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Abstract

In this thesis, ruin probabilities connected with stochastic flows

of financial contracts are studied. We show that the model can be

embedded in the specific variant of Sparre Andersen model and the

corresponding ruin probabilities connected with stochastic flows of fi-

nancial contracts considered in the thesis can be interpreted as a ruin

probability for the corresponding Sparre Andersen model. Cramér-

Lundberg type bounds are obtained for ruin probabilities and explicit

equations are given for computing of the adjustment parameter. Fi-

nally, results of numerical studies are presented to illustrate the the-

oretical results.
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1 INTRODUCTION 
 
Ruin theory is based on estimates of ruin probabilities for risk process, including 

insurance and also financial processes as well. The classical origin for the ruin 

theory results was obtained by F. Lundberg (1903, 1909) and H. Cramér (1926, 

1930). There exists a huge literature in this area. We refer to the books by 

Rolski, Schmidli, Schmidt, and Teugels (1998) and Asmussen (2000), where 

one can find the detailed presentation of the results and extended 

bibliographies of works in this area. 

A risk reserve process          or a surplus process (aggregate loss process) 

        for a financial institution (specifically of an insurance company) is a 

model defined for the evolution of the reserves (in terms of capital) with       

being the initial reserve or capital. These two are given as: 

 

           
  
      and           

  
   ,                                      

where: 

(a)    ,     is a Poisson process;  

(b)            are independent and identically distributed (i.i.d.) non-negative 

random variables; 

(c) Process    ,      and random variables            are independent  

(d) u, c = premium   . 

       The probability of ruin in infinite time horizon is the probability defined as,  

                                     . 

 
The concept of ruin theory has been used widely in many financial areas and 

applied to different models in assessing the performance of portfolio. The 

classical Cramér- Lundberg approximation outlines some natural conditions 

asymptotic for ruin probabilities in the following form, 

           as     ,     

where the constant    . 
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The Cramér-Lundberg model was extended by E. Sparre Andersen (1957) 

where he assumed the claim that inter-arrival times have arbitrary distribution 

functions instead of the specified Poisson distribution as it is assumed in the 

classical Cramér-Lundberg model. The concept and analysis of the Sparre 

Andersen model will be the main focus in analysing the model studied in this 

thesis.  

 

2  DESCRIPTION OF MODEL 

The model of the portfolio is in continuous time measured in years with today 

being    . The outline of the portfolio is as follows.  

Arrival of deals follows a Poisson Process      with an intensity  .  

The notations in the model are described as follows: 

   is the size of the loan deal  ,    is the time to maturity,    is the time at which 

default deal   happens,    is the effective time that client   remains in the 

system. The client   amortizes at 
  

  
 and pays a risk premium      per time unit. 

Moreover, the rate at which a client   defaults on its obligated payment is   (that 

is the probability of default) which is constant. 

Assumption of the Model:  

 There is no collateral taken by the bank, which means in case of default 

all future cash flows between the client and the bank is removed. 

 The initial capital or reserve the bank holds is constant given as  . 

 The loan size process   , Poisson process   and the default arrival 

process    are mutually independent. 

             is a counting process on      :      is the number of 

deals which occurred by time    

The effective time that client   remains in the system,    follows a truncated 

exponential distribution given as: 

               ,  where             
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In general, the risk reserve process      of the bank generated by all the deals 

that have arrived between 0 and   is 

 

          
  

  
             

    
   ,                                              (2.1) 

 

Since            is a homogeneous Poisson process with the intensity  , the 

random variable                with deals arriving randomly of time      

    If      is defined as the time between the         and the     arrival of 

deals (i.e the inter-arrival times of the homogenous Poisson process) then  

            for          

And                            are i.i.d. exponentially distributed 

random variables with      
 
  .  

