with both periodic speciation and extinction
rate. The inferred period for Ns1/2 is almost exactly yearly. We can see that every
big new speciation period is correctly inferred. We can also see that the periodic
extinction rate fits well in the NP phylogeny. All phylogenies and the inferred rates
for the best fitted model can be found in Appendix B. At first one can wonder why
the speciation rate does not have a yearly period for the NP phylogeny, but then
examine the estimated R(t) in Figure 19. In contrast to a periodic speciation rate
and a constant extinction rate where the same values return periodically we can
here have a R(t) that varies between years. For example, in year 2003 there are
very few new speciation events, and this is captured in the estimated R(t).
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Figure 18: The best fitted model for the Ns1/2 phylogeny was the periodic speciation
model. (a) The phylogeny and the best fitted periodic rate. (b) Estimated R(t) from the
best fitted model
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Figure 19: The best fitted model for the NP phylogeny was the periodic speciation and
extinction model. (a) The phylogeny and the best fitted periodic rate. (b) Estimated R(t)
from the best fitted model
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Table 7: Summary of estimated R(t) for the best fitted models

Phylogeny NA HA PA PB1 PB2 M1/2 NP Ns1/2

Min 0.1328 0.1236 0.1725 0.7046 0.0752 0.7774 0.0295 0.1775
Max 2.3642 2.1667 2.04680 3.3015 3.7056 3.0359 4.7629 1.8909

All segments except PB2 and NP have the same maximum of R(t) every year. The
maximum of R(t) for PB2 ranges from 2.4565 to 3.7055. For the NP segment the
maximum of R(t) each year varies from values below 1 year 1995, 1998 and 2003 up
to the highest value of 4.7629 year 1999.

5 Discussion

The two goals of this thesis were to investigate if we can detect the seasonal be-
haviour of influenza virus from its sequence data and to estimate the effective re-
productive number. This periodical behaviour can be detected and our estimated
effective reproductive number is in line with previous studies. In the next section
we will discuss this further and we will also discuss the difficulties using our models.

5.1 Reproductive number

We have inferred the ratio between the birth rate λ(t) and the recovery rate µ(t)+ψ
for the eight different segments of H3N2 human influenza A virus. Thus we have
eight different reproductive rates for the same virus. To be able to do a comparison
with the results of other studies, we calculated the mean of all yearly maximal R(t)
and they are shown in Table 8. It is not obvious that we can take the mean of all
the segments maximal R(t) to get a good representing value. However, the effective
reproductive number R(t) for the different segments do not differ dramatically from
each other except for the two segments PB2 and NP. The estimated R(t) of segment
PB2 is similar to the others in early years but then increases. For the segment NP
the mean of the yearly maximal estimated R(t) is 2.647.

Table 8: Mean of maximum of R(t) each year

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

2.582 2.676 2.264 2.789 2.585 2.398 2.898 2.466 2.562 2.881 2.357 2.710 2.743

The estimates in Table 8 are as high or higher than the values of the effective
reproductive number obtained for seasonal influenza according to Chowell et al.
(2008) who reported values of 0.9-2.1. However, many different values are reported

37



and Dushoff et al. (2004) claim that appropriate values of R0 for the seasonal in-
fluenza are 4-16, while Keeling and Rohani (2008) report R0 of 3-4. Barnea et al.
(2011) who have done analyses on H3N2 subtype, but in Israel, get R0 = 2.7− 8.0
but a lower value for the effective reproductive number of 1.12-1.33. They define
Reff = R0S0/N where S0 is the initial number of susceptibles in the population
and N the population size. In all, this indicates that our estimates here are quite
reasonable.

5.2 Yearly Period

In this study, the inferred period for influenza virus is close to a yearly one. This
yearly period could be an artefact of the sampling strategy of the influenza virus. In
New York State, USA, the influenza season is during winter time. It is within this
time span the sampled virus data come from. If someone gets sick with influenza
outside this period he or she is unlikely to be diagnosed with influenza and in this
case would not come into our sample. We will need better simulation tools to verify
if this could be the reason for the yearly period.

What we did was additional analyses on a phylogenetic tree of the measles virus
reconstructed from samples between 1979 and 2009 (Bedford et al. 2011). There
was exactly one year in between samplings between the years 1996 and 2009. We
were interested if we for the measles phylogeny would get an inferred yearly period
as well. To do inference, a model with a periodic speciation rate and a constant
extinction rate was used. The inferred period for this tree was 3.3 years. This
indicates that sampling may not influence the inferred period and that it is possible
to detect the seasonal behaviour of viruses from its sequence data.

5.3 Studied models and possible drawbacks

We have used different periodic functions for the speciation and extinction rate.
The reason for this was that we wanted to model the periodic outbreaks of influenza
virus. More specifically the sine function was used for the speciation rate and the
cosine function for the extinction rate. One restrain of the periodic functions used
in this thesis is that every periods maximum and minimum will be the same. It is,
however, very likely that the maximum of the speciation rate for different years will
differ in reality.

When trying to infer the periodic rates we need to run the optimization several
times to get the global maximum likelihood. When using the sine function and
the given parameterization, several different values of the parameters can give the
same actual rate, since −α sin(−βt) = α sin(βt). That is not the only difficulty.
For example, let us examine the periodic speciation model without a shift. If we
fix all parameter values (MLE’s) except the parameter β governing the period and
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examine the likelihood, we typically get several local optima as in Figure 20. Even
though the value corresponding to a yearly period gives the highest likelihood we
have several local maxima where the optimization can get stuck.
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Figure 20: Likelihood for PB2. We have fixed every parameter except β governing the
period and plotted the likelihood for different values of β

As said in Section 3.2.2 we cannot verify that the estimates will be correctly esti-
mated if the underlying rates are periodic, since we cannot do simulations. However,
for constant rates the likelihood function produces reliable estimates, especially of
R0. If the inference is done assuming periodic rates we get estimates relatively close
to the true values. In most of the 100 trees the inferred speciation rate either has a
low amplitude or a long period to mimic a constant rate. The constant rate model is
also chosen in favour of the periodic speciation model if the data has been simulated
under constant rates.

One problem previously addressed in section 3.2.4 is the numerical solutions to the
probability PS0 (t, T ). The approximation worked fine, except for values when we had
a prolonged and very low speciation rate, a very low probability of being sampled
today and no sampling rate. Even though this is concerning, the most important
thing for us here is that the approximation works fine when the sampling rate was
introduced.
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6 Summary and future work

6.1 Summary and conclusions

In this thesis we have used birth and death processes on phylogenetic trees re-
constructed from heterochronous sequencing. More importantly, we have tried to
extend this to time dependent rates, specifically periodic ones. We derived the like-
lihood and used this to perform inference on influenza A virus phylogenies for eight
different gene segments from New York State, USA. The influenza virus is known
to come in seasons and we were interested if we could detect this from its sequence
data. As a main result, we always chose a periodic rate function over the constant
rate function. The inferred period is always close to a yearly one. This could be
an artefact of the sampling strategy but we need better simulation tools to verify
if this is the case. We are able to estimate the effective reproductive number over
time R(t). The mean of the maximum estimated effective reproductive number of
these 8 segmnents is at most 2.88. The inferred effective reproductive number is
also in line with previous studies, even if it is hard to compare the results when we
do not use the exact same datasets. Furthermore, the data here is a set of sampled
viruses which leads to that the speciation/infection rate is expected to be lower than
inferred infection rates in studies using additional data.

One important aspect of being able to use time dependent rates is that we can allow
for periods of higher extinction rate than speciation rate. This is important not
only to be able to model the initial exponential increase of an epidemic, as is the
case for constant rates, but also the process when the number of susceptibles in the
population decreases. This is something we are able to catch with our periodic time
dependent rates.

6.2 Future work

The most important work to be done is to create ways of simulating trees with
time dependent rates and heterochronous sampling to be able to verify how well
our models perform. If we assume that sampling means a termination of a branch
and that the extinction rate and sampling rate is constant, this should not be too
difficult. To do this, we need to be able to simulate complete trees with a time
dependent speciation rate. Then, at every extinction event we remove the lineage
with a probability µ

µ+ψ and keep the extinct lineage with a probability ψ
µ+ψ , the

latter becoming a sampling event.

In this thesis we assume that the probability of sampling today, ρ, is 0. Instead of
this, it is possible to do analysis assuming different values on ρ. We started this
for the periodic speciation rate model, but due to time limitations it was not be
possible to do it for every model and with enough different values on ρ.
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Another assumption made in this thesis is that a sampling is equivalent to a removal
of the lineage. This could be a too big simplification of the reality for influenza virus.
But on the other hand, we usually do not get infected by the exact same virus strain
twice. Moreover, this assumption makes it possible for us to simulate trees with con-
stant rates and heterochronous sampling. We believe that multiple sampling is most
relevant for fossils rather than influenza virus. Despite all this, we still believe one
should try to use multiple sampling for different virus phylogenies. Multiple sam-
pling makes sense for viruses which stays a long time in the host, such as HIV and
HSV (herpes simplex virus).

It would be interesting to do inference with time dependent rates on other types
of diseases, where something other than a periodic rate function would make sense.
For example, for HIV we could expect the saturation phase just to be reached which
makes it different from the influenza virus. We could also expect a big fraction
of individuals infected with HIV being sampled, further distinguishing it from the
influenza virus studied in this thesis.
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A Equality between Equation 2 and Thompson (1975)

In Section 2.1.1 we claim that the probability of having N species at a time T if we
had one species at time t, PN (t, T ), in Equation 2 becomes the same as in Thompson
(1975) if we have constant rates λ(t) = λ, µ(t) = µ and ρ = 1. The equations where

P0(0, t) = 1− PS(0, t)

P1(0, t) = PS(0, t)2er(0,t)

PN (0, t) = PS(0, t)2er(0,t)
(

1− PS(0, t)er(0,t)
)N−1

First, when considering constant rates it is the length of time that is important since
PN (t + x, T + x) is the same for all values of x. We will therefor instead use the
notation PN (s) where s = T − t. The probabilities of N descendants from a single
ancestor after a time s in Thompson (1975) are

p0(s) =
µ(1− e−(λ−µ)s)
λ− µe−(λ−µ)s

p1(s) =
(λ− µ)2e−(λ−µ)s

(λ− µe−(λ−µ)s)2

pN (s) = (λ/µ)N−1p1(s)p0(s)
N−1

Our Equation (3) whith constant rates becomes

r(t, T ) = −(λ− µ)(T − t) = −(λ− µ)s,

and Equation (4) becomes

PS(t, T ) = (1 +

T∫
t

µer(t,τ)dτ)−1 = (1 +

T∫
t

µe−(λ−µ)(τ−t)dτ)−1

=
1

1 + −µe−(λ−µ)(T−t)+µ
λ−µ

=
λ− µ

λ− µe−(λ−µ)(T−t)
=

λ− µ
λ− µe−(λ−µ)s

.