 

3 METHOD OF ANALYSIS 
 
It is of a significant importance to study the performance of portfolios in risk 

management. There are many ways of going about this but in our case the ruin 

theory used by actuaries was considered.  In using the concept of ruin theory 

described earlier, it can be seen that (2.1) is more or less related to that of the 

ruin theory of non-life insurance. Where      is the balance of the bank at a 

given time  ,           and is the cash flow in the portfolio over time. The 

income received from the     client is  
  

  
     . Thus the total money the bank 

receives by time   is   
  

  
        

    
   ;    is the capital the bank lends out to 

the     client with    
    
    being the total outflow of capital as of loan lending 

occurring in      . Obviously, the process decreases at the arrival points  

         reducing by size     at the arrival time    of the     client. When 

the lending size is sufficiently large, there is a possibility that      will take 

negative values. From ruin theory, it is known that when   falls below zero there 

is ruin. This then leads to the concept of ruin probability for the model. 
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The case of homogeneous loans (where the loan sizes, time to maturity, the 

premium and the default are assumed to be constants and identical for all 

clients) was applied in this computation for simplicity and is given as: 

          
 

 
                 

    
     with                        (3.1) 

For the model (3.1) to be more convenient to work with mathematically, the 

model was modified a little more. Letting, 

    
 

 
            

This is obtained from the fact that   is constant. This also indicates that the 

total money the bank receives is greater than what the bank lends out.  

This condition let one avoid the trivial case, where ruin occurs with probability 

one.  

     Thus, we assume that the following condition holds: 

 

A: The total money received (total cash inflow) should be greater than the total 

money lent out (total cash outflow) i.e.     
 

 
             . 

 
     Also, it is known that    is exponentially distributed and therefore it can be 

deduced that letting, 

        
 

 
            

  
 

 
 
 
      

  
 

 
 
 
          .   

Hence,  

    
 

 
 

 
    

 and                            
     

The modified model with the parameters defined above is: 

                       
   ,                                     (3.2) 

where  

 

              

               

      

  

 
The ruin probability is given as: 
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                 (3.3) 

The sample path of the risk process can be illustrated in the diagram below: 

 

Figure 3.1: A trajectory illustration of the Risk Process 

 

    The ruin probability (3.3) will now be compared and analysed using the 

concept of Sparre Andersen Model. 

 

 
3.1 Sparre Andersen Model 

E. Sparre Andersen (1957) extended the classical Cramér- Lundberg model by 

allowing claim inter-arrival times to have arbitrary distribution functions. The 

Sparre Andersen model will be described, followed by the description of how 

the ruin probability of the model was determined and finally the application of 

Cramér-Lundberg type bound for the ruin probability of the model. The model is 

described as follows: 

 Letting the inter-claim times be        , then    is the time between the 

        and the     claim.     is then the time between the zero point and the 

first claim and    is the nth claim amount. The following assumptions were 

made by him: 
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 The inter-claim times have a general distribution instead of an 

independent exponential distribution; 

 The claim sizes are exponentially distributed; 

 The risk premium per time unit is a positive constant; 

 The inter-claim times and the claim sizes are independent random 

variables; 

 The inter-claim times and claim sizes are both identically distributed; 

 The means of the distribution of both the inter-claim times and claim 

sizes exist and are finite. 

Hence, the risk reserve process of the Sparre Andersen model is given as: 

               ,    ,                                                                      (3.4) 

where   ≥ 0 is the initial risk reserve,   is the risk premium,        if      

and         
     
   . 

Where       is a renewal process and    independent and identically non-

negative random variables with no probability mass at zero. 

Mathematically, it is more convenient to consider the claim surplus process 

instead of the risk reserve process which is given as: 

                
   ;                                                                      (3.5) 

 

 
3.2 Ruin Probability for the Sparre-Andersen Model 
 
The main focus of the study is the ruin probability of this model. The ruin 

probability       is thus given as: 

 

                                 

                               
 
                                                            (3.6) 

 

    The ruin probability or function for the Sparre-Andersen model with 

exponential claim size distribution, say,        is given as: 

         
 

 
                                                                 (3.7) 
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for all    , where  , the adjustment coefficient is the unique positive root of 

the moment generating function given as: 

       
 

   
          with     

 

   
    

where        and         is the moment generating function of the claims 

size and     is the Laplace Stieltjes Transform.  

      For the existence of  , the Cramér-Lundberg type bounds for the ruin 

probability of the Sparre Andersen Model can be computed. 