Now it is straightforward to show that the probabilities are the same for constant
rates.

P0(t, T ) = 1− PS(t, T ) = 1− λ− µ
λ− µe−(λ−µ)s

=
µ− µe−(λ−µ)s

λ− µe−(λ−µ)s
= p0(s)

P1(t, T ) = PS(t, T )2er(0,t) =

(
λ− µ

λ− µe−(λ−µ)s

)2

e−(λ−µ)s = p1(s)
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And finally we show that PN (t, T ) = PN (s) = pN (s).

PN (t, T ) = PS(t, T )2er(t,T )
(

1− PS(t, T )er(t,T )
)N−1

= P1(t, T )
(

1− PS(t, T )er(t,T )
)N−1

= p1(s)

(
1− (λ− µ)e−(λ−µ)s

λ− µe−(λ−µ)s

)N−1
= p1(s)

(
λ− λe−(λ−µ)s

λ− µe−(λ−µ)s

)N−1

= p1(s)

(
λ

µ
· µ− µe

−(λ−µ)s

λ− µe−(λ−µ)s

)N−1
= p1(s)

(
λ

µ
· p0(s)

)N−1
= pN (s).
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B Complete Results

Table B.1: Results constant speciation and no extinction

Name LogL λ̂ ψ̂ R̂0

NA 626.25 4.27 4.06 1.0533
HA 624.31 4.27 4.06 1.0498
PA 650.44 4.35 4.14 1.0504
PB1 519.58 3.96 3.75 1.0544
PB2 462.04 3.80 3.60 1.0563
M1/2 1086.14 5.96 5.79 1.0301
NP 678.29 4.44 4.22 1.0507
Ns1/2 1034.31 5.74 5.594 1.0259

Table B.2: Results constant rates

Name LogL λ̂ µ̂ ψ̂ R̂0

NA 626.25 4.48 0.40 3.87 1.0507
HA 624.31 4.47 0.38 3.88 1.0475
PA 650.44 4.40 0.11 4.09 1.0498
PB1 519.58 3.98 0.04 3.73 1.0541
PB2 462.04 3.91 0.22 3.49 1.0546
M1/2 1086.14 7.55 2.81 4.57 1.0236
NP 678.29 4.59 0.30 4.08 1.0490
Ns1/2 1034.31 5.79 0.10 5.54 1.0257

Table B.3: Results periodic speciation and no extinction

Name LogL α̂ β̂ λ̂m ψ̂

NA 660.65 -2.07 6.57 3.79 4.03
HA 690.30 -2.55 6.47 3.55 4.05
PA 687.90 1.93 6.28 3.89 4.13
PB1 558.49 1.97 6.36 3.76 3.70
PB2 523.77 -2.27 6.41 3.28 3.54
M1/2 1108.16 1.77 6.42 5.22 5.78
NP 737.94 -2.55 6.49 3.66 4.22
Ns1/2 1063.67 2.68 6.28 4.90 5.57
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Table B.4: Results periodic birth rate

Name LogL α̂ β̂ λ̂m µ̂ ψ̂

NA 1230.95 -8.49 6.50 9.50 6.22 1.39
HA 1052.02 -4.80 6.38 6.02 4.33 2.34
PA 973.02 -5.44 6.50 6.56 4.14 1.74
PB1 681.07 -3.75 6.53 6.22 4.11 2.00
PB2 947.39 -4.77 6.34 6.60 5.02 1.73
M1/2 1110.84 -1.90 -6.42 5.75 1.13 5.27
NP 1046.15 -4.18 6.42 7.92 6.11 1.71
Ns1/2 1121.27 -3.65 6.53 7.50 3.92 3.80

Table B.5: Results periodic birth rate with shift δ

Name LogL α̂ β̂ λ̂m δ̂ µ̂ ψ̂

NA 1219.83 7.75 6.47 10.30 3.14 7.16 1.33
HA 1214.56 -5.98 6.33 6.70 0.41 4.57 1.28
PA 1212.98 7.88 6.53 9.34 3.00 6.96 1.45
PB1 665.53 -3.19 6.45 6.87 0.81 5.26 1.67
PB2 787.62 -5.32 6.36 5.05 -0.11 2.34 1.24
M1/2 1111.15 -2.30 6.44 5.73 2.97 1.11 5.38
NP 1255.84 7.60 6.24 9.23 -1.67 8.55 1.60
Ns1/2 1243.05 -5.68 6.36 7.07 1.26 4.30 2.55

Table B.6: Results periodic death rate

Name LogL λ̂ α̂ β̂ µ̂m ψ̂

NA 1078.74 16.40 13.65 6.32 13.91 0.87
HA 1175.87 8.19 7.0981 6.17 7.0986 2.39
PA 834.46 9.65 -4.30 6.60 7.69 2.10
PB1 683.93 7.64 4.91 6.37 4.92 1.95
PB2 825.00 6.60 3.8908 6.15 3.8915 2.14
M1/2 1242.45 10.91 -5.11 6.25 6.96 3.37
NP 1184.40 10.92 11.05 6.24 11.05 2.97
Ns1/2 1200.43 7.11 2.97 6.29 2.97 4.42
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Table B.7: Results periodic death rate with shift δ

Name LogL λ̂ α̂ β̂ µ̂m δ̂ ψ̂

NA 814.44 11.89 -7.80 7.03 7.81 0.66 1.63
HA 884.72 5.13 2.006 6.28 2.009 -0.97 2.90
PA 859.86 9.71 -4.31 6.60 6.71 0.08 2.00
PB1 734.08 7.27 -4.0576 6.55 4.0577 1.04 2.20
PB2 978.42 6.80 3.976 6.32 3.978 -1.61 2.05
M1/2 1320.88 18.58 -8.89 6.04 12.70 2.00 2.32
NP 1008.26 8.10 3.67 -6.37 4.30 1.35 2.59
Ns1/2 1160.73 6.72 2.359 6.46 2.369 -1.50 3.98

Table B.8: Results periodic birth rate and death rate

Name LogL α̂1 β̂1 λ̂m α̂2 β̂2 µ̂m ψ̂

NA 685.26 2.16 6.26 4.37 -1.50 2.71 1.51 3.43
HA 820.35 12.54 5.92 13.48 5.17 0.79 11.70 1.38
PA 959.64 0.48 2.10 6.28 4.52 6.31 4.53 2.21
PB1 679.00 -3.67 4.02 7.16 5.48 5.12 5.48 1.97
PB2 1281.74 -4.27 6.32 5.22 5.08 6.16 5.26 2.37
M1/2 1107.91 -1.30 1.44 6.58 0.70 2.37 0.70 5.31
NP 1405.86 -9.31 2.28 9.94 9.11 6.26 10.04 3.10
Ns1/2 1062.85 2.71 6.29 4.9 -0.0003 6.62 0.0004 5.79

Table B.9: AIC

Name CS CS & CE PS & CE PS PS δ & CE CS & PE CS & PE δ PS & PE

NA -1248.5 -1246.5 -1313.3 -2451.9 -2427.7 -2147.5 -1616.8 -1356.52
HA -1244.6 -1242.7 -1372.6 -2094.0 -2417.4 -2341.8 -1757.4 -1626.7
PA -1296.9 -1294.9 -1367.8 -1936.04 -2413.9 -1659.0 -1707.7 -1905.28
PB1 -1035.2 -1033.2 -1109.0 -1352.1 -1319.1 -1357.8 -1456.2 -1344
PB2 -920.1 -918.1 -1039.5 -1884.8 -1563.2 -1640.0 -1944.8 -2549.48
M1/2 -2168.3 -2166.4 -2208.3 -2211.7 -2210.3 -2474.8 -2629.8 -2201.82
NP -1352.6 -1350.6 -1467.9 -2082.3 -2499.7 -2358.8 -2004.5 -2797.72
Ns1/2 -2064.6 -2062.7 -2119.1 -2232.5 -2474.1 -2390.8 -2309.5 -2111.7
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Figure B.1: The best fitted model for the NA phylogeny was the periodic speciation model.
(a) The phylogeny and the best fitted periodic rate. (b) Estimated R(t) from the best fitted
model
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Figure B.2: The best fitted model for the HA phylogeny was the periodic speciation model
with a shift. (a) The phylogeny and the best fitted periodic rate. (b) Estimated R(t) from
the best fitted model
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Figure B.3: The best fitted model for the PA phylogeny was the periodic speciation model
with a shift. (a) The phylogeny and the best fitted periodic rate. (b) Estimated R(t) from
the best fitted model
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Figure B.4: The best fitted model for the PB1 phylogeny was the periodic speciation model
with a shift. (a) The phylogeny and the best fitted periodic rate. (b) Estimated R(t) from
the best fitted model
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Figure B.5: The best fitted model for the PB2 phylogeny was the periodic speciation and
extinction model. (a) The phylogeny and the best fitted periodic rate. (b) Estimated R(t)
from the best fitted model
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Figure B.6: The best fitted model for the M1/2 phylogeny was the periodic extinction
model with a shift. (a) The phylogeny and the best fitted periodic rate. (b) Estimated R(t)
from the best fitted model
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Figure B.7: The best fitted model for the NP phylogeny was the periodic speciation and
extinction model. (a) The phylogeny and the best fitted periodic rate. (b) Estimated R(t)
from the best fitted model
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Figure B.8: The best fitted model for the Ns1/2 phylogeny was the periodic speciation
model. (a) The phylogeny and the best fitted periodic rate. (b) Estimated R(t) from the
best fitted model
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Figure B.9: NA phylogeny: Inferred rates for the best fitted model
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Figure B.10: HA phylogeny: Inferred rates for the best fitted model
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Figure B.11: PA phylogeny: Inferred rates for the best fitted model
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Figure B.12: PB1 phylogeny: Inferred rates for the best fitted model