 

3.3 Cramér-Lundberg type bounds  

For the existence of the parameter  , the lower and upper bounds of the ruin 

probability can be determined. These bounds are called the Cramér-Lundberg 

type bounds. The parameter   is the unique positive root of the following 

equation, 

 

                                                                       (3.8) 

 

     Indicating that 1 is a root of (3.8) when    , that is,           and 

equation may have a second root   which is unique and strictly positive when 

     

    The Cramér-Lundberg type bounds for the ruin probability used in our 

studies, given in Rolski, Schmidli, Schmidt, Teugels (1998) (Theorem 6.5.4, 

Chapter 6; pages 255-256), takes the following form,  

 

    
             

    ,  for      ,                                              (3.9) 

 

where 

              
         

          
 
 

  ,                   
         

          
 
 

                     (3.10) 

With               ,        is the tail function,        is the density function 

and      and      are constants. 
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Equation (3.10) can be given in terms of the claim size distribution    which is a 

bit weak but useful and simple to compute, it’s given as: 

                
         

          
 
 

  ,                     
         

          
 
 

 ,                   (3.11) 

where   is the solution to (3.8) and                . 

 

The constants            
 
  given by (3.10) and (3.11) respectively, satisfy 

                  

 
The ruin probability        in the Sparre Andersen Model with general 

distributions of inter-claim times, say    and exponentially distributed claim 

sizes with the parameter  , the adjustment coefficient   is the solution to (3.8). 

Also, the constants         
   

 
  and through this (3.7) is derived for the 

ruin probability. 

 

 

4 MODEL ANALYSIS AND RESULTS 
 
The financial contract under study is modelled in a way like the risk reserve 

where the rate at which loans (which are constant) arrives follow a Poisson 

process. The model constructed for studying the ruin probabilities of this 

financial contract is incorporated in the Sparre Andersen model which also 

considers the risk reserve process in continuous time. The loan (claim) counting 

process is also Poisson process which is governed by a sequence of 

independent and identically distributed inter-occurrence times with the claim 

being constant and are independent of the inter occurrence time. Furthermore, 

the Cramér-Lundberg bound for the ruin function used in the Sparre Andersen 

model with general distributions of inter-occurrence time and claim sizes will be 

used in the model understudy in creating the bounds for the ruin probability of 

the model. 
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4.1  Embedding of the model into Sparre-Andersen Model 

Recalling from Chapter 3, the risk reserve and ruin probability given by (3.4) 

and (3.6) respectively is similar to (3.2) and (3.3) which are the model and ruin 

probability respectively understudy. Therefore our model can be embedded and 

analysed the same way as it was done for the Sparre Andersen model. The 

following comparison can be done by assigning the variables in the Sparre 

Andersen Model to that of the model understudy resulting in: 

 

   

                      

                

    and      

Giving: 

                                
        

Hence the ruin probability for our model and the ruin probability after embedding 

into Sparre Andersen model are equal:             

According to one of the assumptions made by Sparre Andersen, the means of 

the distribution of both the inter-claim times and claim sizes exist and are finite. 

So this assumption is checked by the model understudy in the following way: 

The loan (claim sizes) is constant for the model understudy so the mean of that 

is: 

       

The inter-claim times follow a truncated exponential. Therefore the mean is 

given as: 

                        

                                                                         

                                                        

                                                   

                                                                    

Since D is exponentially distributed with parameter    we then have: 

                    ,                ,            

Hence 
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Using integration by part, i.e.        ;    ,           ,         ,      

           

  

 

          
 

  
       

  

 

 

                                            
 

  
 

                                              
 

  
            

                     
 

  
  

 

  
           

Hence, 

           
 
 

 

  
  

 

  
           

       
 

  
                          

The above result is also very useful and important because it tells something 

useful about the probability of ruin and this leads to the condition, which let one 

avoid a trivial case, where ruin occurs with probability equal one. 

   Thus, we assume that the following condition holds: 

 

B: The expectation or the mean of the distribution of inter-claim times should be 

greater than the loan size i.e.    
       

 

  
  .  

 

Embedment of our model into that of the Sparre Andersen Model and fulfilling 

the assumptions and conditions made by that model allows us to find the 

constants for the Cramér-Lundberg type bounds for the model and this is done 

in the next section. 

 

4.2 Cramér-Lundberg type bounds for ruin probabilities   

The Cramér-Lundberg type bound for the ruin probability of the initial capital   is 

given as, 
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                                                              (4.1) 

 

with     and     given by (3.10) in section 3.3 and   is the adjustment coefficient 

and also the unique positive root to the moment generating function of the 

model given as, 

 

                                                                     (4.2) 

 

The equations (3.9) and (4.1) are of the same form and also (3.8) and (4.2) are 

similar. 