58



0
2

4
6

8
10

12
PB2 phylogeny

year

R
at

es

1991 1993 1995 1997 1999 2001 2003 2005

Speciation
Extinction
Sampling

Figure B.13: PB2 phylogeny: Inferred rates for the best fitted model
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Figure B.14: M1/2 phylogeny: Inferred rates for the best fitted model
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Figure B.15: NP phylogeny: Inferred rates for the best fitted model
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Figure B.16: Ns1/2 phylogeny: Inferred rates for the best fitted model
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C Simulations

Table C.1: We simulated 500 trees with true values λ = 3, µ = 1.89, ψ = 0.81 and
R0 = 1.11. On these we made inference assuming constant rates. In this table we show the
result of the 100 first trees

Iter λ̂ µ̂ ψ̂ R̂0 Iter λ̂ µ̂ ψ̂ R̂0

1 4.4116 3.3667 0.6602 1.0955 51 5.1081 3.3667 0.4967 1.0946
2 2.62 1.2632 0.9491 1.1843 52 2.3716 1.2632 1.024 1.2419
3 2.3641 0.7178 1.1441 1.2697 53 3.5498 0.7178 0.7787 1.0769
4 3.2522 2.116 0.8042 1.1137 54 2.5553 2.116 1.0047 1.1229
5 1.9071 0.1371 1.4545 1.1983 55 3.7439 0.1371 0.7021 1.0656
6 1.783 0.1223 1.4317 1.1473 56 2.2324 0.1223 0.9635 1.2333
7 2.7359 1.41 0.9213 1.1735 57 2.2668 1.41 1.0504 1.0722
8 2.5499 1.1577 1.0984 1.1302 58 4.0213 1.1577 0.6579 1.0909
9 5.2775 4.3346 0.5669 1.0767 59 4.9289 4.3346 0.5389 1.0817
10 3.5598 2.4142 0.7509 1.1247 60 2.9556 2.4142 0.8763 1.0645
11 3.1906 2.1881 0.7967 1.069 61 3.2926 2.1881 0.7555 1.1888
12 3.3201 2.1301 0.826 1.1231 62 4.796 2.1301 0.5344 1.0843
13 1.8569 0.2028 1.4655 1.113 63 2.4591 0.2028 1.0358 1.1262
14 3.0484 1.8862 0.789 1.1395 64 2.5089 1.8862 1.0124 1.1382
15 5.1083 4.3019 0.5131 1.0609 65 3.5356 4.3019 0.7407 1.1198
16 2.0756 0.4637 1.2998 1.177 66 2.6947 0.4637 1.0363 1.1625
17 3.8189 2.8263 0.6388 1.1021 67 2.5671 2.8263 1.0821 1.1197
18 3.1833 2.1453 0.7524 1.0986 68 3.8158 2.1453 0.7288 1.0795
19 2.2375 0.8556 1.1304 1.1266 69 2.4229 0.8556 1.0246 1.234
20 3.4687 2.3977 0.7482 1.1026 70 1.9477 2.3977 1.3126 1.2486
21 2.7353 1.4356 1.0051 1.1207 71 3.334 1.4356 0.8273 1.2266
22 3.2988 2.0993 0.7896 1.1419 72 3.5498 2.0993 0.7058 1.1037
23 1.9784 0.2687 1.3907 1.1922 73 2.5771 0.2687 1.0597 1.1868
24 3.4438 2.2947 0.8213 1.1052 74 3.0584 2.2947 0.7884 1.0547
25 4.0752 3.1271 0.6703 1.0731 75 3.7839 3.1271 0.6585 1.061
26 2.4202 1.0667 1.0028 1.1694 76 2.0351 1.0667 1.4552 1.2636
27 3.5046 2.5518 0.7372 1.0656 77 2.4721 2.5518 1.0706 1.2176
28 2.9358 1.8247 0.8643 1.0918 78 4.4127 1.8247 0.5948 1.0991
29 3.0217 1.9916 0.9303 1.0342 79 4.5905 1.9916 0.5428 1.0861
30 3.4275 2.4223 0.7248 1.0891 80 2.5179 2.4223 1.1535 1.1134
31 5.3979 4.5821 0.5005 1.062 81 4.8489 4.5821 0.4816 1.1261
32 1.8272 0.1349 1.4377 1.1619 82 3.4408 0.1349 0.7487 1.0995
33 3.1804 1.9528 0.8708 1.1263 83 2.0872 1.9528 1.193 1.1619
34 3.6239 2.6169 0.7994 1.0608 84 3.0545 2.6169 1.0062 1.0943
35 1.7617 0.0139 1.4436 1.2087 85 2.387 0.0139 1.0098 1.1267
36 1.9585 0.422 1.3546 1.1024 86 3.3907 0.422 0.7738 1.1408
37 2.7936 1.372 0.919 1.2194 87 3.1647 1.372 0.8238 1.1433
38 3.9595 3.0081 0.7098 1.065 88 4.6003 3.0081 0.5339 1.0647
39 2.5435 1.149 1.1501 1.1063 89 2.24 1.149 1.0824 1.2339
40 2.4678 1.1398 1.0871 1.1082 90 2.6277 1.1398 1.027 1.0923
41 1.9628 0.3499 1.3458 1.1575 91 2.631 0.3499 0.936 1.2328
42 4.1376 3.2297 0.6096 1.0777 92 2.8678 3.2297 0.8732 1.0996
43 1.8896 0.1577 1.395 1.217 93 2.6463 0.1577 0.9028 1.1387
44 2.5736 1.1461 1.1684 1.1119 94 1.8751 1.1461 1.2572 1.3056
45 2.5894 1.1563 0.9512 1.2286 95 1.9278 1.1563 1.3732 1.2798
46 2.4033 0.9662 1.0302 1.2039 96 4.3623 0.9662 0.5998 1.0718
47 3.4386 2.2862 0.8878 1.0834 97 1.8693 2.2862 1.2031 1.2249
48 4.3241 3.3447 0.6135 1.0924 98 1.9013 3.3447 1.3229 1.1342
49 2.645 1.3031 0.9921 1.1524 99 4.8466 1.3031 0.5113 1.0622
50 1.8536 0.0393 1.4031 1.2851 100 2.4598 0.0393 0.9615 1.0966
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Figure C.1: Inferred constant rates for 500 trees simulated with λ = 3, µ = 1.89, ψ = 0.81
and R0 = 1.111.
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Figure C.2: Inferred constant rates for 500 trees simulated with λ = 5.6451, µ = 2.3590,
ψ = 3.0703 and R0 = 1.0397. The death rate µ is underestimated but instead the sampling
rate ψ is overestimated.
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Figure C.3: Example of inferred periodic speciation rate when underlying tree is
simulated under constant rates. The true speciation rate was set to λ = 3
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Table C.2: Log-Likelihood for the 100 trees simulated with constant rates when
inference was done under a constant rate model and periodic speciation rate model

iter constant periodic iter constant periodic

1 -424.6458 -478.5449 51 -561.8902 -588.8464
2 -494.8615 -536.9854 52 -449.8783 -485.7118
3 -431.8928 -526.1300 53 -530.7630 -549.8356
4 -501.2279 -535.2022 54 -537.1609 -579.6032
5 -470.3611 -512.8584 55 -510.3708 -549.0917
6 -546.8867 -566.4281 56 -492.1084 -523.3704
7 -493.5461 -538.8127 57 -532.9484 -572.3753
8 -485.5151 -514.4469 58 -565.1363 -598.5613
9 -416.9010 -455.9329 59 -550.1233 -596.0942
10 -474.7734 -577.7230 60 -514.8717 -543.5579
11 -513.4897 -512.36 61 -498.4026 -498.4044
12 -515.2188 -1277.659 62 -515.3388 -515.3833
13 -468.3095 -662.7967 63 -484.0128 -483.8069
14 -520.5012 -519.3073 64 -486.9801 -485.0381
15 -470.834 -330.9536 65 -492.692 -492.2102
16 -499.1173 -499.0682 66 -557.7946 -556.7082
17 -553.2144 -553.2 67 -534.7668 -534.7309
18 -500.1261 -494.9736 68 -472.7075 -472.7512
19 -481.7441 -480.3516 69 -472.818 -472.4298
20 -504.0929 -503.7562 70 -430.1861 -429.1955
21 -532.5732 -532.5835 71 -473.5103 -473.4741
22 -544.9967 -544.5203 72 -479.127 -477.7797
23 -533.9102 -531.6386 73 -538.7356 -538.1232
24 -480.9457 -480.9406 74 -509.9671 -509.9452
25 -552.6558 -552.6393 75 -475.9463 -935.8914
26 -462.8317 -1174.369 76 -491.735 -621.0172
27 -477.6301 -474.8609 77 -485.7916 -1290.464
28 -519.1921 -518.2634 78 -491.6835 -489.8467
29 -466.3189 -465.7669 79 -480.4546 -480.4979
30 -556.9011 -556.4195 80 -512.2182 -511.1173
31 -534.8398 -534.8441 81 -475.137 -473.5378
32 -445.6848 -445.2923 82 -451.6511 -451.174
33 -475.4621 -475.4899 83 -476.4758 -475.0101
34 -505.5676 -504.8346 84 -454.3364 -443.5789
35 -450.4424 -450.5132 85 -481.5856 -480.2423
36 -524.9533 -524.9836 86 -568.5732 -568.6622
37 -515.3678 -514.231 87 -536.2316 -530.9844
38 -532.9167 -531.298 88 -541.8727 -541.9178
39 -582.5886 -582.4839 89 -524.2411 -1119.427
40 -519.4776 -514.4185 90 -577.61 -577.5678
41 -547.4655 -547.0376 91 -522.4404 -522.0645
42 -481.8287 -481.8398 92 -485.7611 -485.4511
43 -517.9969 -1208.227 93 -597.731 -543.6589
44 -563.2396 -562.9696 94 -510.262 -510.1174
45 -509.8942 -507.7519 95 -584.5472 -1204.523
46 -505.9405 -502.6053 96 -540.4654 -540.2616
47 -512.9387 -512.9528 97 -450.2732 -450.3064
48 -577.61 -577.5678 98 -514.7732 -514.4831
49 -563.7595 -558.3072 99 -542.9345 -542.7739
50 -472.9956 -472.8834 100 -505.2472 -226.313