Calculating for the moment generating function of the model leads to: 

                  

This is obtained as a result of   being constant and 

                                 

                                              
 

 

 

                    
         

    
   

 

  

              

                        
  

    
 

  

    
                      

Hence, 

                         
  

    
                              

and equation (4.2) takes the following form 

            
  

    
                                                                       (4.3) 

When     then (4.3) has a root of 1: 

       
  

    
                                      

                               

                 

Moreover,                         
 

  
 is a convex function in   since     is 
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a convex function. Then, the convex function can be in any of these four forms 

illustrated below: 

I      II    

     

III      IV 

      

Figure 4.1: Illustration of the shapes of the convex function 

 

Investigating the convexity of        

       is further investigated to show which of the above convex function it 

takes. 

     With                 , the distribution function of    can be illustrated as: 

 

Figure 4.2: Illustration of the distribution function of Y 
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That is,                                             

                              

                      

                            

                      

  

                               

                 

                               

                      

  

With            being a bounded random variable 

The first and second differential of          given as: 

 
                   

 

  

                       
 

  

                   

Indicating that        is a convex function and finding which type of the above 

diagrams it takes. Standard calculations reveal that with 

       
  

    
                      

  

    
       then                     

As a result of this together with condition A and B holding, the convex function 

of        will take the form: 

 

Figure 4.3: Illustration of the convex function of         

 

     Thus,        is a nonnegative continuous, convex function such that 

         and          as    . If   exist, then we move on to find the 

constants            
 
  with their expressions given by  
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with                                   . 

Calculating for the constants      
 
  is as follows: 

Let 

        
        
        

  ,                   
        
        

   and        ,  

Then 

            
     

     
 

 

   
  and             

     

     
   

The computation of the bounds using these results of constants      
 
  is quite 

straight forward with known parameters. This is as a result of the loan sizes 

being constants but the result is useful hence it is stated in the following 

theorem. 

 

Theorem 4.1: Let assume condition B holds. Then the following lower and 

upper bounds hold for the ruin probability,  

 

   
                   

where parameter   is the unique positive root of equation (4.3). 

 

       We then move on to calculate for the constants      .  While the 

calculation of that is a bit complicated, it can be done. 

Let  

    ,          

                 

                               

                      

   and 
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Then  

             
                

                 
 

              
 

                   
                

                 
 

              
 

 

Computing * 

                

                 
 

 

 
                

        
        

     
 

  

                                                             
                

  
     

                       
 

                                                               
                 

  
    

    
  

    
             

 

Let 

     
                 

  
     

   
  

     
            

 

and finding derivative using the quotient rule of differentiation result in: 

      
                            

  
     

   
  

     
             

 
  

     
   

  
     

             
  

 
                      

  
     

                   

 
  

    
    

  
    

              
  

Expanding        can be a bit messy and we can lose track. So we will then 

tend to a different approach by simplifying      before finding the derivative. 

This is done by adding and subtracting               to       to the numerator 

which result in:  
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From the equation above, (A) can be determined since it does not depend on  , 

we then move on to take the derivative of (B). 

Letting      
       

                 
 and finding the derivative of this function as it what 

was done for       will result in: 

      
                                                  

                    
 

                             
                                                         

                    
 

This shows the function      is differentiable and the maximum and minimum of 

this function can be found. Hence we state the result in the theorem below. 

 

Theorem 4.2: Let assume condition B holds. Then the following lower and 

upper bounds hold for the ruin probability  

    
             

    

where parameter   is the unique positive root of the equation (4.3) and     and 

    are, respectively, the minimum and maximum values for the function 

     
                 

  

    
    

  

    
             

  in the interval  [0, L]. 

 

We conclude from the above calculations that there exist explicit solutions in 
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finding the values for the parameter            
 
  for the Cramér-Lundberg 

bounds for our model with   given which also has an explicit solution. 

The values     and    can be investigated numerically for given 

parameters,  ,    and  .  

   

 
5 NUMERICAL STUDIES 

The functions derived for obtaining the approximate values of   and        in 

(4.4) and      respectively was investigated numerically using Matlab. This is 

done by choosing some reasonable values for the constant variables in the 

model with the conditions A and B holding. The investigation of the convexity of 

       in Figure 4.3 is done and the value of   is obtained. This is then used to 

find the approximate values for the constants of the lower and upper bounds for 

the ruin probability which are    and    respectively. 