65



0 2 4 6 8 10 12

0.
0

0.
4

0.
8

α= 1, β= 2, λ= 1.1, ψ= 0.5

time

P
0

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

α= 1, β= 2, λ= 2, ψ= 0.5

time

P
0

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

α= 1, β= 2, λ= 1.1, ψ= 1

time

P
0

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

α= 1, β= 2, λ= 2, ψ= 1

time

P
0

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

α= 1, β= 2, λ= 1.1, ψ= 1.5

time

P
0

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

α= 1, β= 2, λ= 2, ψ= 1.5

time

P
0

Figure C.4: Plot of numerical and analytical solution to PS
0 when µ(t) = 0. The grey line

is the numerical solution and the black line are the analytical solution
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D R code

library(deSolve)

# Equations for calculating the likelihood.

# Assuming we have a vector with all times of speciation events: nodes,

# and a vector with all sampling times: tip.

ZERO_CUTOFF <- 1E-07

########## Constant speciation and constant extinction ##########

# lambda(t) = lambda #

# mu(t) = mu #

#################################################################

#derivative of P0, to be thrown in in ode

dP0<- function(t, y, parms){

lambda <- parms[1]

mu <- parms[2]

psi <- parms[3]

list(mu-(lambda+mu+psi)*y+lambda*(y^2))

}

#solve the differential equation

diff2<-function(lambda,mu,psi,time){

yini <- c(y=1)

P0d <- ode(y=yini,func=dP0,times=time,parms=c(lambda,mu,psi))

return(P0d)

}

# create values to be used to create a function for P0,

#the amount of values decides how accurate the function becomes

P0_allf<-function(lambda,mu,psi,T){

times <- seq(0,T,by=0.0005)

res <- diff2(lambda,mu,psi,times,T)

dtimes<- times

dres <- rev(res[,2])

return(list(dtimes=dtimes,dres=dres))

}
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# calculating P1 with integrate

P1_all<-function(lambda,mu,psi,times,res,t1,T){

s <- length(t1)

f.P0 <- approxfun(times,res)

integrand <- function(x){

area <- lambda + mu + psi - 2*lambda*f.P0(x)

return(area)

}

integrandv<- Vectorize(integrand,"x")

res <- 1

if(s==1){

if ( (T-t1) > ZERO_CUTOFF ) {

res <-exp(-integrate(integrandv,lower=t1,upper=T)$value)

}

}

if(s>1){

res <- c(1:s)

dummy <- mapply(integrate, lower=t1,upper=T, MoreArgs=list(f=integrandv))

for(l in 1:s) { res[l]<-exp(-dummy[1,][[l]])}

}

return(res)

}

# calculating P1 with differential equations instead of integrate

diffP1<-function(lambda,mu,psi,times,res,time,T){

f.P0 <-approxfun(times,res)

integrand <-function(x){

area <- lambda + mu + psi - 2*lambda*f.P0(x)

return(area)

}

integrandv <-Vectorize(integrand,"x")

dP1 <- function(x, y, parms){

lambda <- parms[1]

mu <- parms[2]

psi <- parms[3]

list(lambda + mu + psi - 2*lambda*f.P0(x))

}

yin <- integrate(integrandv,lower=0,upper=T)$value

yini <- c(y=yin)

P1d <- ode(y=yini,func=dP1,times=time,parms=c(lambda,mu,psi))

res <- P1d[,2]

times <- P1d[,1]

pos <- which(is.na(res))

if((length(pos)) > 0){

for(i in 1:(length(pos))){

yt <-exp(-integrate(integrandv,lower=(times[(pos[i]-1)]),upper=times[pos[i]])$value)

dum <- res[(pos[i]-1)]-log(yt)

res[pos[i]] <- dum

}

}

res <- res[length(res)]-res

return(exp(-res))

68



}

# density of constant birth and death model with time varying rates

# and sampling through time

dBirthDeathdiff<- function(node,tip,birth,death,psi){

node <- sort(node)

tip <- sort(tip)

nodeAndTip <- sort(c(node,tip))

N <- length(tip)

T <- tip[N]

tmp <- P0_allf(birth,death,psi,T)

all_times <- tmp$dtimes

P0_res <- tmp$dres

P1 <- diffP1(birth,death,psi,all_times,P0_res,nodeAndTip,T)

fP1 <- approxfun(nodeAndTip,P1)

pr <- (N-1) * log(birth) + N * log(psi)

pr <- pr + sum(log(fP1(node)))-sum(log(fP1(tip)))

#we condition on at least on sampled species

pr <- pr - log(1-all_res[1])

return(pr)

}

dBirthDeath <- function(node,tip,birth,death,psi){

node <- sort(node)

tip <- sort(tip)

N <- length(tip)

T <- tip[N]

tmp <- P0_allf(birth,death,psi,T)

all_times <- tmp$dtimes

P0_res <- tmp$dres

pr <- (N-1) * log(birth) + N * log(psi)

pr <- pr + sum(log(P1_all(birth,death,psi,all_times,P0_res,node,T)))

pr <- pr - sum(log(P1_all(birth,death,psi,all_times,P0_res,tip,T)))

#we condition on at least on sampled species

pr <- pr - log(1-all_res[1])

return(pr)

}
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########## Periodic speciation and periodic extinction ##########

# lambda(t) = a*sin(b*t)+c #

# mu(t) = a2*cos(b2*t)+c2 #

#################################################################

#derivative of P0, to be used in ode

dP0 <- function(t, y, parms){

a <- parms[1]

b <- parms[2]

c <- parms[3]

a2 <- parms[4]

b2 <- parms[5]

c2 <- parms[6]

psi <- parms[7]

list(a2*cos(b2*t)+c2-(a*sin(b*t)+c+a2*cos(b2*t)+c2+psi)*y+(a*sin(b*t)+c)*(y^2))

}

#solve the differential equation

diff2 <- function(a,b,c,a2,b2,c2,psi,time){

yini <- c(y=1)

P0d <- ode(y=yini,func=dP0,times=time,parms=c(a,b,c,a2,b2,c2,psi))

return(P0d)

}

# create values to be used to create a function for P0,

# the amount of values decides how accurate the function becomes

P0_allf <- function(a,b,c,a2,b2,c2,psi,T){

times <- seq(0,T,by=0.0005)

res <- diff2(a,b,c,a2,b2,c2,psi,times,T)

dtimes <- times

dres <- rev(res[,2])

return(list(dtimes=dtimes,dres=dres))

}

70



#function P1 using integrate.

#Slower than diffP1 which integrates using differential equations

P1_all <- function(a,b,c,a2,b2,c2,psi,times,res,t1,T){

s <- length(t1)

f.P0 <- approxfun(times,res)

integrand <- function(x){

area <- (a*sin(b*x)+c) + a2*cos(b2*x)+c2 + psi - 2*(a*sin(b*x)+c)*f.P0(x)

return(area)

}

integrandv <- Vectorize(integrand,"x")

res <- 1

if(s==1){

if ( (T-t1) > ZERO_CUTOFF ) {

res <- exp(-integrate(integrandv,lower=t1,upper=T)$value)

}

}

if(s>1){

res <- c(1:s)

dummy <- mapply(integrate, lower=t1,upper=T, MoreArgs=list(f=integrandv))

for(l in 1:s){ res[l]<-exp(-dummy[1,][[l]])}

}

return(res)

}

#diffP1 give same result as P1_all but is faster.

#Sometimes some values is not calculated and

#we use the same approach as in P1_all and use the function

#integrate to get these.

diffP1<-function(a,b,c,a2,b2,c2,psi,times,res,time,T){

f.P0 <- approxfun(times,res)

integrand <- function(x){

area <- (a*sin(b*x)+c) + a2*cos(b2*x)+c2 + psi - 2*(a*sin(b*x)+c)*f.P0(x)

return(area)

}

integrandv <- Vectorize(integrand,"x")

dP1<- function(x, y, parms){

a <- parms[1]

b <- parms[2]

c <- parms[3]

a2 <- parms[4]

b2 <- parms[5]

c2 <- parms[6]

psi <- parms[7]

list((a*sin(b*x)+c) + a2*cos(b2*x)+c2 + psi - 2*(a*sin(b*x)+c)*f.P0(x))

}

yin <- integrate(integrandv,lower=0,upper=T)$value

yini <- c(y=yin)

P1d <- ode(y=yini,func=dP1,times=time,parms=c(a,b,c,a2,b2,c2,psi))

res <- P1d[,2]

times <- P1d[,1]
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pos <- which(is.na(res))

if((length(pos)) > 0){

for(i in 1:(length(pos))){

yt <-exp(-integrate(integrandv,lower=(times[(pos[i]-1)]),upper=times[pos[i]])$value)

dum <-res[(pos[i]-1)]-log(yt)

res[pos[i]]<-dum

}

}

res <- res[length(res)]-res

return(exp(-res))

}

#calculated the likelihood

dBirthDeathdiff <- function(node,tip,a,b,c,a2,b2,c2,psi){

node <- sort(node)

tip <- sort(tip)

nodeAndTip <- sort(c(node,tip))

#get the number of species in the phylogeny

N <- length(tip)

#get the age of the phylogeny

T <- tip[N]

tmp <- P0_allf(a,b,c,a2,b2,c2,psi,T)

all_times <- tmp$dtimes

P0_res <- tmp$dres

P1 <- diffP1(a,b,c,a2,b2,c2,psi,all_times,P0_res,nodeAndTip,T)

fP1 <- approxfun(nodeAndTip,P1)

pr <- N * log(psi)

pr <- pr + sum(log(fP1(node)))+sum(log((a*sin(b*node)+c)))

pr <- pr - sum(log(fP1(tip)))

#we condition on at least one sampled lineage

pr <- pr - log(1-all_res[1])

return(pr)

}
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