 
Investigation of        and numerical values for    

It is known from chapter 2 that, the model is considered in the homogenous 

state where the loan sizes, time to maturity, the premium and the default are 

assumed to be constants and identical for all clients. The effect of values of 

these parameters on the value of    is investigated by keeping one value 

constants and varying the rest. 

1.                        and varying alpha     
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Figure 5.1: Effect of Default Probability on the adjustment coefficient 

(green is      , black is       , yellow is      , and pink is   

    ) 

Numerical Values for the approximate adjustment coefficient with different 

alphas. 

Table 5.1 

Default Probability     0.05 0.1 0.15 0.2 

  0.0007581 0.0005346 0.0003894 0.0002604 

 

2.                         and varying   



19 

 

 

Figure 5.2: Effect of Time to Maturity on the adjustment coefficient (green 

is      , black is   , yellow is      , and pink is    ) 

Numerical Values for the approximate the adjustment coefficient with different 

time to maturity. 

Table 5.2 

Time to Maturity     6months 1 year 1.5 years 2years 

  0.0008502 0.0008111 0.0007834 0.0007558 

 

3.                    and varying    
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Figure 5.6: Effect of Premium on the adjustment coefficient (green is 

         , black is         , yellow is          , and pink is 

        ) 

Numerical Values for the approximate adjustment coefficient with different 

premium as. 

Table 5.3 

Premium      0.05*L 0.1*L 0.15*L 0.2*L 

  0.0003203 0.0005806 0.0006935 0.0007581 

 

The constants       for the Cramér-Lundberg type Bounds 

We investigate       numerically by choosing some of the values of the 

adjustment coefficient   obtained and using that to find their corresponding    

and    of the function which are the minimum (inf) and maximum (sup) of the 

function respectively. The value of the constant     and    with different values 

of   is as shown in the table below: 
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Table 5.4: 

Adjustment Coefficient 

    

Upper bound constant 

     

Upper bound constant 

    

0.0002604 0 0.0003956 

0.0003894 0 0.0006769 

0.0005346 0 0.001296 

0.0006935 0 0.002974 

0.0007558 0 0.00451 

0.0008502 -0.03 0.02185 

 

After observing Figures 5.4-5.6 and Tables 5.1-5.4, the following results were 

obtained: 

(1) It is proved numerically Figure 4.3 holds as it is presented in Figures 5.1-

5.3 with conditions A and B holding. 

(2) Increasing both the probability of default   and the time to maturity 

  decreases the value of the adjustment coefficient   but the adjustment 

coefficient decreases rapidly in the case of the probability of default than 

that of the time to maturity 

(3) Increasing the premium    increases the value of the adjustment 

coefficient  . 

(4) The adjustment coefficient is strongly affected by the premium and the 

default probability as compared to the time to maturity. 

(5) The values of the upper bound constant are less than one satisfying 

      on the other hand the values for    are all zero except for when 

             which is negative. This indicates that values of    are 

not really useful. Hence only the constant upper bound of the function 

actually will be useful in determining the bound for the ruin probability.   

(6) The upper bound constant increases with increasing value of the 

adjustment coefficient.   

(7) The larger the value of   the smaller the upper bound for   will be. That 

is larger values of   imply smaller ruin probabilities. 
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6 SUMMARY AND CONCLUSION  

In summary, the homogeneous portfolio of financial contracts for the lending 

aspect of a financial institution was used to investigate how the cash flow is 

affected by credit risk using ruin theory from insurance. The understudy model 

was analysed by embedding it in the Sparre Andersen Model with almost all the 

assumption made by that model holding. Theoretically, the distribution of the 

model was identified and the ruin probability of the model was calculated. The 

adjustment coefficient which was the second root of the moment generation 

function of the model was found and this was used to calculate the Cramér-

Lundberg type bounds for the ruin probability. Numerical studies was further 

done to obtain an approximate value for the adjustment coefficient   and the 

effect of changing the interest rate, time to maturity and probability of default 

with the Loan size fixed. The values obtained for the adjustment coefficient was 

further used to find the approximate numerical values for the constants     and 

   of the bounds for the ruin probability.  

    In conclusion, we need to appreciate the fact that the introduction of ruin 

probabilities for stochastic modelling techniques has aided the insurance and 

banking sector in quantifying market risks. It was found that there are explicit 

solutions in finding the adjustment coefficient    and the constants     and    

with all the assumptions made in place. 

    It has been established in this study that if a value of the adjustment 

coefficient can be found, then values of the constants for the bounds can be 

determined. The adjustment coefficient can be interpreted as a risk measure 

since it is a function of the parameters that determine or affect the ruin 

probability. Besides using the adjustment coefficient in determining the bounds 

of ruin probabilities which is also used as a risk measure for the credit risk 

exposure of financial contracts (loans), it can be used to determine initial 

capital/surplus the institution should hold and proper interest rate which is used 

to obtain the premium. 

This project has examined the application of ruin probabilities of 

stochastic modelling techniques to credit risks facing the financial industry.  This 

theoretical research is used to explore risks associated with financial institutions 
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and approaches to minimize default using the specific, measurable, achievable 

and timely approach of ruin probabilities for stochastic modelling. This study is 

important in strengthening the early warning signs of credit default and is vital 

for controlling loans.  It will be of an interest to further study other dynamic 

models instead of only in the case of homogeneous loans incorporating other 

elements that are practically applicable and also to implement the model and 

the bound found for the ruin probability using real data from different financial 

institutions with the aim to establishing case study realities that will have 

general and specific applications for financial institutions.  
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APPENDIX: MATLAB CODES 
 
%Moment Generating Function in calculating the value for the Adjustment 

%Coefficient (Gamma) 

function my=f(s,M,L,Lr,alpha) 

M1=(L/M+Lr)*M; %M-tilda 

mu=alpha/(L/M+Lr); %mu-tilda 

my=((mu./(s+mu)).*(1-exp(-(s+mu)*M1))+exp(-(s+mu)*M1)).*exp(s*L); 

end 

%Function for calculating the upper and lower bounds for the constants b(+) 

%and b(-) of the ruin probability. 

function bvalue=f2(x,M,L,Lr,alpha,gamma) 

mut=alpha/(L/M+Lr);%mu-tilda 

bvalue=(exp(x.*gamma)-exp(-

mut*L)*exp(x.*(gamma+mut)))./((mut/(gamma+mut))*exp(-

mut*L)*(exp(gamma+mut)*L)-exp(x.*(gamma+mut))); 

end 

%Main Matlab Codes for the implementation of the two Functions 

clear all 

clc 

close all 

%Assigned values for the parameters (L, M, Lr, alpha) in the Moment 

%Generating Function for Calculating the Adjustment Coefficient and 

Upper&Lower bounds of the ruin probability. These 

%Values Can be Varied. 

M=2;         %Time to maturity 

alpha=0.2;   %probability of default 

L=5000;      %Loan size 

Lr=0.2*L;   %premium 

s=0:1e-8:1e-3; % This value be any value from zero to infinity 

%% Calculating for the approximate value of the adjustment 

%% Coefficent(Gamma) 
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my=f(s,M,L,Lr,alpha); %moment generating function 

m0=1;% Value of the moment generating function when s=0 

ml=exp(s.*L); 

figure(1) 

plot(s,my, 'b') 

hold on 

plot(s,m0, 'g') 

xlabel('s') 

ylabel('my(s)') 

title('Gamma Value') 

% %%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Calculating for the Upper and Lower Bound Constant for the ruin 

%% probability 

gamma=0.0002604; %Adjustment Coefficient 

x=0:1e-3*L:L;% This value is from zero to the value of the size of Loans 

bvalue=f2(x,M,L,Lr,alpha,gamma); 

% Location of minimum point: 

Low = find(bvalue == min(bvalue)); 

% Just in case there are multiple mins 

Low = Low(1); 

% Location of maximum point: 

High = find(bvalue == max(bvalue)); 

% Just in case there are multiple maxes: 

High = High(1); 

%plot(x,bvalue) 

% Plot and annotate the results: 

figure 

plot(x,bvalue,'b.', ... 

x(Low),bvalue(Low),'rs', ... 

x(High),bvalue(High),'g^') 

grid on 

hold on 
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text(x(Low),bvalue(Low),'Min') 

text(x(High),bvalue(High),'Max') 

hold off 

 


